
●The SkyNet funding bill is passed. 
●The system goes online on August 4th, 1997.
●Human decisions are removed from 
strategic defense. 
●SkyNet begins to learn at a geometric rate.
●It becomes self-aware at 2:14am Eastern 
time, August 29th 
●In a panic, they try to pull the plug. 
●And, Skynet fights back

Declarative Behavioural Modelling
An Integrated AI approach

JBoss  Drools  –  Viva Le Drools

Mark Proctor
       Project Lead
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http://labs .jboss .com/drools
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http://blog.athico.com
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Date date
double amount
int type
long accountNo

Cashflow

long accountNo
double balance

Account

Date start
Date end

AccountingPeriod

Classes
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date amount type
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1

accountNo

Account
accountNo balance

1 0

increase balance for AccountPeriod Credits

select * from  Account acc, 
     Cashflow cf, AccountPeriod ap
where acc.accountNo ==  cf.accountNo and
      cf.type == CREDIT 
      cf.date >= ap.start and
      cf.date <= ap.end

decrease balance for AccountPeriod Debits

select * from  Account acc, 
     Cashflow cf, AccountPeriod ap
where acc.accountNo ==  cf.accountNo and
      cf.type == DEBIT 
      cf.date >= ap.start and
      cf.date <= ap.end

AccountingPeriod
start end

01-Jan-07 31-Mar-07

CashFlow
date amount type

12-Jan-07 100 CREDIT
18-May-07 50 CREDIT

date amount type
2-Feb-07 200 DEBIT

CashFlow

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

Account
balance

1 -50
accountNo

Creating Views  with Triggers
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date amount type
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1

accountNo

Account
accountNo balance

1 0
increase balance for AccountPeriod Credits decrease balance for AccountPeriod Debits

start end
01-Apr-07 30-Jun-07

AccountingPeriod

date amount type
2-Feb-07 200 CREDIT

CashFlow

date amount type
CashFlow

Account
balance

1 150
accountNo

select * from  Account acc, 
     Cashflow cf, AccountPeriod ap
where acc.accountNo ==  cf.accountNo and
      cf.type == CREDIT 
      cf.date >= ap.start and
      cf.date <= ap.end

select * from  Account acc, 
     Cashflow cf, AccountPeriod ap
where acc.accountNo ==  cf.accountNo and
      cf.type == DEBIT 
      cf.date >= ap.start and
      cf.date <= ap.end

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

Creating Views  with Triggers
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What is  a Rule

" rule � <name>�
    <attribute> <value>
    when
        <LHS>
    then
        <RHS>
end

Quotes on Rule names are 
optional if the rule name has 
no spaces.

salience          <int>
agenda-group <string>
no-loop           <boolean>
auto-focus      <boolean>
duration          <long>

RHS can be any valid java. 
Future versions will support 
other languages, i.e Groovy
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What is  a Rule

" public void helloMark(Person person) {
    if ( person.getName().equals( � mark�  ) {
        System.out.println( � Hello Mark�  );
    }
}

" rule � Hello Mark�
    when
        Person( name == � mark�  )
    then
        System.out.println( � Hello Mark�  );
end

LHS

RHS

specific passing of 
instances

Methods that must 
be called directly

Rules can never 
be called directly

Specific instances 
cannot be passed. 
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Shower( temperature == “hot” )

Pattern

Field Constraint

Restriction

Evaluator Value

Object Type

Field Name

What is  a Pattern
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Anatomy of a Pattern
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rule “increase balance for AccountPeriod Credits”
    when
        ap : AccountPeriod()
        acc : Account( $accountNo : accountNo )        
        CashFlow( type == CREDIT,
                          accountNo == $accountNo,
                          date >= ap.start && <= ap.end,
                          $ammount : ammount )
    then
        acc.balance  += $amount;      
end

select * from  Account acc, 
     Cashflow cf, AccountPeriod ap
where acc.accountNo ==  cf.accountNo and
      cf.type == CREDIT 
      cf.date >= ap.start and
      cf.date <= ap.end

trigger : acc.balance += cf.amount
Pattern

Pattern Binding

field Binding

Literal Restriction

Variable Restriction

Multri Restriction - Variable 
Restriction

field Binding
Consequence (RHS)

Our Firs t Rule
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date amount type accountNo
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1 Account

accountNo balance
1 0

rule “increase balance for AccountPeriod         
      Credits”
  when
    ap : AccountPeriod()
    acc : Account( $accountNo : accountNo )      
  
    CashFlow( type == CREDIT,
              accountNo == $accountNo,
              date >= ap.start && <= ap.end,
              $ammount : ammount )
  then
    acc.balance  += $amount;      
end

AccountingPeriod
start end

01-Jan-07 31-Mar-07

CashFlow
date amount type

12-Jan-07 100 CREDIT
18-May-07 50 CREDIT

CashFlow
date amount type

2-Feb-07 200 DEBIT

Account
accountNo balance

1 -50

rule “decrease balance for AccountPeriod 
      Debits”
  when
    ap : AccountPeriod()
    acc : Account( $accountNo : accountNo )      
  
    CashFlow( type == DEBIT,
              accountNo == $accountNo,
              date >= ap.start && <= ap.end,
              $ammount : ammount )
  then
    acc.balance  -= $amount;      
end

Rules  as  a “view”
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date amount type accountNo
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1 Account

accountNo balance
1 0

AccountingPeriod
start end

01-Apr-07 30-Jun-07

CashFlow
date amount type

2-Feb-07 200 CREDIT

CashFlow
date amount type

Account
accountNo balance

1 150

rule “increase balance for AccountPeriod         
      Credits”
  when
    ap : AccountPeriod()
    acc : Account( $accountNo : accountNo )      
  
    CashFlow( type == CREDIT,
              accountNo == $accountNo,
              date >= ap.start && <= ap.end,
              $ammount : ammount )
  then
    acc.balance  += $amount;      
end

rule “decrease balance for AccountPeriod 
      Debits”
  when
    ap : AccountPeriod()
    acc : Account( $accountNo : accountNo )      
  
    CashFlow( type == DEBIT,
              accountNo == $accountNo,
              date >= ap.start && <= ap.end,
              $ammount : ammount )
  then
    acc.balance  -= $amount;      
end

Rules  as  a “view”
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What is  a Production Rule 
S ystem

Production
Memory

Working
Memory

Inference 
Engine

Pattern  
Matcher

Agenda
(rules) (facts)

insert
update
retract

Repository of 
asserted Java 
instances

Codification of 
the business 
knowledge
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Account AccountingPeriod Cashflow

view1 view2

main view

Tables

Views

View
Account AccountingPeriod Cashflow

rule1 rule2

agenda

Object Types

Rules

agenda

Production Rule S ystem
Approximated by S QL and Views
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rule “Print blance for AccountPeriod”
        salience -50
    when
        ap : AccountPeriod()
        acc : Account( )        
    then
        System.out.println( acc.accountNo + “ : “ acc.balance );    
end

Salience

Agenda
1 increase balance

arbitrary2 decrease balance
3 increase balance
4 print balance

Conflict Resolution with S alience
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rule “increase balance for AccountPeriod Credits”
       ruleflow-group “calculation”
    when
        ap : AccountPeriod()
        acc : Account( $accountNo : accountNo )        
        CashFlow( type == CREDIT,
                          accountNo == $accountNo,
                          date >= ap.start && <= ap.end,
                          $ammount : ammount )
    then
        acc.balance  += $amount;      
end

rule “Print blance for AccountPeriod”
       ruleflow-group “report”
    when
        ap : AccountPeriod()
        acc : Account( )        
    then
        System.out.println( acc.accountNo + “ : “ acc.balance );    
end

ruleflow-group

RuleFlow
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rule “increase balance for AccountPeriod Credits”
    when
        ap : AccountingPeriod( )
        not AccountingPeriod( start < ap.start)
        acc : Account( $accountNo : accountNo )   
     
        CashFlow( type == CREDIT,
                  accountNo == $accountNo,
                  date >= ap.start && <= ap.end,
                  $ammount : ammount )
    then
        acc.balance  += $amount;      
end

not

Using 'not' exis tential
not Bus( color == “red” )

'not', 'exis ts ', 'forall'
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rule "Test 01 - Credit Cashflow"
        salience 100

when
    UpdatingAccount( $account : account )     
    CurrentAccountingPeriod( $start : start, $end : end )
    Number( $sum : doubleValue ) 
         from accumulate( $c : Cashflow( type==Cashflow.CREDIT,

                                            account == $account,
                                            date >= $start && <= $end, 
                                            $amount : amount )

                          sum( $c.getAmount() ) )                
then
    System.out.println( "CREDIT : " + $end + " : " + $sum );
    $account.balance += $sum);

end

from accumulate

Using 'not' exis tential

'from', 'collect', 'accumulate'
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Package

package com.sample

import java.util.Map

import com.sample.Cheese

global Cheese cheese

function void exampleFunction(Cheese cheese) {
System.out.println( cheese );

}

rule � A Cheesy Rule�

    when

        &.

    then
        &.

end

Namespace for all 
package members

Imports can be used in 
functions and rules. Uses 
valid java import syntax



21

Two Phase S ystem

    Working Memory Action

retract

modifyinsert

     Agenda  Evaluation

Select 
Rule to Fire

exit

No Rule
Found

Fire Rule

Determine 
possible rules to 

fire

Rule
Found
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Features
 Engine

● Full Rete Implementation -- with high performance indexing
● Dynamic RuleBases
● S tateful and S tateless Execution Modes
● Async operations
● Rete and S equential Rete
● Rule Agent
● Optional Data S hadowing
● Pluggeable Dialects

 Propositional Logic
● Literal Restriction
● Variable Restriction
● Return Value Restriction
● Jointed and dis-jointed Connectives allowed - '&&' '||'
● inline-Eval
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Features
 First Order Logic (Quantifiers)

● And
● Or
● Exists
● Not
● Accumulate
● Collect
● From
● Forall
● Nesting of any CE  inside of 'and' and 'or'
● S upport for both infix and prefix 'and'/'or' CEs
● Nesting and Chaining of 'from', 'accumulate', 'collect'
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Features
 Execution Control

● Conflict Resolution (salience) Now pluggeable
● Agenda Filters
● Agenda Groups
● Activation Groups
● Rule Flow
● Attributes ( no-loop, lock-on-active )

 Temporal Rules
● S cheduler for rule duration will fire when a rule is true for X 

duration
 Truth maintenance

● Logical Insertions
 Event Model

● Working Memory, Agenda, Rule Flow and Rule Base
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Eclipse IDE
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Eclipse IDE
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Eclipse IDE
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Eclipse IDE
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Guided Editor (Eclipse)
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DS Ls  (Eclipse)
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DS Ls  (Eclipse)
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Decis ionTables (Excel/OpenOffice)
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BRMS
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BRMS
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BRMS
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BRMS



37

Rule Flow
 Unifies Rules and Processes in a single engine

● Rules (LHS  When) and expressions can be used in splits, 
milestones etc

● creates a much richer model
● Rules and Processes see, reason and react and process the 

same data
● Do not have send messages between two different engines

● Multiple instances, of different processes, can be executing at 
the same time in a single engine.

● Processes and Rules interactive with each other.
● A Process or Rule can change data, which can impact how 

another rule or process is executing.
● Integrated Tooling and APIs

● S ingle api for execution
● Audit logging and visual Audit tools
● S ingle server side tooling for storage, configuration and 

management and deployment
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Ruleflow features

 Rule set nodes

 Control flow
● S equence
● Parallelism (split / join)
● Choice

 Nodes
● Actions
● Milestone (= state)
● S ubflows
● Looping
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Rule Flow –  Process  Diagram
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Rule Flow –  Rules  and Processes



41

Rule Flow –  S plit Constraint Editor
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Unified auditing
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Rule Flow –  Unified BRMS
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Whats  coming in Q1?
 Engine

● S tateful High Availability
 Event S tream Processing, Complex Event Processing

● time windows (fixed, since, until)
● date comparisons between objects (before, same, after)

 RuleFlow
● Persistence
● Timers
● More complex workflow patterns
● Pluggeable tasks

 BRMS
● UI improvements
● ACL S ecurity
● S cenario Testing
● Decision Tables
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RuleFlow Pluggeable Tasks
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BRMS  UI Improvements
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Demo
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Questions?

" Dave Bowman: All right, HAL; I'll go in 
through the emergency airlock.

" HAL: Without your space helmet, Dave, 
you're going to find that rather difficult. 

" Dave Bowman: HAL, I won't argue with 
you anymore! Open the doors! 

" HAL: Dave, this conversation can serve 
no purpose anymore. Goodbye. 

Joshua: Greetings, Professor 
Falken.
Stephen Falken: Hello, Joshua.
Joshua: A strange game. The 
only winning move is not to 
play. How about a nice game 
of chess? 
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