
Mark Proctor

JBoss Rules – Viva Le Drools

Declarative Behavioural Modelling
An Integrated AI approach

General Improvements
• 4.0 is faster and uses less memory than 3.0.x
• API Redesign

• Explicit stateless and stateful sessions apis
• Both apis support async working memory action method
• Thread safety improvements

More Expression
• 3.0.x only allows comma seperated field

constraints. 'or' could be used at the CE level, but
resulted in subrule generation.
• Can now use && and || inside the pattern for multiple

values on the same field and across files – no subrule
generation.

• Person(age > 30 && < 40 || hair =="black")

• 3.0.x auto-have autovivification of variables in
dialect expressions
• Before: Cheese(oldPrice : oldPrice, newPrice ==

 (oldPrice * 1.10))
• Now: Cheese(newPrice == (oldPrice * 1.10))

More Expression
• 3.0.x had to always declare the variable, causing

cluter, can now access direct properties of pattern
variables.
• Before: p : Person(personId : id)

 i : Item(id == personId, value > 100)
• Now: p : Person()

 i : Item(id == p.id, value > 100)

• Eval rewrite for complex expressions
• Before: Person($pets:pets

 eval($pets['rover'].type == "dog")
• Now: Person(pets['rover'].type == "dog")

Pluggeable Dialects
• Return-value, predicate, evals and consequences

can now specify dialects, now suppors Java and
MVEL .
• Cheese(type == "stilton",

 eval(price == (new Integer(5) + 5)),
 price == (new Integer(5) + 5))

• Assert (new Person()) (name = “mark”, age = 31);

Why MVEL
• Reflection/bytecode(JIT) compilation and execution modes.

• For huge systems we need to be able to avoid excessive bytecode
generation, but still have the option for bytecode JIT for performance
sensitive areas.

• Fast reflection mode.
• We originally started with our own language JFDI, which was designed

to be a simple and fast reflection based language, the idea is all work is
done at compile time so runtime is just a series of reflection invokers.
This design has been carried through to MVEL, so that it has good
enough reflection performance. Where as other languages have to drop
reflection mode and use bytecode to get any reasonable level of
performance.

• Pluggeable resolvers.
• Dictionary population is too slow, MVEL can resolve it's variable direct

from the provided resolvers, which we make array based for
performance.

• Size.
• MVEL is currently <>

Why MVEL
• Custom language extensions.

• MVEL is extending the language to support rule friendly constructs, in
particular block setters. So I can do "modify (person) (age += 1, location
= "london")" with the ability to treat that as a transaction block so I can
run before and after interceptors on the entire block. This is made easier
through the use of macros, so we can define our own keywords and
have them expanded into mvel code.

• Static/Inferred typed or dynamic modes.
• Variables can be untyped and totally dynamic.
• Variables can be statically typed or type can be inferred, casting is

supported.
• Optional verifier for "typed mode", disallows dynamic variables and

ensures all types and method calls are correct. Which helps with.
• Authoring time validation.
• Code completion.
• Refactoring.

• Configurable language feature support.
• Language features can be turned off.
• We don't want imperative flow structures in the "then" part, no 'if'

'switch' etc. Rules should be declarative, "when this do that" not "when
this maybe do that".

Powerful new CEs
• Forall

• True when the pattern is true for all facts
• Forall(Bus(color == “red”))

• From
• Pulls and unifies against none working memory data

• Can call hibernate querries
• Sub fields
• Restaurant(rating == “five star”)

 from hbSession.getNamedQuery(“restaurant query”).
 setProperties(key1 : value1, key2 : value2).list()

Powerful new CEs
• Collect

• Allows you to use cardinality
• When there are more than 6 red buses
• List(size > 6) from collect (Bus(color == “red”))
• 'from' can be chained. Following is true if all items in a

cart have a price creater than 10
• List(size == ($list.size)) from collect(Item(price > 10)

 from $cart.items

Powerful new CEs
• Accumulate

• More powerful 'collect' allows you to execute actions on
each matched fact in the set

• $total : Integer()
 from accumulate($item : Item()
 init(count = 0; total=0)
 action(count++;total += $item.price)
 result(return total/count)

Line Debugger and new Rete Viewer

Eclipse Guided Editor

Rule Flow

Rule Flow

RuleFlow
• Execution control of sets of rules, a node can fire 1

or it can fire 10K rules.
• Is not transactional
• Does not persist per propagation
• No configurable services

BRMS
• Web 2.0 based BRMS using

• Built with JackRabbit JCR and GWT/Seam
• Rule/package management

• version control, categorisation, configuration, deployment
• Upload

• drls, dsls, excel decision tables, dependencies (jars)
• Web Authoring

• Text pasting
• Guided editor

BRMS

BRMS

BRMS

BRMS

BRMS

