
JBoss Process Server Demo Guide

Overview
For years, Java programmers have baked business rules and process logic into Java code. There
is something terribly wrong with having to re-write and re-deploy code every time a business
process or rule changes but BPM and rules technology is known as expensive, niche technology.
JBoss, a division of Red Hat, has broken the high cost barrier with an Open Source BPM and
Rules Engine offering. Pragmatic, Java developer friendly, enterprise grade BPM and Rules
Engine technology is now available to the masses. By combining the leading J2EE Application
Server (JBoss Application Server), the leading Open Source BPM solution (jBPM) and the leading
Java based Rules engine (Drools), Red Hat has forever changed the BPM and Rules Engine
landscape.

Problem
JBoss Rules has garnered a fair amount of fan-fair by providing a very good, general purpose,
Java rules engine framework. Unfortunately, JBoss Rules, also known as Drools, doesn't provide
an effective rules management mechanism. Many development groups struggle with the
following:

● How should the JBoss Rules binaries be packaged/deployed to the server? It's easy to
bundle the JBoss Rules binaries in each rules engine enabled EAR, but it's far more likely
that several applications will share a single set of JBoss Rules binaries.

● How should the POJO (Plain Old Java Object) model be packaged/deployed? Again, it's
likely that several applications will need to make calls to the same rules engine instance
and it makes sense to have a single POJO model that is shared.

● How should rules be version controlled?
● How should rules be deployed? Ideally, rule deployment will not necessarily mandate

application re-deployment. It would be nice to GUI enable rules
management/deployment.

● How should rules be stored for application usage? Caching a Rule Base makes sense.
● How does one test a rule set? This is important because rules will reference/manipulate

POJO attributes. If a rule in the rule set has a typo or references a POJO attribute that isn't
currently deployed, the rule will not compile. In this scenario, testing a list of DRLs prior
to deployment makes sense.

JBoss jBPM is the leading Open Source BPM framework for Java applications. Like JBoss Rules, it's
POJO based and very good at handling business process definition, via a visual designer. JBoss
jBPM also delivers process orchestration/management via a straightforward Java API that back-
ends to a RDBMS (Relational Database Management System) for process version control and
long running process support. But, jBPM is missing the following:

● How should the jBPM binaries be packaged/deployed to the server? It's easy to bundle
the jBPM binaries in each BPM enabled EAR, but it's far more likely that several
applications will share a single set of jBPM binaries and RDBMS tables.

● How should the POJO (Plain Old Java Object) model be packaged/deployed? Again, it's
likely that several applications will need to make calls to the same business process
instance and it makes sense to have a single POJO model that is shared.

● How should processes be version controlled? JBoss jBPM versions runtime processes in a
database, but it's also a best practice to version control process definitions in a
traditional source control system.

Most applications can benefit from a unified BPM and Rules solution, and the two are often
confused and misused because they are tightly coupled. The one constant in IT is change. JBoss
Process Server provides the means to change business processes and business rules without
changing java code.

Solution
The missing piece to this puzzle involves three simple steps:

● Create a process server configuration that includes all JBoss Rules and jBPM binaries. This
process server configuration is basically JBoss Application Server pre-configured for BPM
and Rules based applications.

● Create a simple process server web console that supports rule/process browsing, testing
and deployment. The web console is backed by a source control system, so all deployable
BPM processes and rules are version controlled.

● Create a persistent rule engine cache so that rules can be cached in memory, deployed
to a single server or cluster and pre-loaded when the application server is bounced.

Assumptions
By following the KISS(Keep It Simple Stupid) model, we can leverage robust rules management
right here, right now. Having said that, there are a few key assumptions that are required to
deliver the goods with this approach quickly, efficiently and effectively.

● Subversion is chosen as the source control system for this solution. That's because it's
better than CVS, it's easy to setup, open source, and there are good Java APIs to interface
with the source control system.

● A simple process administration console will suffice.
● JBoss Application Server is required and while this solution can be ported to WebSphere,

Weblogic and standalone Tomcat, it is not portable without some code changes.

This approach has its limitations, but there's no need to over engineer and postpone BPM and
Rules enablement. Here's what we're avoiding:

● We don't want to re-write SVN, CVS or any other version control system. Let's just
leverage what's freely available and known to work.

● Spend a lot of time developing features that fall outside of the 80/20 Rule. Remember,
we're attempting to solve the “Problem“ line items and nothing else. So, while rule re-use
and rule-level version support might be “nice to haves”, they are by no means inhibiting
our adoption of JBoss Rules.

● A one-size-fits all solution. This solution mandates JBoss Application Server and
Subversion for process/rule version control. This solution ignores WebSphere, Weblogic
and standalone Tomcat deployments.

Process Server Demo Authoring and Version Control
The diagram below denotes the business rule and process authoring and version control. The
process server leverages existing tools for rule/process authoring and source control. JBoss IDE
2.0 contains the BPM and Rules Engine plugins needed to author/debug business rules and
processes. Subclipse is available from http://subclipse.tigris.org/ and should be used as the
source control client.

Rules BPM

Two different streams of source control are
leveraged. The “trunk” repository path is for the
active development stream. The “tags” repository
path is for grouping a package of rules, called a
“rule-package”, that should be deployed as a single
group. The “tags” repository will likely have file
versions that differ from the “trunk” DRL versions. By
deploying tagged versions, the Rule Administrator
can easily switch out sets of business rules.

BPM uses the same “trunk” and “tags” scheme as Rules,
but there are a couple subtle differences. Business
processes are defined in XML files, not DRL files. And,
while business processes can also be grouped for
browsing, but they are not deployed one at a time. The
process-list construct is is a browse only construct.

JBoss IDE

Rule
Editor

SVN Plugin

Subversion
trunk

tags
rule-package-1.0

rule-package-2.0

b.drl (5)

a.drl (5)
b.drl (9)

a.drl (3)

a.drl (15)
b.drl (19) JBoss IDE

jBPM
Designer

SVN Plugin

Subversion
trunk

tags
process-list-1.0

process-list-2.0

b.xml (5)

a.xml (5)
b.xml (9)

a.xml (3)

a.xml (15)
b.xml (19)

http://subclipse.tigris.org/

Rule Engine Administration and Access

Rule Administration
For rule administration, a single page console is leveraged. This console provides rule browsing
from the Subversion “tags” repository location. Remember, a Subversion tag is just a group of
DRL files. One or more rules can be selected and viewed via the console. If desired, rules can be
tested prior to deployment. Deploying rules will create a cached RuleBase instance. JBoss Cache
with persistence is used so that application server re-starts do not require manual rule re-
deployments. If the DRL file(s) reference a DSL, it must be included in the rule-package. A rule-
package can only reference one DSL definition.

Rule Access
For rule access, the application simply calls a BPM action handler that gets a pre-loaded
WorkingMemory instance from the RuleBase, asserts objects and fireAllRules().

public void execute(ExecutionContext ctx) throws Exception {
//Get working memory from rules engine interface
RulesInterface engine = new RulesEngine();
WorkingMemory wm = engine.getWorkingMemory("online-quote");

//get POJOs that are stored in this process instance
 //good for long running processes b/c this data lives in a database

MyContextStore ctxStore = (MyContextStore) ctx.getVariable("context-objects");

//assert objects into working memory
wm.assertObject(ctxStore.getCarDetailBean());
wm.assertObject(ctxStore.getMotorcycleDetailBean());
wm.assertObject(ctxStore.getCoverageDetailBean());

//fire off all rules. This might trigger changes in asserted objects
wm.fireAllRules();

}

For all intensive purposes, the application should only require this level of interaction with the
rules engine.

JBoss Cache

Rule Console

Browser
Test Rule Package

Browse Rules
Deploy Rule Package

Subversion

Client
POJO

Rule Access

Rule Administration

Rule
 Base
Cache

Rule
Package

Meta-data

rule-package-1.0

rule-package-2.0

Browser

BPM Administration and Access

BPM Administration
For administration, a single page console is leveraged, just like rules management. This console
provides process browsing from the Subversion “tags” repository location. Remember, a
Subversion tag is just a group of process files. One process can be selected and viewed via the
console. If desired, a process can be tested prior to deployment. Deploying a process will trigger
inserts/updates to the jBPM tables. And, jBPM will handle process instance version control. In-
flight process instances will complete with the same process definition that they started with
even if a new process definition is deployed before existing processes have a chance to
complete.

RDBMS

Process Console

Browser

Test Process
Browse Processes

Deploy Process

Subversion

Client
POJO

BPM Access

BPM Administration

jBPM Tables

process-list-1.0

process-list-2.0

Browser

BPM Access
For BPM access, a POJO method will typically have logic that connects to jBPM, gets a process
instance by ID, stores variables for that process instance (good in situations where processes
are long lived), signals BPM to advance the process to the next node (might trigger BPM actions
like the rules engine access listed above), then exits.

public void doSomethingWithBpm()
{

JbpmContext jbpmContext = null;
try{

//connect to the BPM engine
jbpmContext = JbpmConfiguration.getInstance().createJbpmContext();

//get a handle to the process instance by passing the unique process ID
ProcessInstance process = jbpmContext.loadProcessInstance(this.processId);
//set a variable to the BPM database, so that it can be retrieved later
process.getContextInstance().setVariable(“context-objects”, ctxStore);
//trigger the process instance to advance to the next step
//which may trigger BPM actions, like the rules example above
process.getRootToken().signal();

//save the state of this process instance
jbpmContext.save(process);

}

catch (Exception e) {
printStackTrace(e);

}

finally{
//close the connection to BPM
jbpmContext.close();

}
}

Multi-Server Deployments
Both JBoss Rules and jBPM support clustered deployments without any additional configuration.
For the rules engine. Here's what clustered deployments look like in the process server:

Rules BPM

Multiple servers are supported by leveraging JBoss
Cache, a distributed/transactional cache. Any changes
to the deployed rules will be synchronized across all
servers in a cluster at deploy time.

All processes are stored and managed in a database,
so clustered JBoss application server instances
should have the same datasource configuration.

Cluster

Browser

BPM
Database

Node 1
EAR

EAR

WAR

Node 2
EAR

EAR

WAR

BPM
Console

Browser

BPM
Console

jBPM

jBPM

Node 3
EAR

EAR

WAR

BPM
Console jBPM

Cluster

Browser

Subversion

Node 1

Cache
EAR

EAR

WAR

Node 2

Cache
EAR

EAR

WAR

Node 3

Cache
EAR

EAR

WAR

Rule
Console

Browser
Rule

Console

Implementation Instructions
Okay, this is where the rubber meets the road. This implementation will require an HTTP
accessible Subversion repository and the JBoss Process Server.

Configure Subversion with HTTP Access
An HTTP accessible Subversion repository is needed. The recommended approach is to:

1. Install Subversion 1.4
2. Install Apache 2.0.x
3. Add the mod_dav.so and mod_dav_svn.so libraries to $APACHE_HOME/modules
4. Add the appropriate entries to $APACHE_HOME/conf/http.conf, so clients can access

Subversion via HTTP.

#Subversion modules
 LoadModule dav_module modules/mod_dav.so

LoadModule dav_svn_module modules/mod_dav_svn.so

#Subversion configuration
<Location /svn>

 DAV svn
 SVNParentPath C:\<your-svn-path>

</Location>

5. Create a “trunk” and “tags” folder in Subversion. “trunk” is the development stream and
“tags” represent the labeled rule/process packages that the process server console will
use.

More info on how to install Subversion with HTTP support can be found at: http://svnbook.red-
bean.com/nightly/en/svn-book.html.

http://svnbook.red-bean.com/nightly/en/svn-book.html
http://svnbook.red-bean.com/nightly/en/svn-book.html
file:///C:/svn

JBoss Process Server Demo
The JBoss Process server demo can be used to:

1. Create a JBoss Application Server configuration that includes JBoss Cache and is jBPM +
Rules friendly.

2. Deploy the jboss-process-server.sar, which includes all jBPM, Rules and administration
console binaries.

3. Deploy an test Subversion repository that works with the example application (insurance-
quote-web).

4. Deploy/run a test web application (insurance-quote-web.war) that provides a working
example of how jBPM and JBoss Rules can be used.

Install Instructions
1. Make sure you have ant 1.6 or higher installed on your system
2. Download/unzip the latest GA version of JBoss Application Server (4.0.5)
3. Download/unzip the JBoss Process Server bundle from:

http://wiki.jboss.org/wiki/attach?page=JBossProcessServerGuide/jboss-process-server-
1.0.1.zip

4. cd to the $JBOSS_PROCESS_SERVER
5. edit build.properties (make sure jboss.home and subversion.home are correct)
6. Open a command shell and type one of the following options:

• setup default (jbpm/drools as a shared service – non EJB3)
• setup default-ejb3 (jbpm/drools as a shared service - EJB3)
• setup default-with-demo (jbpm/drools as a shared service with insurance

demo and subversion based process admin console - non EJB3)
• setup default-ejb3-with-demo (jbpm/drools as a shared service with

insurance demo and subversion based process admin console - EJB3)
7. cd to $JBOSS_HOME/bin
8. Start the server with the process server configuration: run.sh -c process
9. [optional] Open the jmx-console and make sure the rulesSvnURL and bpmSvnURL point

your Subversion “tags” folder: http://localhost:8080/jmx-
console/HtmlAdaptor?action=inspectMBean&name=SvnAdmin%3Aservice%3DSvnAdmin
Console%2Ctype%3DXMBean

10.[optional] The process server web console can be accesses at:
http://localhost:8080/process-admin-console

11.[optional] Test and Deploy DRL files – The business rules (An example is included for
you)

12.[optional] Test and Deploy Process Archives – The business processes
13.[optional] Go to the example application URL and request an online insurance quote:

http://localhost:8080/insurance-quote-web/index.faces

http://wiki.jboss.org/wiki/attach?page=JBossProcessServerGuide/jboss-process-server-1.0.1.zip
http://wiki.jboss.org/wiki/attach?page=JBossProcessServerGuide/jboss-process-server-1.0.1.zip
http://localhost:8080/insurance-quote-web/index.faces
http://localhost:8080/rules-admin-console
http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=SvnAdmin%3Aservice%3DSvnAdminConsole%2Ctype%3DXMBean
http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=SvnAdmin%3Aservice%3DSvnAdminConsole%2Ctype%3DXMBean
http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=SvnAdmin%3Aservice%3DSvnAdminConsole%2Ctype%3DXMBean

Rule Administration Screens

This screen shot displays a DRL file that has been loaded into a cached RuleBase called “online-
quote”. DRL files can also be tested to make sure that they compile before deployment. This
console is actually interacting with the Subversion repository to display/load the DRL files into
the RuleBase, so there's no way to deploy a DRL that's not checked into the version control
system. The console also supports DSL(Domain Specific Language). If the DRL file references a
DSL, that DSL must be included in the “rule-package”, otherwise DRL compilation will fail.

Process Administration Screen

This screen shot displays a jBPM process definition that can be deployed to the server. The
process can also be tested to make prior to deployment. As with rule administration, the console
is interacts with Subversion to display/load the available BPM processes. There's no way to
deploy a business process that's not checked into the version control system.

