
●The SkyNet funding bill is passed.
●The system goes online on August 4th, 1997.
●Human decisions are removed from
strategic defense.
●SkyNet begins to learn at a geometric rate.
●It becomes self-aware at 2:14am Eastern
time, August 29th
●In a panic, they try to pull the plug.
●And, Skynet fights back

Declarative Behavioural Modelling
An Integrated AI approach

JBoss Drools – Viva Le Drools

Mark Proctor
 Project Lead

2

http://labs .jboss .com/drools

3

http://blog.athico.com

4

Date date
double amount
int type
long accountNo

Cashflow

long accountNo
double balance

Account

Date start
Date end

AccountingPeriod

Classes

5

date amount type
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1

accountNo

Account
accountNo balance

1 0

increase balance for AccountPeriod Credits

select * from Account acc,
 Cashflow cf, AccountPeriod ap
where acc.accountNo == cf.accountNo and
 cf.type == CREDIT
 cf.date >= ap.start and
 cf.date <= ap.end

decrease balance for AccountPeriod Debits

select * from Account acc,
 Cashflow cf, AccountPeriod ap
where acc.accountNo == cf.accountNo and
 cf.type == DEBIT
 cf.date >= ap.start and
 cf.date <= ap.end

AccountingPeriod
start end

01-Jan-07 31-Mar-07

CashFlow
date amount type

12-Jan-07 100 CREDIT
18-May-07 50 CREDIT

date amount type
2-Feb-07 200 DEBIT

CashFlow

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

Account
balance

1 -50
accountNo

Creating Views with Triggers

6

date amount type
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1

accountNo

Account
accountNo balance

1 0
increase balance for AccountPeriod Credits decrease balance for AccountPeriod Debits

start end
01-Apr-07 30-Jun-07

AccountingPeriod

date amount type
2-Feb-07 200 CREDIT

CashFlow

date amount type
CashFlow

Account
balance

1 150
accountNo

select * from Account acc,
 Cashflow cf, AccountPeriod ap
where acc.accountNo == cf.accountNo and
 cf.type == CREDIT
 cf.date >= ap.start and
 cf.date <= ap.end

select * from Account acc,
 Cashflow cf, AccountPeriod ap
where acc.accountNo == cf.accountNo and
 cf.type == DEBIT
 cf.date >= ap.start and
 cf.date <= ap.end

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

Creating Views with Triggers

7

What is a Rule

" rule � <name>�
 <attribute> <value>
 when
 <LHS>
 then
 <RHS>
end

Quotes on Rule names are
optional if the rule name has
no spaces.

salience <int>
agenda-group <string>
no-loop <boolean>
auto-focus <boolean>
duration <long>

RHS can be any valid java.
Future versions will support
other languages, i.e Groovy

8

What is a Rule

" public void helloMark(Person person) {
 if (person.getName().equals(� mark�) {
 System.out.println(� Hello Mark�);
 }
}

" rule � Hello Mark�
 when
 Person(name == � mark�)
 then
 System.out.println(� Hello Mark�);
end

LHS

RHS

specific passing of
instances

Methods that must
be called directly

Rules can never
be called directly

Specific instances
cannot be passed.

9

Shower(temperature == “hot”)

Pattern

Field Constraint

Restriction

Evaluator Value

Object Type

Field Name

What is a Pattern

10

Anatomy of a Pattern

11

rule “increase balance for AccountPeriod Credits”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance += $amount;
end

select * from Account acc,
 Cashflow cf, AccountPeriod ap
where acc.accountNo == cf.accountNo and
 cf.type == CREDIT
 cf.date >= ap.start and
 cf.date <= ap.end

trigger : acc.balance += cf.amount
Pattern

Pattern Binding

field Binding

Literal Restriction

Variable Restriction

Multri Restriction - Variable
Restriction

field Binding
Consequence (RHS)

Our Firs t Rule

12

date amount type accountNo
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1 Account

accountNo balance
1 0

rule “increase balance for AccountPeriod
 Credits”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)

 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance += $amount;
end

AccountingPeriod
start end

01-Jan-07 31-Mar-07

CashFlow
date amount type

12-Jan-07 100 CREDIT
18-May-07 50 CREDIT

CashFlow
date amount type

2-Feb-07 200 DEBIT

Account
accountNo balance

1 -50

rule “decrease balance for AccountPeriod
 Debits”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)

 CashFlow(type == DEBIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance -= $amount;
end

Rules as a “view”

13

date amount type accountNo
12-Jan-07 100 CREDIT 1
2-Feb-07 200 DEBIT 1
18-May-07 50 CREDIT 1
9-Mar-07 75 CREDIT 1 Account

accountNo balance
1 0

AccountingPeriod
start end

01-Apr-07 30-Jun-07

CashFlow
date amount type

2-Feb-07 200 CREDIT

CashFlow
date amount type

Account
accountNo balance

1 150

rule “increase balance for AccountPeriod
 Credits”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)

 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance += $amount;
end

rule “decrease balance for AccountPeriod
 Debits”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)

 CashFlow(type == DEBIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance -= $amount;
end

Rules as a “view”

14

What is a Production Rule
S ystem

Production
Memory

Working
Memory

Inference
Engine

Pattern
Matcher

Agenda
(rules) (facts)

insert
update
retract

Repository of
asserted Java
instances

Codification of
the business
knowledge

15

Account AccountingPeriod Cashflow

view1 view2

main view

Tables

Views

View
Account AccountingPeriod Cashflow

rule1 rule2

agenda

Object Types

Rules

agenda

Production Rule S ystem
Approximated by S QL and Views

16

rule “Print blance for AccountPeriod”
 salience -50
 when
 ap : AccountPeriod()
 acc : Account()
 then
 System.out.println(acc.accountNo + “ : “ acc.balance);
end

Salience

Agenda
1 increase balance

arbitrary2 decrease balance
3 increase balance
4 print balance

Conflict Resolution with S alience

17

rule “increase balance for AccountPeriod Credits”
 ruleflow-group “calculation”
 when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance += $amount;
end

rule “Print blance for AccountPeriod”
 ruleflow-group “report”
 when
 ap : AccountPeriod()
 acc : Account()
 then
 System.out.println(acc.accountNo + “ : “ acc.balance);
end

ruleflow-group

RuleFlow

18

rule “increase balance for AccountPeriod Credits”
 when
 ap : AccountingPeriod()
 not AccountingPeriod(start < ap.start)
 acc : Account($accountNo : accountNo)

 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $ammount : ammount)
 then
 acc.balance += $amount;
end

not

Using 'not' exis tential
not Bus(color == “red”)

'not', 'exis ts ', 'forall'

19

rule "Test 01 - Credit Cashflow"
 salience 100

when
 UpdatingAccount($account : account)
 CurrentAccountingPeriod($start : start, $end : end)
 Number($sum : doubleValue)
 from accumulate($c : Cashflow(type==Cashflow.CREDIT,

 account == $account,
 date >= $start && <= $end,
 $amount : amount)

 sum($c.getAmount()))
then
 System.out.println("CREDIT : " + $end + " : " + $sum);
 $account.balance += $sum);

end

from accumulate

Using 'not' exis tential

'from', 'collect', 'accumulate'

20

Package

package com.sample

import java.util.Map

import com.sample.Cheese

global Cheese cheese

function void exampleFunction(Cheese cheese) {
System.out.println(cheese);

}

rule � A Cheesy Rule�

 when

 &.

 then
 &.

end

Namespace for all
package members

Imports can be used in
functions and rules. Uses
valid java import syntax

21

Two Phase S ystem

 Working Memory Action

retract

modifyinsert

 Agenda Evaluation

Select
Rule to Fire

exit

No Rule
Found

Fire Rule

Determine
possible rules to

fire

Rule
Found

22

Features
 Engine

● Full Rete Implementation -- with high performance indexing
● Dynamic RuleBases
● S tateful and S tateless Execution Modes
● Async operations
● Rete and S equential Rete
● Rule Agent
● Optional Data S hadowing
● Pluggeable Dialects

 Propositional Logic
● Literal Restriction
● Variable Restriction
● Return Value Restriction
● Jointed and dis-jointed Connectives allowed - '&&' '||'
● inline-Eval

23

Features
 First Order Logic (Quantifiers)

● And
● Or
● Exists
● Not
● Accumulate
● Collect
● From
● Forall
● Nesting of any CE inside of 'and' and 'or'
● S upport for both infix and prefix 'and'/'or' CEs
● Nesting and Chaining of 'from', 'accumulate', 'collect'

24

Features
 Execution Control

● Conflict Resolution (salience) Now pluggeable
● Agenda Filters
● Agenda Groups
● Activation Groups
● Rule Flow
● Attributes (no-loop, lock-on-active)

 Temporal Rules
● S cheduler for rule duration will fire when a rule is true for X

duration
 Truth maintenance

● Logical Insertions
 Event Model

● Working Memory, Agenda, Rule Flow and Rule Base

25

Eclipse IDE

26

Eclipse IDE

27

Eclipse IDE

28

Eclipse IDE

29

Guided Editor (Eclipse)

30

DS Ls (Eclipse)

31

DS Ls (Eclipse)

32

Decis ionTables (Excel/OpenOffice)

33

BRMS

34

BRMS

35

BRMS

36

BRMS

37

Rule Flow
 Unifies Rules and Processes in a single engine

● Rules (LHS When) and expressions can be used in splits,
milestones etc

● creates a much richer model
● Rules and Processes see, reason and react and process the

same data
● Do not have send messages between two different engines

● Multiple instances, of different processes, can be executing at
the same time in a single engine.

● Processes and Rules interactive with each other.
● A Process or Rule can change data, which can impact how

another rule or process is executing.
● Integrated Tooling and APIs

● S ingle api for execution
● Audit logging and visual Audit tools
● S ingle server side tooling for storage, configuration and

management and deployment

38

Ruleflow features

 Rule set nodes

 Control flow
● S equence
● Parallelism (split / join)
● Choice

 Nodes
● Actions
● Milestone (= state)
● S ubflows
● Looping

39

Rule Flow – Process Diagram

40

Rule Flow – Rules and Processes

41

Rule Flow – S plit Constraint Editor

42

Unified auditing

43

Rule Flow – Unified BRMS

44

Whats coming in Q1?
 Engine

● S tateful High Availability
 Event S tream Processing, Complex Event Processing

● time windows (fixed, since, until)
● date comparisons between objects (before, same, after)

 RuleFlow
● Persistence
● Timers
● More complex workflow patterns
● Pluggeable tasks

 BRMS
● UI improvements
● ACL S ecurity
● S cenario Testing
● Decision Tables

45

RuleFlow Pluggeable Tasks

46

BRMS UI Improvements

47

Demo

48

Questions?

" Dave Bowman: All right, HAL; I'll go in
through the emergency airlock.

" HAL: Without your space helmet, Dave,
you're going to find that rather difficult.

" Dave Bowman: HAL, I won't argue with
you anymore! Open the doors!

" HAL: Dave, this conversation can serve
no purpose anymore. Goodbye.

Joshua: Greetings, Professor
Falken.
Stephen Falken: Hello, Joshua.
Joshua: A strange game. The
only winning move is not to
play. How about a nice game
of chess?

http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/

