
•The SkyNet funding bill is passed.
•The system goes online on August 4th, 1997.
•Human decisions are removed from strategic defense.
•SkyNet begins to learn at a geometric rate.
•It becomes self-aware at 2:14am Eastern time, August 29th
•In a panic, they try to pull the plug.
•And, Skynet fights back

Mark Proctor

 Project Lead

Declarative Behavioural Modelling
An Integrated AI approach

JBoss Rules – Viva Le Drools

Artificial Intelligence

Vision

Artificial Neural
Systems

Natural
Language

Speech

Robotics

Expert
Systems

Understanding

Some Areas of
Artificial Intelligence

Genetic
Algorithms

Making computers think like people

Biological

Artificial Neural
Networks Evolutionary

Artifical Life Genetic
Algorithm

Wet DNA
Computing

Branches of AI

Symbolic

Logic Frames
& Scripts

Rule Based
Expert Systems

• The study of Knowledge is Epistemology
• Nature, Structure and Origins of Knowledge

Expert Systems - Knowledge
Representation and Reasoning

• Expert Systems use Knowledge representation to facilitate the
codification of knowledge into a knowledge base which can be used for
reasoning

– we can process data with this knowledge base to infer conclusions

Production Rule System

• Turing Complete
– Propositional Logic
– First Order Logic
– Declarative

• The Brain is the Inference Engine
– scale to a large number of rules and facts
– matches facts, the data, against Production Rules, also called Productions or just Rules, to

infer conclusions which result in actions
– A Production Rule is a two-part structure using First Order Logic for knowledge

representation.

when <conditions> then <actions>
– The process of matching the new or existing facts against Production Rules is called Pattern

Matching

Declarative Behavioural Modelling

Workflow/BPM

Genetic Algorithms

Neural Networks

Knowledge Asset
Management and

Configuration/Deployment
System.

Geo-Spatial

Rule Engine

Forward Chaining Backward ChainingEvent Management/Stream
Processing

GUI Driven Rule
Authoring

Score
Cards

Decision
Trees

Decision
Tables

Technical Rule Language (DRL)

Constraint
Programming

Rule Flow

Structured Natural
Language

Agent

ESB

Agent

Agent

Agent

P2P
/

P2MultiPoiint

Fuzzy Logic Uncertainty

Semantic Web

The A-Team go Shopping
Team

name role rank
Hannibal Leader Colonel

Treasurer Lieutenant
B.A. Mechanic Sergeant
Murdoch Pilot Captain

Faceman

At Anne Summers

What do they Buy?

Tables

Barrack Babe 0
Fur Love Cuffs 2
Love Swing 2

2
Bondage Bear 3
Bondage Starter Kit 0
Bondage Starter Kit 1
Bondage Starter Kit 2

1
Stress Balls 1
Stress Balls 0

3

Studed Wristband

Nymphette basque

Chocolote Body Paint

Item
name price
Barrack Babe 25
Fur Love Cuffs 8
Love Swing 200

5
Bondage Bear 4
Bondage Starter Kit 8

25
Stress Balls 6

5

Studed Wristband

Nymphette basque

Chocolote Body Paint

Team
name id role rank
Hannibal 0 Leader Colonel
Faceman 1 Treasurer Lieutenant
B.A. 2 Mechanic Sergeant
Murdoch 3 Pilot Captain

Relationships

Team
name
role
id

Item
name
price

Cart
itemName
ownerId

1

0..n

1

0..n

What is a Production Rule System

Production
Memory

Working
Memory

Inference
Engine

Pattern
Matcher

Agenda
(rules) (facts)

insert
update
retract

Repository of
asserted Java
instances

Codification of
the business
knowledge

What is a Rule

• rule “<name>”
 <attribute> <value>
 when
 <LHS>
 then
 <RHS>
end

Quotes on Rule names
are optional if the rule
name has no spaces.

salience <int>
agenda-group <string>
no-loop <boolean>
auto-focus <boolean>
duration <long>

RHS can be any valid
java. Future versions will
support other languages,
i.e Groovy

What is a Rule

• public void helloMark(Person person) {
 if (person.getName().equals(“mark”) {
 System.out.println(“Hello Mark”);
 }
}

• rule “Hello Mark”
 when
 Person(name == “mark”)
 then
 System.out.println(“Hello Mark”);
end

LHS

RHS

specific passing of
instances

Methods that must
be called directly

Rules can never
be called directly

Specific instances
cannot be passed.

Package

package com.sample

import java.util.Map

import com.sample.Cheese

global Cheese cheese

function void exampleFunction(Cheese cheese) {

System.out.println(cheese);

}

rule “A Cheesy Rule”

 when

 ….

 then

 ….

end

Namespace for all
package members

Imports can be used in
functions and rules. Uses
valid java import syntax

Expressiveness

• Turing Complete
Propositional Logic
First Order Logic

• Propositional Logic
– Cheese.name == “stilton”

• First Order Logic (Quantifiers)
– Exists
– Not
– Accumulate
– Collect
– From
– Forall

• Execution Control
– Conflict Resolution (salience)
– Agenda Groups
– Activation Groups
– Rule Flow

• Temporal Rules
– Scheduler

Expressiveness

• Truth Maintenance
– Logical Objects
– Compensating Actions/Rollbacks (todo)

• Nesting of conditional elements inside quantifiers

• Backward chaining
• Uncertainty

– Bayesian Logic
– Fuzzy Logic

• Event Stream/Management Processing
• Constraint Programming (solver)

Authoring API

Parser

(descr)
Intermediate

AST

xml
drl

Package Builder

Code
Generator

Compiler

package

Rule Builder

Runtime API

 Working Memory

Rule Base

Working Memory
Event Support

Truth Maintenance
System

 Agenda

Agenda
Event Support

package

1

0..n

1

0..n

Object Insertion and Pattern Matching

• LHS
– One or more Patterns
– Patterns are the conditions that must be

satisfied for the rule to be legible for firing
• Object assertion

– Patterns within the Rule Base are matched.
Resulting in partial and full matches for Rules.

– Fully matched Rules result in the creation of
an Activation

– No rules fire at this stage

Object Modification

• How to modify a object in the Working Memory
– From Java Code

workingMemory.update(factHandle, modifiedFact)
– From a Consequence

update(modifiedFact)
• JavaBeans PropertyChangeListeners can provide

automatic notification.
• Modifications result in

– Activation Cancellations
– Activation Creations
– Internally this is similar to a retract and assert

Two Phase System

• Working Memory Actions
– Occurs in Java code and during the execution of a

Consequence
– Assertion
– Deletion
– Modification

• Agenda Evaluation
– Triggered by Calling workingMemory.fireAllRules()
– Executes the first Rule’s Consequence and enters

Working Memory Action phase. At the end of the
Consequence it returns to evaluating the Agenda.

– When the Agenda is empty it returns back to the main
Java code.

Two Phase System

 Working Memory Action

retract

modifyinsert

 Agenda Evaluation

Select
Rule to Fire

exit

No Rule
Found

Fire Rule

Determine
possible rules to

fire

Rule
Found

Working With Objects

Customer customer = new Customer("Fred Flinstone");
customer.addItem(new Item("brie"))
customer.addItem(new Item("cheddar"))
customer.addItem(new Item("feta"))
workingMemory.insert(customer)

Item
 String name;
Customer
 int id
 Item[] cart

rule "Message the customers who have not bought any brie"
 when
 $customer : Customer($cart : cart -> (! $cart.includes(
new Item("brie"))))
 then
 $customer.sendMessage("Brie is your best
friend");
end

More Expression
• 3.0.x only allows comma seperated field constraints. 'or'

could be used at the CE level, but resulted in subrule
generation.

– Can now use && and || inside the pattern for multiple values on the same field
and across files – no subrule generation.

– Person(age > 30 && < 40 || hair =="black")

• 3.0.x auto-have autovivification of variables in dialect
expressions

– Before: Cheese(oldPrice : oldPrice, newPrice ==
 (oldPrice * 1.10))

– Now: Cheese(newPrice == (oldPrice * 1.10))

More Expression
• 3.0.x had to always declare the variable, causing cluter, can

now access direct properties of pattern variables.
– Before: p : Person(personId : id)

 i : Item(id == personId, value > 100)
– Now: p : Person()

 i : Item(id == p.id, value > 100)

• Eval rewrite for complex expressions
– Before: Person($pets:pets

 eval($pets['rover'].type == "dog")
– Now: Person(pets['rover'].type == "dog")

Rule Engines are Relational
Customer
 int id

Item
 int customerId
 String name

rule "Message the customers who have not bought any brie"
 when
 Customer($customerId : id)
 not (Item(customerId == $customerId, name ==
"brie"))
 then
 $customer.sendMessage("Brie is your best

 friend");
end

Customer customer = new Customer("Fred Flinstone");
workingMemory.insert(customer);
workingMemory.insert(new Item("brie", customer.getId())
workingMemory.insert(new Item("cheddar", customer.getId())
workingMemory.insert(new Item("feta", customer.getId())

Exploiting Relational Data in 3.2

• 'forall'
• ‘from’
• ‘collect’
• ‘accumulate’

• Forall
– True when the pattern is true for all facts
– Forall(Bus(color == “red”))

• From
– Pulls and unifies against none working memory data

Can call hibernate querries
Sub fields
Restaurant(rating == “five star”)

 from hbSession.getNamedQuery(“restaurant
query”).
 setProperties(key1 : value1, key2 :
value2).list()

‘from’
rule "Message the customers who have not bought any brie, and
haven't bought brie in previous shopping trips"
 when
 Customer($customerId : id)
 not (Item(customerId == $customerId,
 name == "brie"))

 not (Item() from hibernateSession.getNamedQuery("How
much cheese?").setProperties({ customerId =
$customerId,
 type => "brie"))then

 $customer.sendMessage("You really haven't had
enough Brie recently, remember Brie is your best
friend");
end

• Collect
– Allows you to use cardinality
– When there are more than 6 red buses
– List(size > 6) from collect (Bus(color == “red”))
– 'from' can be chained. Following is true if all items in a cart have a price

creater than 10
– List(size == ($list.size)) from collect(Item(price > 10)

 from $cart.items

Collect

‘collect’
rule "If we continuously have less than 10 brie items, then
do a discount"
 duration 60000 //1 minute
 when
 $context : Conext(count < 10)
 cheeseList : ArrayList(size < 10)
 from collect Item(name == "brie")
 then
 $context.setCount($context.getCount() + 1);
end

rule "If we continuously have less than 10 brie items, then
do a discount"
 duration 60000 //1 minute
 when
 $context : Conext(count < 10)
 cheeseList : ArrayList(size > 10)
 from collect Item(name == "brie")
 then
 $context.reset();
end

‘collect’

rule "If we continously have less than 10 brie items, then
do a discount"
 duration 60000 //1 minute
 when
 $context : Conext(count >= 10)
 cheeseList : ArrayList(size < 10) from collect
Item(name == "brie")
 then
 // do discount
end

• Accumulate
– More powerful 'collect' allows you to execute actions on each matched fact in

the set
– $total : Integer()

 from accumulate($item : Item()
 init(count = 0; total=0)
 action(count++;total += $item.price)
 result(return total/count)

Accumulate

‘accumulate’

 duration 60000 //1 minute
 when
 Integer(intValue < 3)
 from accumulate(Item(name == "brie",
 $weight : weight),
 init(int totalWeight = 0, count;),
 action(count++;
 totalWeight += $weight;),
 result(new Integer(x)));

 then
 // do discount
end

Line Debugger and new Rete Viewer

Eclipse Guided Editor

Rule Flow

Rule Flow

Pluggeable Dialects
• Return-value, predicate, evals and consequences can now

specify dialects, now suppors Java and MVEL .
– Cheese(type == "stilton",

 eval(price == (new Integer(5) + 5)),
 price == (new Integer(5) + 5))

– Assert (new Person()) (name = “mark”, age = 31);

Why MVEL
• Reflection/bytecode(JIT) compilation and execution modes.

– For huge systems we need to be able to avoid excessive bytecode
generation, but still have the option for bytecode JIT for performance sensitive
areas.

• Fast reflection mode.
– We originally started with our own language JFDI, which was designed to be a

simple and fast reflection based language, the idea is all work is done at
compile time so runtime is just a series of reflection invokers. This design has
been carried through to MVEL, so that it has good enough reflection
performance. Where as other languages have to drop reflection mode and
use bytecode to get any reasonable level of performance.

• Pluggeable resolvers.
– Dictionary population is too slow, MVEL can resolve it's variable direct from

the provided resolvers, which we make array based for performance.

• Size.
– MVEL is currently <>

Why MVEL
• Custom language extensions.

– MVEL is extending the language to support rule friendly constructs, in
particular block setters. So I can do "modify (person) (age += 1, location =
"london")" with the ability to treat that as a transaction block so I can run
before and after interceptors on the entire block. This is made easier through
the use of macros, so we can define our own keywords and have them
expanded into mvel code.

• Static/Inferred typed or dynamic modes.
– Variables can be untyped and totally dynamic.
– Variables can be statically typed or type can be inferred, casting is supported.
– Optional verifier for "typed mode", disallows dynamic variables and ensures

all types and method calls are correct. Which helps with.

Authoring time validation.
 Code completion.
Refactoring.

• Configurable language feature support.
– Language features can be turned off.
– We don't want imperative flow structures in the "then" part, no 'if' 'switch' etc.

Rules should be declarative, "when this do that" not "when this maybe do
that".

BRMS?

• Business Rules Management System

• Why?
• For managing a whole enterprises declarative rules
• (and knowlege assets)
• eg 5000 + rules for mortgage pricing
• Business focussed view, not developer focussed
• Versioning, editing, validating, FINDING (!), approving, searching,

controlling, auditing, XXX-ing.

• Needs to complement developer tools, NOT REPLACE

Rule explorer with categorisation

Categorisation of assets is critical

• Its how you find stuff

• Categories are completely user/business driven

Dublin Core

• Encourage structured classification

• Future archeologists may be able to make sense of it ;)

• Its a prescriptive set of attributes to attach to an asset

Business friendly rules

• Controlled rule creation, authoring

Versioning

• We developers take it for granted

• Its good

• Business Analysts need it
– But they have manually manage their requirements/rules documents

– Have a manual workflow

– Have manual versioning

– No body knows the horrors I have seen

Friendly rule editing

BRMS

BRMS

BRMS

BRMS

BRMS

Technical versus business rules

• A powerful inference engine allows you to solve hard
problems

• Not ALL of the hard problem is technical
– Thats the “business” part of the rules

• For the parts that are technical, use the technical rule
language

– “Make the easy parts declarative, and the hard parts procedural”

Technology involved

• BRMS “client” is a web app
• Ajax via GWT
• JCR (Jackrabbit default implementation)

– popular standard for content management

Questions?

• Dave Bowman: All right, HAL; I'll go in
through the emergency airlock.

• HAL: Without your space helmet, Dave,
you're going to find that rather difficult.

• Dave Bowman: HAL, I won't argue with you
anymore! Open the doors!

• HAL: Dave, this conversation can serve no
purpose anymore. Goodbye.

Joshua: Greetings, Professor
Falken.
Stephen Falken: Hello, Joshua.
Joshua: A strange game. The
only winning move is not to
play. How about a nice game
of chess?

http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0001158/

