
JBoss Messaging Clustering Introduction

A brief guide to clustering in JBoss Messaging

Table of Contents
1. JBoss Messaging Clustering Introduction ...1
2. Introduction ..2

2.1. JBoss Messaging 1.2 GA features: ...2
2.2. JBoss Messaging 1.2.0.CR1 features: ..3

3. Clustering overview ..4
3.1. JBoss Messaging Clustering Overview ..4

4. JBoss Messaging Clustering Installation ...6
5. JBoss Messaging Clustering Configuration ...10

5.1. Clustering Architectural Overview ..10
5.2. Clustered Post Office Configuration ..11

5.2.1. GroupName ..12
5.2.2. StateTimeout ...12
5.2.3. CastTimeout ...12
5.2.4. StatsSendPeriod ..12
5.2.5. ClusterRouterFactory ...12
5.2.6. MessagePullPolicy ..13

5.3. JGroups Stack Configuration ..13
5.4. Message Redistribution Configuration ...13

ii

1
JBoss Messaging Clustering Introduction

This guide gives a brief overview of the features available in JBoss Messaging Clustering 1.2.0.CR1

It also gives a high level explanation of how clustering works and shows you how to set up a simple cluster of
JBoss Messaging servers.

This guide is work in progress.

It will expand considerably for the 1.2.0 GA release.

Please send your suggestions or comments to the JBoss Messaging user forum
[http://www.jboss.org/index.html?module=bb&op=viewforum&f=238].

1

http://www.jboss.org/index.html?module=bb&op=viewforum&f=238

2
Introduction

JBoss Messaging 1.2 GA will provide a highly sophisticated clustering implementation, far more sophisticated than
you'll find in the vast majority of other messaging systems.

It will allow you to smoothly distribute your application load across your cluster, intelligently balancing and util-
ising each nodes CPU cycles, with no single point of failure, providing a highly scalable and performant clustering
implementation.

2.1. JBoss Messaging 1.2 GA features:

JBoss Messaging 1.2 GA Clustering will provide the following features:

• Distributed queues. Messages sent to a distributed queue while attached to a particular node will be routed to a
queue instance on a particular node according to a routing policy.

• Distributed topics. Messages sent to a distributed topic while attached at a particular node will be received by
subscriptions on other nodes.

• Fully reliable message distribution. Once and only once delivery is fully guaranteed. When sending messages to
a topic with multiple durable subscriptions across a cluster we guarantee that message reaches all the subscrip-
tions (or none of them in case of failure).

• Persistent level reliability guarantee without persistence! By replicating persistent messages between nodes in
memory, we can obtain comparable reliability levels to persistenting messages to disk, without actually storing
them to disk.

• Pluggable routing implementation. The policy for routing messages to a queue is fully pluggable and easily re-
placeable. The default policy always chooses a queue at the local node if there is one, and if not, it round robins
between queues on different nodes.

• Intelligent message redistribution policy. Messages are automatically distributed between nodes depending on
how fast or slow consumers are on certain nodes. If there are no or slow consumers on a particular queue node,
messages will be pulled from that queue to a queue with faster consumers on a different node. The policy is
fully pluggable.

• Shared durable subscriptions. Consumers can connect to the same durable subscription while attached to differ-
ent nodes. This allows processing load from durable subscriptions to be distributed across the cluster in a simil-
ar way to queues.

• High availability and seamless failover. If the node you are connected to fails, you will automatically fail over
to another node and will not lose any persistent messages. You can carry on with your session seamlessly where

2

you left off. Once and only once delivery of persistent messages is respected at all times.

2.2. JBoss Messaging 1.2.0.CR1 features:

What's in the CR1 release?

JBoss Messaging 1.2.0.CR1 contains all features planned for the GA release, with the exception of the "unreliable
link scenario" (http://jira.jboss.org/jira/browse/JBMESSAGING-676), whose development is still on-going on a
parallel branch.

Please note that this is a candidate release and it possible to contain bugs! We are releasing it to the community, so
you can try it out, get familiar with it and feedback your experiences to us so we can improve it and stabilise it.

Thanks for your support!

All the final features are available apart from:

• Persistent level reliability guarantee without persistence. There is no option for in memory replication of per-
sistent messages in this release.

Bear in mind you will need to get a bit more "down and dirty" with the configuration in this release, than you
would with a GA release.

Introduction

3

3
Clustering overview

3.1. JBoss Messaging Clustering Overview

Here's a brief overview of how clustering works in JBoss Messaging 1.2.

As mentioned in the previous chapter, please note that not all this functionality is available in this release.

Clustered destinations (queues and topics) can be deployed at all or none of the nodes of the cluster.

A JMS client uses HA JNDI to lookup the connection factory. A client side load balancing policy will automatic-
ally chose a node to connect to (This is similar to how EJB clustering chooses a node).

The JMS client has now made a connection to a node where it can create sessions, message producers and message
consumers and browsers and send or consume messages, using the standard JMS api.

When a distributed queue is deployed across the cluster, individual partial queues are deployed on each node.

When a message is sent from a message producer attached to a particular node to a distributed quueue, a routing
policy determines which partial queue will receive the message.

By default the router will always pass the message to a local queue, if there is one, this is so we avoid unnecessary
network traffic.

If there is no local queue then a partial queue on a different node will be chosen by the router, by default this will
be round robin between remote partial queues.

When a message is sent to a distributed topic while attached to a node, there may be multiple subscriptions on dif-
ferent nodes that need to receive the message. Depending on the number and location of subscriptions, the message
may be multicast or unicast across the cluster so the other nodes can pick it up.

All group communication, unicast, multicast and group management is handled by JGroups.

In the case of shared durable subscriptions, if a durable subscription with the same name exists on more than node,
then only one of the instances needs to receive the message.

Which one is determined by the same routing policy used to route messages to partial queues.

All of this is accomplished without losing the reliability guarantees required by JMS.

Subscriptions (both durable and non durable) can be created on all nodes and will receive messages sent via any
node.

What happens if the consumers on one queue/subscription are faster/slower than consumers on another?

4

Normally this would result in messages building up on that queue and fast consumers being starved of work on an-
other, thus wasting CPU cycles on the node that could be put to good use.

The most degenerate example is of a queue containing many messages then the consumers being closed on that
queue. The messages might potentially remain stranded on the queue until another consumer attaches.

A routing policy is no use here, since the messages have already been routed to the queuee and the consumers
closed / slowed down after they were routed there.

JBoss Messaging deals with this problem by intelligently pulling messages from other less busy nodes, if it detects
idle consumers on the fast node and slow consumers on another node.

Another feature (not available in CR1) that will enable very fast, very scalable reliable messaging without using
databases is in memory replication of reliable messages.

Normally, persistent messages are persisted in a shared database which is shared by all nodes in the cluster. JBoss
Messaging 1.2.GA will contain an option where you can choose to not persist persistent messages in a database, but
instead to replicate them between nodes of the cluster.

The idea here is the network IO on a fast network should be much faster than persisting to disk.

This solution should also be more scalable since different nodes replicate their messages onto different other nodes
- there is no "master node".

If the messages are replicated onto suffficient nodes and the hardware is set-up with UPS, then we believe a com-
parable reliability guarantee to persisting messages to disk can be achieved. Of course, this won't be suitable for all
situations, but you use the best tool for the job.

Clustering overview

5

4
JBoss Messaging Clustering Installation

Note
You need at least ant 1.6.3 installed in order for the installation procedure to work correctly.

Use the release-admin.xml ant script shipped with the release to create individual cluster node configurations.

The typical usage is:

ant -f release-admin.xml [-Did=node-id] [-Dports=port-config-label] cluster-node

where:

• node-id is the unique node ID, an integer that must be unique per cluster. If not specified, it defaults to 0.

• port-config-label is a binding manager server configuration label. The short story behind this parameter is
the following: multiple application servers running on the same physical machine need to use different service
port ranges to avoid port conflicts. You can configure the whole port range used by a server instance by en-
abling a special service, the binding management service, and specifiying a "server" configuration in the bind-
ing manager's configuration file, which will determine specific port values to use when starting that instance.
The Messaging installation script can enable the service binding manager and performs all configuration
changes automatically. You only need to specify the "server" configuration you want to use, as 'port-con-
fig-label'. If you plan to run your clustering nodes on different physical machines, this parameter is irrelevant,
and you should not use it. However, if you install two (or more) nodes of your cluster on the same physical ma-
chine, you need to give the value corresponding to a specific "server" configurations in the binding manager
configuration file. JBoss AS ships "out-of-the-box" with several pre-configured port ranges: 'ports-default',
'ports-01', 'ports-02', 'ports-03'. Use one of these. If -Dports is not specified, the clustered instance created this
way will fall over to the default port range for a JBoss instace. More details about the binding management ser-
vice can be found in the Application Server documentation, at the following address ht-
tp://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#ch10.bindingmanager

For example, in order to create the configuration for a four-node cluster intended to run on the same physical ma-
chine, use the following sequence:

ant -f release-admin.xml cluster-node
ant -f release-admin.xml -Did=1 -Dports=ports-01 cluster-node
ant -f release-admin.xml -Did=2 -Dports=ports-02 cluster-node
ant -f release-admin.xml -Did=3 -Dports=ports-03 cluster-node

The sequence will create four cluster node configurations ("messaging-node0", "messaging-node1", "messaging-

6

http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#ch10.bindingmanager
http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#ch10.bindingmanager

node2" and "messaging-node3").

The first command will create a cluster node with ID equals to '0' and using the default JBoss AS port assignments.

Warning
The configuration that has just been created uses a generic mysql service descriptor. Check
$JBOSS_HOME/server/messaging-node<id>/deploy/mysql-ds.xml and verify that that:

• 1. Your database is indeed mysql.

• 2. It is accessible from every physical node you installed Messaging on.

• 3. Contains a schema (database/tablespace) named 'messaging'.

• 4. The URL (hostname and port), username and password are correct.

• 5. The installed mysql-driver.jar's version maches your database.

To start the cluster, from four different terminals, run:

cd $JBOSS_HOME/bin
./run.sh -c messaging-node0

cd $JBOSS_HOME/bin
./run.sh -c messaging-node1

cd $JBOSS_HOME/bin
./run.sh -c messaging-node2

cd $JBOSS_HOME/bin
./run.sh -c messaging-node3

A successful two node cluster startup produces a log similar to:

Node 0:

...

00:24:04,796 WARN [JDBCPersistenceManager]

JBoss Messaging Warning: DataSource connection transaction isolation should be READ_COMMITTED, but it is currently REPEATABLE_READ.
Using an isolation level less strict than READ_COMMITTED may lead to data consistency problems.
Using an isolation level more strict than READ_COMMITTED may lead to deadlock.

00:24:05,718 INFO [ServerPeer] JBoss Messaging 1.2.0.CR1 server [0] started
00:24:06,328 INFO [STDOUT]

GMS: address is 127.0.0.1:2452

00:24:08,406 INFO [DefaultClusteredPostOffice] ClusteredPostOffice[0:Clustered JMS:127.0.0.1:2452] got new view [127.0.0.1:2452|0] [127.0.0.1:2452]
00:24:08,468 INFO [STDOUT]

GMS: address is 127.0.0.1:2455

00:24:10,906 INFO [ConnectionFactory] Connector socket://10.11.14.105:4457 has leasing enabled, lease period 10000 milliseconds

JBoss Messaging Clustering Installation

7

00:24:10,921 INFO [ConnectionFactory] [/ConnectionFactory, /XAConnectionFactory, java:/ConnectionFactory, java:/XAConnectionFactory] started
00:24:10,953 INFO [QueueService] Queue[/queue/DLQ] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,953 INFO [QueueService] Queue[/queue/ExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,953 INFO [TopicService] Topic[/topic/testTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,953 INFO [TopicService] Topic[/topic/securedTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [TopicService] Topic[/topic/testDurableTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/testQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/A] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/B] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/C] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/D] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,968 INFO [QueueService] Queue[/queue/ex] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [QueueService] Queue[/queue/PrivateDLQ] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [QueueService] Queue[/queue/PrivateExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [QueueService] Queue[/queue/QueueWithOwnDLQAndExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [TopicService] Topic[/topic/TopicWithOwnDLQAndExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [QueueService] Queue[/queue/QueueWithOwnRedeliveryDelay] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:10,984 INFO [TopicService] Topic[/topic/TopicWithOwnRedeliveryDelay] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:11,000 INFO [QueueService] Queue[/queue/testDistributedQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:11,000 INFO [TopicService] Topic[/topic/testDistributedTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:24:11,093 INFO [ConnectionFactoryBindingService] Bound ConnectionManager 'jboss.jca:name=JmsXA,service=ConnectionFactoryBinding' to JNDI name 'java:JmsXA'
00:24:11,375 INFO [TomcatDeployer] deploy, ctxPath=/jmx-console, warUrl=.../deploy/jmx-console.war/
00:24:12,171 INFO [Http11BaseProtocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080
00:24:12,421 INFO [ChannelSocket] JK: ajp13 listening on /0.0.0.0:8009
00:24:12,453 INFO [JkMain] Jk running ID=0 time=0/47 config=null
00:24:12,515 INFO [Server] JBoss (MX MicroKernel) [4.0.5.GA (build: CVSTag=Branch_4_0 date=200611221632)] Started in 30s:375ms

00:27:21,343 INFO [DefaultClusteredPostOffice] ClusteredPostOffice[0:Clustered JMS:127.0.0.1:2452] got new view [127.0.0.1:2452|1] [127.0.0.1:2452, 127.0.0.1:2474]

Node 1:

...

00:33:54,468 WARN [JDBCPersistenceManager]

JBoss Messaging Warning: DataSource connection transaction isolation should be READ_COMMITTED, but it is currently REPEATABLE_READ.
Using an isolation level less strict than READ_COMMITTED may lead to data consistency problems.
Using an isolation level more strict than READ_COMMITTED may lead to deadlock.

00:33:55,062 INFO [ServerPeer] JBoss Messaging 1.2.0.CR1 server [1] started
00:33:55,609 INFO [STDOUT]

GMS: address is 127.0.0.1:2514

00:33:57,734 INFO [DefaultClusteredPostOffice] ClusteredPostOffice[1:Clustered JMS:127.0.0.1:2514] got new view [127.0.0.1:2452|3] [127.0.0.1:2452, 127.0.0.1:2514]
00:33:57,765 INFO [STDOUT]

GMS: address is 127.0.0.1:2519

00:34:00,203 INFO [ConnectionFactory] Connector socket://10.11.14.105:4557 has leasing enabled, lease period 20000 milliseconds
00:34:00,203 INFO [ConnectionFactory] [/ConnectionFactory, /XAConnectionFactory, java:/ConnectionFactory, java:/XAConnectionFactory] started
00:34:00,234 INFO [QueueService] Queue[/queue/DLQ] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,234 INFO [QueueService] Queue[/queue/ExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,234 INFO [TopicService] Topic[/topic/testTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [TopicService] Topic[/topic/securedTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [TopicService] Topic[/topic/testDurableTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/testQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/A] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/B] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/C] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/D] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,250 INFO [QueueService] Queue[/queue/ex] started, fullSize=75000, pageSize=2000, downCacheSize=2000

JBoss Messaging Clustering Installation

8

00:34:00,265 INFO [QueueService] Queue[/queue/PrivateDLQ] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,265 INFO [QueueService] Queue[/queue/PrivateExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,265 INFO [QueueService] Queue[/queue/QueueWithOwnDLQAndExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,265 INFO [TopicService] Topic[/topic/TopicWithOwnDLQAndExpiryQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,265 INFO [QueueService] Queue[/queue/QueueWithOwnRedeliveryDelay] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,265 INFO [TopicService] Topic[/topic/TopicWithOwnRedeliveryDelay] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,296 INFO [QueueService] Queue[/queue/testDistributedQueue] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,296 INFO [TopicService] Topic[/topic/testDistributedTopic] started, fullSize=75000, pageSize=2000, downCacheSize=2000
00:34:00,343 INFO [ConnectionFactoryBindingService] Bound ConnectionManager 'jboss.jca:name=JmsXA,service=ConnectionFactoryBinding' to JNDI name 'java:JmsXA'
00:34:00,453 INFO [TomcatDeployer] deploy, ctxPath=/jmx-console, warUrl=.../deploy/jmx-console.war/
00:34:00,796 INFO [Http11BaseProtocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8180
00:34:01,078 INFO [ChannelSocket] JK: ajp13 listening on /0.0.0.0:8109
00:34:01,125 INFO [JkMain] Jk running ID=0 time=0/125 config=null
00:34:01,125 INFO [Server] JBoss (MX MicroKernel) [4.0.5.GA (build: CVSTag=Branch_4_0 date=200611221632)] Started in 22s:547ms

Note
The installation script may fail while installing Messaging with source-generated JBoss 4.0.5.GA-ejb3 in-
stance. This is because release-admin.xml relies on finding
$JBOSS_HOME/docs/examples/binding-manager/sample-bindings.xml. 4.0.5.GA-ejb3 installations seem
not to have a "docs" sub-directory. A very simple work-around for this situation is to recursively copy the
"docs" sub-directory available under a regular (non-EJB3) source-generated 4.0.5.GA instance and retry
the installation process.

JBoss Messaging Clustering Installation

9

5
JBoss Messaging Clustering Configuration

In order to understand JBoss Messaging clustering configuration, we will start with a short clustering architectural
overview, where we will identify "configuration areas", meaning architectural elements that have corresponding
configuration files, and whose behavior can be changed through configuration.

5.1. Clustering Architectural Overview

One of the fundamental Messaging Core building blocks is the "Post Office". A JBoss Messaging Post Office is
message routing component, which accepts messages for delivery and synchronously forwards them to their destin-
ation queues or topic subscriptions.

There is a single Post Office instance per JBoss Messaging server (cluster node). Both queues and topics deployed
on a JBoss Messaging node are "plugged" into that Post Office instance. Internally JBoss Messaging only deals
with the concepts of queues, and considers a topic to just be a set of queues (one for each subscription). Depending
on the type of subscription - durable or non-durable - the corresponding queue saves messages to persistent storage
or it just holds messages in memory and discards them when the non-durable subscription is closed.

Therefore, for a JMS queue, the Post Office routes messages to one and only one core queue, depending on the
queue name, whereas for a JMS topic, the Post Office routes a message to a set of core queues, one for each topic
subscription, depending on the topic name.

Clustering across multiple address spaces is achieved by clustering Post Office instances. Each JBoss Messaging
cluster node runs a Clustered Post Office instance, which is aware of the presence of all other clustered Post Of-
fices in the cluster. There is an one-to-one relationship between cluster nodes and clustered Post Office instances.
So, naturally, the most important piece of clustering configuration is the clustered Post Office service
configuration, covered in detail below.

Clustered Post Office instances connect to each other via JGroups and they heavily rely on JGroups group manage-
ment and notification mechanisms. JGroups stack configuration is an essential part of JBoss Messaging clustering
configuration. JGroups configuration is only briefly addressed in this guide. Detailed information on JGroups can
be found in JGroups release documentation or on-line at http://www.jgroups.org or ht-
tp://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

When routing messages, a clustered Post Office has a choice of forwarding the message to local queues or remote
queues, plugged into remote Post Office instances that are part of the same cluster. Local queues are usually pre-
ferred, but if a local queue is part of a distributed queue, has no consumers, and other local queues part of the same
distributed queue have consumers, messages can be automatically redistributed, subject of the message redistribu-
tion policy in effect. This allows us to create distributed queues and distributed topics. Message redistribution con-
figuration is another subject that we will insist on.

Please note that some elements of clustering configuration are likely to change before the 1.2 final release. In par-

10

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

ticular we will try to add the ability for JBoss Messaging to use a pre-configured JGroups multiplex channel when
used inside JBoss Application Server, but this is subject to availability of a AS clustering service supporting a mul-
tiplexed JGroups channel; such a service is currently being worked on by the AS Clustering team.

5.2. Clustered Post Office Configuration

In JBoss Messaging 1.2.0, the JGroups configuration for each clustered Post Office instance is specified in the Post
Office MBean service configuration element. The Post Office configuration is present in the persistence configura-
tion file corresponding to the specific database you're using for the cluster instance.

So, if you are using a MySQL database instance as shared persistent storage for your cluster, the Post Office con-
figuration for a specific node instance is available in
$JBOSS_HOME/server/messaging-nodeX/deploy/jboss-messaging.sar/clustered-mysql-persistence-servic

e.xml

An example of a Clustered Post Office configuration is shown below:

<mbean code="org.jboss.messaging.core.plugin.ClusteredPostOfficeService"
name="jboss.messaging:service=PostOffice"
xmbean-dd="xmdesc/ClusteredPostOffice-xmbean.xml">
<depends optional-attribute-name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
<depends optional-attribute-name="TransactionManager">jboss:service=TransactionManager</depends>
<attribute name="PostOfficeName">Clustered JMS</attribute>
<attribute name="DataSource">java:/DefaultDS</attribute>
<attribute name="CreateTablesOnStartup">true</attribute>
<attribute name="SqlProperties"><!![CDATA[
CREATE_POSTOFFICE_TABLE=CREATE TABLE JBM_POSTOFFICE (POSTOFFICE_NAME VARCHAR(255), NODE_ID INTEGER, QUEUE_NAME VARCHAR(1023), COND VARCHAR(1023), SELECTOR VARCHAR(1023), CHANNEL_ID BIGINT, IS_FAILED_OVER CHAR(1), FAILED_NODE_ID INTEGER)
INSERT_BINDING=INSERT INTO JBM_POSTOFFICE (POSTOFFICE_NAME, NODE_ID, QUEUE_NAME, COND, SELECTOR, CHANNEL_ID, IS_FAILED_OVER, FAILED_NODE_ID) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
DELETE_BINDING=DELETE FROM JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND NODE_ID=? AND QUEUE_NAME=?
LOAD_BINDINGS=SELECT NODE_ID, QUEUE_NAME, COND, SELECTOR, CHANNEL_ID, IS_FAILED_OVER, FAILED_NODE_ID FROM JBM_POSTOFFICE WHERE POSTOFFICE_NAME = ?
]]></attribute>
<attribute name="GroupName">DefaultPostOffice</attribute>
<attribute name="StateTimeout">5000</attribute>
<attribute name="CastTimeout">5000</attribute>
<attribute name="StatsSendPeriod">10000</attribute>
<attribute name="MessagePullPolicy">org.jboss.messaging.core.plugin.postoffice.cluster.NullMessagePullPolicy</attribute>
<attribute name="ClusterRouterFactory">org.jboss.messaging.core.plugin.postoffice.cluster.DefaultRouterFactory</attribute>

<attribute name="AsyncChannelConfig">
<config>
<UDP mcast_recv_buf_size="500000" down_thread="false" ip_mcast="true" mcast_send_buf_size="32000"
mcast_port="45567" ucast_recv_buf_size="500000" use_incoming_packet_handler="false"
mcast_addr="228.8.8.8" use_outgoing_packet_handler="true" loopback="true" ucast_send_buf_size="32000" ip_ttl="32" bind_addr="127.0.0.1"/>
<AUTOCONF down_thread="false" up_thread="false"/>
<PING timeout="2000" down_thread="false" num_initial_members="3" up_thread="false"/>
<MERGE2 max_interval="10000" down_thread="false" min_interval="5000" up_thread="false"/>
<FD timeout="2000" max_tries="3" down_thread="false" up_thread="false" shun="true"/>
<VERIFY_SUSPECT timeout="1500" down_thread="false" up_thread="false"/>
<pbcast.NAKACK max_xmit_size="8192" down_thread="false" use_mcast_xmit="true" gc_lag="50" up_thread="false"
retransmit_timeout="100,200,600,1200,2400,4800"/>
<UNICAST timeout="1200,2400,3600" down_thread="false" up_thread="false"/>
<pbcast.STABLE stability_delay="1000" desired_avg_gossip="20000" down_thread="false" max_bytes="0" up_thread="false"/>
<FRAG frag_size="8192" down_thread="false" up_thread="false"/>
<VIEW_SYNC avg_send_interval="60000" down_thread="false" up_thread="false" />
<pbcast.GMS print_local_addr="true" join_timeout="3000" down_thread="false" join_retry_timeout="2000" up_thread="false" shun="true"/>
</config>
</attribute>

JBoss Messaging Clustering Configuration

11

<attribute name="SyncChannelConfig">
<config>
<UDP mcast_recv_buf_size="500000" down_thread="false" ip_mcast="true" mcast_send_buf_size="32000"
mcast_port="45568" ucast_recv_buf_size="500000" use_incoming_packet_handler="false"
mcast_addr="228.8.8.8" use_outgoing_packet_handler="true" loopback="true" ucast_send_buf_size="32000" ip_ttl="32" bind_addr="127.0.0.1"/>
<AUTOCONF down_thread="false" up_thread="false"/>
<PING timeout="2000" down_thread="false" num_initial_members="3" up_thread="false"/>
<MERGE2 max_interval="10000" down_thread="false" min_interval="5000" up_thread="false"/>
<FD timeout="2000" max_tries="3" down_thread="false" up_thread="false" shun="true"/>
<VERIFY_SUSPECT timeout="1500" down_thread="false" up_thread="false"/>
<pbcast.NAKACK max_xmit_size="8192" down_thread="false" use_mcast_xmit="true" gc_lag="50" up_thread="false"
retransmit_timeout="100,200,600,1200,2400,4800"/>
<UNICAST timeout="1200,2400,3600" down_thread="false" up_thread="false"/>
<pbcast.STABLE stability_delay="1000" desired_avg_gossip="20000" down_thread="false" max_bytes="0" up_thread="false"/>
<FRAG frag_size="8192" down_thread="false" up_thread="false"/>
<VIEW_SYNC avg_send_interval="60000" down_thread="false" up_thread="false" />
<pbcast.GMS print_local_addr="true" join_timeout="3000" down_thread="false" join_retry_timeout="2000" up_thread="false" shun="true"/>
<pbcast.STATE_TRANSFER down_thread="false" up_thread="false"/>
</config>
</attribute>
</mbean>

Relevant clustered Post Office configuration attributes are discussed below:

5.2.1. GroupName

This identifies the JGroups group the clustered Post Office will connect to. All clustered Post Office instances with
the same group name will connect to that group.

5.2.2. StateTimeout

The maximum amount of time in milliseconds to wait when making a request to get the group state and waiting for
the result. You will not normally need to change this value. Default is 5000 ms.

5.2.3. CastTimeout

The maximum amount of time in milliseconds to wait when casting a message and waiting for a result. You will
not normally need to change this value. Default is 5000 ms.

5.2.4. StatsSendPeriod

The period in milliseconds between much statistics for each queue will be cast across the cluster.

5.2.5. ClusterRouterFactory

The fully qualified class name of the class that implements a factory for creating message routers. For different
message routing policies this can be changed. Default is
org.jboss.messaging.core.plugin.postoffice.cluster.DefaultRouterFactory. This factory creates routers
that always favor local queues.

JBoss Messaging Clustering Configuration

12

5.2.6. MessagePullPolicy

The fully qualified class name of the class that implements the MessagePullPolicy. The message pull policy spe-
cifies how messages are redistributed after they leave the Post Office and are delivered to queues. You can find
more on message redistribution policy in the dedicated section below. By default, the message redistribution policy
is org.jboss.messaging.core.plugin.postoffice.cluster.DefaultMessagePullPolicy.

5.3. JGroups Stack Configuration

The details of the JGroups configuration won't be discussed here since it is standard JGroups configuration. De-
tailed information on JGroups can be found in JGroups release documentation or on-line at http://www.jgroups.org
or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

5.4. Message Redistribution Configuration

Each clustered Post Office instance can be configured to use a customizable message redistribution policy. The
message redistribution policy dictates what happens with messages that are delivered to a local queue that is part of
a distributed queue or a distributed subscription. In order to use a specific message redistribution policy, use the
fully qualified class name of the class that implements the MessagePullPolicy.

By default, the message redistribution policy is
org.jboss.messaging.core.plugin.postoffice.cluster.DefaultMessagePullPolicy which tries to redistrib-
ute messages depending on receivers's consumption speed.

To disable message redistribution completely, specify
org.jboss.messaging.core.plugin.postoffice.cluster.NullMessagePullPolicy as the value of Message-

PullPolicy attribute. In this case, a message is not redistributed, even if the local queue that has been delivered to
has no consumers.

JBoss Messaging Clustering Configuration

13

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

	JBoss Messaging Clustering Introduction
	Table of Contents
	Chapter 1. JBoss Messaging Clustering Introduction
	Chapter 2. Introduction
	2.1. JBoss Messaging 1.2 GA features:
	2.2. JBoss Messaging 1.2.0.CR1 features:

	Chapter 3. Clustering overview
	3.1. JBoss Messaging Clustering Overview

	Chapter 4. JBoss Messaging Clustering Installation
	Chapter 5. JBoss Messaging Clustering Configuration
	5.1. Clustering Architectural Overview
	5.2. Clustered Post Office Configuration
	5.2.1. GroupName
	5.2.2. StateTimeout
	5.2.3. CastTimeout
	5.2.4. StatsSendPeriod
	5.2.5. ClusterRouterFactory
	5.2.6. MessagePullPolicy

	5.3. JGroups Stack Configuration
	5.4. Message Redistribution Configuration

