
JBoss Rules Administration For Web Applications

Problem
JBoss Rules is a great rules engine that warrants enterprise usage. Unfortunately, JBoss Rules
doesn't provide an effective rules management mechanism. Many development groups
struggle with the following:

● How should rules be version controlled?
● How should rules be deployed? Ideally, rule deployment will not necessarily mandate

application re-deployment. It would be nice to GUI enable rules
management/deployment.

● How should rules be stored for application usage? Caching a Rule Base makes sense.
● How does one test a rule set? This is important because rules will reference/manipulate

POJO attributes. If a rule in the rule set has a typo or references a POJO attribute that
isn't currently deployed, the rule will not compile. In this scenario, testing a list of DRLs
prior to deployment makes sense.

● Provide a solution that works outside of JBoss Application Server. So, certain JBoss
specific tricks are off limits, like packaging this solution as a SAR(Service archive).

Of course, resolving these issues and many others are on the JBoss Rules development road
map, but the show stopper elements listed above can be addressed pragmatically today.

Assumptions
By following the KISS(Keep It Simple Stupid) model, we can leverage robust rules
management right here, right now. Having said that, there are a few key assumptions that
are required to deliver the goods with this approach quickly, efficiently and effectively.

● The application is assumed to be a web application built using the J2EE standard
JSF(Java Server Faces) technology. But, our solution could easily be converted to a
simple servlet filter that works with Struts, Spring Web MVC, Tapestry, etc...

● Subversion is chosen as the source control system for this solution. That's because it's
better than CVS, it's easy to setup, open source, and there are good Java APIs to
interface with the source control system.

● A simple rule administration console will meet our needs, and it's acceptable for this
console to live in our application WAR file. This last assumption sounds more like a
hack than an enterprise grade solution, but this approach provides a great deal of
flexibility, adds minimal code to the WAR itself and is completely self contained.

This approach has its limitations, but since this is a stop-gap solution there's no need to over
engineer. Here's what we're avoiding.

● We don't want to re-write SVN, CVS or any other version control system. Let's just
leverage what's freely available and known to work.

● Spend a lot of time developing features that fall outside of the 80/20 Rule. Remember,
we're attempting to solve the “Problem“line items and nothing else. So, while rule re-
use and rule-level version support might be “nice to haves”, they are by no means
inhibiting our adoption of JBoss Rules.

● A one-size-fits all solution. It's likely that we'll mandate a web development framework
for application development, so tying our solution to a particular web technology isn't a
big deal.

Rule Authoring and Version Control
The diagram below denotes the rule authoring and version control process for this solution.
The solution leverages existing tools for rule authoring and a open source source control
system.

JBoss IDE 2.0 contains the JBoss Rules plugins needed to author/debug rules. The rules are
stored in .DRL files and these files should be version controlled. Subclipse is available from
http://subclipse.tigris.org/ and should be used as the source control client. Two different
streams of source control are leveraged in this solution. The “trunk” repository path is for the
active development stream. The “tags” repository path is for any grouping of one or more
rules. Since, DRL files will likely be deployed in groups, it makes sense to group the DRL files
into a version controlled rule set. That way, the Rule Administrator can easily switch out sets
of DRL files.

JBoss IDE

Rule
Editor

SVN Plugin

Subversion
trunk

tags
Ruleset-1.0

Ruleset-2.0

b.drl (5)

a.drl (5)
b.drl (9)

a.drl (3)

a.drl (15)
b.drl (19)

http://subclipse.tigris.org/

Rule Engine Administration and Rule Engine Access

Rule Administration
For rule administration, a single page console is leveraged. This console provides rule
browsing from the Subversion “tags” repository location. Remember, a Subversion tag in this
solution is just a group of DRL files. One or more rules can be selected and viewed via the
console. If desired, rules can be tested prior to deployment. Deploying rules will create a
cached RuleBase instance.

Rule Access
For rule access, the application simply calls a POJO method that gets a pre-loaded
WorkingMemory instance from the RuleBase, asserts objects and fireAllRules(). There is a
PhaseListener that checks for the existence of a cached RuleBase. If no RuleBase exists, the
PhaseListener will load a new RuleBase from a properties file that contains the last loaded
rule list. This way, JBoss restarts will not require manual rule re-deployment.

Browser

Rule Admin
POJO

Test
Rules

Browse
Rules

Deploy
Rules

Subversion

Browser POJO

Rule Admin
JSF

JSF Phase
Listener

Rule Base
Settings

ruleset-1.0

ruleset-2.0

Rule Access

Rule Administration

Rule
 Base
Cache

Implementation Instructions
Okay, this is where the rubber meets the road. There's a little code, not a lot of code but then
again this is a KISS solution. This implementation will involve adding some components to a
WAR that needs rules engine administration and access.

Configure Subversion with HTTP Access
An HTTP accessible Subversion repository is needed. The recommended approach is to:

1. Install Subversion 1.4
2. Install Apache 2.0.x
3. Add the mod_dav.so and mod_dav_svn.so libraries to $APACHE_HOME/modules
4. Add the appropriate entries to $APACHE_HOME/conf/http.conf, so clients can access

Subversion via HTTP.
5. Create a “trunk” and “tags” folder in Subversion. “trunk” is the development stream

and “tags” represent the labeled rule sets that the Rule Admin GUI will use.

More info on how to install Subversion with HTTP support can be found at: http://svnbook.red-
bean.com/nightly/en/svn-book.html.

JARS – Add all JARS to (WEB-INF/lib)

1. Add the drools jars and drools dependencies
2. Add drools-rule-admin.jar
3. Add javasvn.jar, javasvn-cli.jar and javasvn-javahl.jar

TIP: The reference rules-admin-console application contains all required JARS, so copying the
rule-admin-console JARs in WEB-INF/lib will suffice.

Add web.xml Entries
The following entries must be added to the web.xml file. The entries provide the
“RulesAdmin” managed bean with the location of the properties file that stores the Working
Memory Pool settings.

<context-param>
 <param-name>rules.properties.url</param-name>
 <param-value>http://localhost/rules-config/rules.properties</param-value>
</context-param>

The “rules.properties.url” entry is for accessing the rule engine settings via URL and provides
remote read-only access to the rules-settings and is handy in several server deployments.

<context-param>
 <param-name>rules.properties.file</param-name>
 <param-value>$APACHE_HOME/htdocs/rules-config/rules.config.properties</param-value>
</context-param>

The “rules.properties.file” entry is for accessing the rule engine settings via a file system path
reference and provides local write access to the rules-settings. In several server deployments,
a single server should be responsible for changing rules engine settings.

http://localhost/rules-config/rules.properties
http://svnbook.red-bean.com/nightly/en/svn-book.html
http://svnbook.red-bean.com/nightly/en/svn-book.html

Add faces-config.xml Entries
The following entries must be added to your faces-config.xml file. They provide access to the
RulesAdmin POJO, PhaseListener and rules-admin console JSPs.

<managed-bean>
 <managed-bean-name>grind</managed-bean-name>
 <managed-bean-class>com.ruleadmin.ui.WorkingMemoryGrinder</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

The “grind” bean is optional and provides a way for you to stress/load test the cached
RuleBase, versus loading a new RuleBase instance from the file system on every request. This
bean is also useful in identifying how large the connection pool should be, given a pre-
specified concurrent usage need.

<managed-bean>
 <managed-bean-name>rulesAdmin</managed-bean-name>
 <managed-bean-class>com.ruleadmin.ui.RulesAdmin</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

The “rulesAdmin” bean is required. But, if strict change management rules are in place, just
add this bean and omit the JSPs. This bean needs to have APPLICATION scope, because the
RuleBase is stored in this bean and it's an application wide, shared resource.

<navigation-rule>
 <navigation-case>
 <from-outcome>rule-admin-form</from-outcome>

<to-view-id>/rule-admin-form</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>rule-admin-error</from-outcome>
 <to-view-id>/rule-admin-form-error</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>grinder-page</from-outcome>
 <to-view-id>/grinder-page</to-view-id>
 </navigation-case>
</navigation-rule>

Several navigation rules are needed. The “rule-admin-form” references the rule
administration console JSP, “rule-admin-error” references the rule administration console
error page, and the “grinder-page” a the grinder friendly JSP for creating load-stress tests
against the rules engine.

<lifecycle>
 <phase-listener>com.ruleadmin.ui.RulesAdminListener</phase-listener>
</lifecycle>

The last piece of the puzzle is the PhaseListener. This entry must be added if you want the
application to check for a RuleBase before requesting a WorkingMemory instance. The
PhaseListener ensures that an application server restart will not require manual rules re-
deployment through the console.

Add Rule Admin Console Pages
Several JSPs need to be added to the WAR. These pages represent the “rule-admin-console”
GUI that the application will use to change rule engine settings. There's also a grinder friendly
page that can be used to conduct performance tests on the RuleBase cache.

1. Add WebContent/include/bottom-admin.jsp and WebContent/include/top-admin.jsp.
You can customize the look/feel of the rule admin console page with these JSPs.

2. Add WebContent/theme/style.css or edit top-admin.jsp to point to a different
stylesheet.

3. Add WebContent/rule-admin-form.jsp, WebContent/rule-admin-form-error.jsp and
WebContent/grinder-page.jsp.

Interacting with the Rules Engine
This solution makes it very easy for a POJO to communicate with the rules engine.

public void callRulesEngine() throws Exception {

 //get working memory instance from a cached RuleBase
 RulesUtil util = new RulesUtil();
 WorkingMemory wm = util.getWorkingMemory();

 //assert objects to WorkingMemory. The rules engine may alter these objects
 wm.assertObject(obj1);
 wm.assertObject(obj2);
 wm.assertObject(obj3);

 //call the rules engine and execute all rules
 wm.fireAllRules();
}

For all intensive purposes, the application should only require this level of interaction with the
rules engine.

Reference Project – rule-admin-console
The rule-admin-console.war project contains all code needed to deploy/test rules and can be
used as a shell WAR for your rules engine enabled application. There is also an extras.zip
package that contains some noteworthy additions including:

● bin – contains the drools-rule-admin.jar and test-model-pojos.jar with some test
POJOs.If this JAR isn't included in your WEB-INF/lib directory, the test-drl-files will not
compile.

● docs – contains all documentation for this solution.
● load-test – contains sample grinder load tests/configuration files and a quick how-to

guide on Grinder3.
● test-drl-files – can be checked into your subversion repository and used to test the rule-

admin-console. These are simple files that require test-model-pojos.jar to compile.

To use this sample project in eclipse click File > import > Web > War File and point the
importer to rule-admin-console.war file. You will need to add this project to a JBossAS 4.0.4
server instance. Lastly, you will need to add the $JBOSS_HOME/server/default/lib/log4j.jar to
your project's classpath because the rule-admin-console does use log4j.

Rule Administration Console Screenshot

This screen shot displays two DRL files that have be loaded into the cached RuleBase. The
DRL files can also be tested to make sure that they compile before deployment. This console
is actually interacting with the Subversion repository to display/load the DRL files into the
RuleBase, so there's no way to deploy a DRL that's not checked into the version control
system.

RuleBase Cache Justification
A cached RuleBase is leveraged to avoid the very costly RuleBase package process. The
cache versus non-cache approaches are explained in more detail below:

Non-Cached Rules Engine Interaction
Basically, all rules are loaded from the file-system, compiled, then converted into a RuleBase
that a WorkingMemory instance can use to fire rules. This process is somewhat inefficient due
to the loading/compilation of DRL files from the file-system. Claiming an operation is
inefficient needs proof, so here's a grinder results screen for “25” concurrent users, accessing
the rules engine without the cached RuleBase.

The average response time is 22.20 seconds and the standard deviation is 8.28 seconds. It is
likely that a pooled solution can do much better.

Cached Rules Engine Interaction
This solution pre-loads a RuleBase instance and holds it in APPLICATION scope. Obtaining a
WorkingMemory instance is wrapped by a convenient RulesUtil class. The drawback to this
solution is the overhead of storing a RuleBase in memory. This solution reduces the rule
engine response time considerably, but it is not without it's disadvantages. There are JVM
garbage collection implications to storing a large RuleBase in memory, but the drawbacks are
likely well worth the additional memory overhead. Here's a grinder results screen for “25”
concurrent users.

The average response time is .11 seconds and the standard deviation is .30 seconds. This is
more in-line with the response time requirements of a typical web application.

Additional Considerations
As mentioned earlier, this solution stores the RuleBase in APPLICATION scope.
This is a good use of APPLICATION scope, and the solution leverages APPLICATION scope
instead of JBossCache and a .SAR. If a JBoss only solution is acceptable, a JBossCache enabled
.SAR(Service Archive) should be used to store the RuleBase. The .SAR based solution will
provide additional flexibility, most notably enable the rules engine to be treated as a shared
service. Of course, this will require additional code and the sharing of rule bases across
multiple applications does have architectural implications.

