

JJJBBBooossssss jjjBBBPPPMMM 333...222...222
A Guide to Process Modeling

for System Analysts & Developers

Version 1.0

Soumyajit Paul. Programmer Analyst, Cognizant
Mandrita Sinha Choudhuri. Associate, Cognizant

 Business Process Modeling
 using jBPM 3.2.2

Contents

1.0 Introduction...3
1.1. Intended Audience .. 3
1.2. Assumptions/ Prerequisites... 4
1.3. Overview... 5

2.0 Readying the Environment ..6
3.0 Building Blocks for Modeling ..10

3.1. Creating a Process Project. ... 10
3.2. Creating a Process... 14
3.3. Creating Swimlane.. 18

3.3.1. Swimlane with Actor-Assignment.. 18
3.3.2. Swimlane using pooled actor .. 22
3.3.3. Swimlane using Expression .. 24
3.3.4. Swimlane using Handler ... 26

3.4. Creating Process Definition Entities... 29
3.4.1. Creating a Start Node.. 29
3.4.2. Creating a End Node... 42
3.4.3. Creating Transition ... 44
3.4.4. Creating a Node .. 49
3.4.5. Creating a Task Node.. 54
3.4.6. Creating a Decision Node ... 57
3.4.7. Creating a Fork ... 61
3.4.8. Creating a Join .. 63
3.4.9. Creating a Process-State ... 65

3.5. Migrating jBPM to Oracle Database... 68
3.6. Process Deployment.. 72
3.7. Creating a Client to invoke jBPM deployed process .. 77
3.8. Drools Integration with jBPM .. 85

4.0 Annexure..98
4.1. Glossary .. 98

5.0 References..99

 Page 2 of 99

 Business Process Modeling
 using jBPM 3.2.2

1.0 Introduction
JBoss jBPM - Java-based business process management (BPM) system - enables Enterprise Java and SOA

programmers to create business process and workflow applications, business process orchestration and web

application page flows from a single, flexible and scalable process engine.

1.1. Intended Audience
This document is intended for several levels of IT professionals – analysts, developers, project managers and

architects.

• Analyst Analysts may read through the following chapters for a basic understanding of how to
design a process within the environment of jBPM -

• Introduction
• Readying the environment
• Building Blocks for Modeling.

• Developer Developers can focus on how to write services to integrate existing applications and
expose them properly to assemble user interfaces. To have a good level of
confidence they may read through the following chapters -

• Introduction
• Readying the Environment
• Building Blocks for Modeling

• Project

Manager

A project manager would be interested in getting an overall feel of the effort
estimation in order to plan for required resources. Following chapters may be of help
for this purpose –

• Introduction.
• Left column of the Workflow detail tables to get a feel of the activities

involved.
• Skim through the document.

• Architect An Architect may wish to get an overview at the nuts-and-bolts know-how level,
understand any JBoss jBPM product constraints and map to implications to the
design, architecture and suggested solution. For this purpose, it will be helpful to –

• Read the introduction.
• Skim through the left column of the Workflow detail tables to get an

understanding of the steps involved as part of the development approach
• Read the right most column of the Workflow detail tables to get an insight on

the technology implications of individual steps
• Read/try-out the detailed steps in the Workflow detail tables for a good

hands on understanding of the steps and what’s involved

 Page 3 of 99

 Business Process Modeling
 using jBPM 3.2.2

1.2. Assumptions/ Prerequisites

• Readers are expected to have a general understanding of Business Process Modeling and its

relevance in solving business problems. This document will take the user step by step from problem

understanding to solution realization as it covers the following topic:

1. The different JBoss jbpm constructs and how they can be used to model various business

problem scenarios.

 Page 4 of 99

 Business Process Modeling
 using jBPM 3.2.2

1.3. Overview

JBoss jBPM Suite is a product suite for modeling, executing and optimizing business processes. JBoss jBPM

provides both:

• Business service interaction on top of a service infrastructure backbone

• Freestanding, complete BPMS (Business Process Management System) based on SOA.

The various products and their interplay are summarized in the following table:

jBPM Product Description Comments

1. JBoss jBPM
Product
Suite

Process
Design
environment
for the analyst

• JBoss jBPM enables automation of business processes that coordinate
between people, applications and services

• Designed for the mass market and support enterprise scale applications
• JBoss jBPM bring process automation to a much wider set of business

problems ranging from embedded workflow to enterprise business
process orchestration and BPM.

• JBoss jBPM delivers workflow, business process management (BPM)
and service orchestration in a multi-process language platform.

 Page 5 of 99

 Business Process Modeling
 using jBPM 3.2.2

2.0 Readying the Environment
The following table details the steps to be followed for installation of jBPM Suite v3.2.2

For a list of compatible hardware/software, refer to jBPM Release Note v3.2.2

Steps Description Comments

1. Obtain JDK 5 from Sun’s Official site.
2. Set Environmental variable JAVA_HOME to point to the

jdk installation directory.
3. Obtain a copy of jBPM Suite v 3.2.2 (jBPM-jpdl-3.2.2.zip)

from JBoss official site.

The suite can be downloaded for evaluation from
http://www.JBoss.com/products/jBPM/downloads
(If the above site is not functional use the following)
http://sourceforge.net/project/showfiles.php?group_i

d=70542&package_id=145174&release_id=539054

(Download the jbpm-jdpl-suite.zip).

Prerequisites

JBPM 3.2.2 designer is compatible with eclipse
3.3.0.The Eclipse based IDE can be downloaded
from

4. Obtain Eclipse Web Tools Platform All-In-One Packages
v3.3 (wtp-all-in-one-sdk-R-2.0.1-20070926042742-
win32.zip) from eclipse. This ide will be required for
modeling. jBPM designer comes as a plugin for Eclipse
IDE.

http://download.eclipse.org/webtools/downloads/dro
ps/R2.0/R-2.0.1-20070926042742/
(If the above site is not functional alternatively the
following site can be used)
http://www.eclipse.org/
 1. Extract the .zip file (jBPM-jpdl-3.2.2.zip) in a suitable

location.

Installing jBPM

Studio
 2. Extract the .zip file (wtp-all-in-one-sdk-R-2.0.1-

20070926042742-win32.zip) in a separate suitable
location

3. Go to jBPM_JPDL_HOME>\designer\eclipse.

4. Double click on the plugins directory jBPM Suite 3.2.2 provides plugins for its compatible
eclipse based IDE .

 Page 6 of 99

http://www.jboss.com/products/jBPM/downloads
http://sourceforge.net/project/showfiles.php?group_id=70542&package_id=145174&release_id=539054
http://sourceforge.net/project/showfiles.php?group_id=70542&package_id=145174&release_id=539054
http://download.eclipse.org/webtools/downloads/drops/R2.0/R-2.0.1-20070926042742/
http://download.eclipse.org/webtools/downloads/drops/R2.0/R-2.0.1-20070926042742/
http://www.eclipse.org/

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 5. Go to <WTP_Eclipse_IDE_Home>\eclipse\plugins
Installing jBPM

Studio

(Contd...)

 6. Paste <jBPM_JPDL_HOME>\designer\eclipse\plugins

contents to the

<WTP_Eclipse_IDE_Home>\eclipse\plugins.

 7. Similarly copy the contents
<jBPM_JPDL_HOME>\designer\eclipse\features to the
<WTP_Eclipse_IDE_Home>\eclipse\features

 8. Create a new folder called links inside
<jBPM_JPDL_HOME>\designer\eclipse\

 9. Finally Copy the contents of
<jBPM_JPDL_HOME>\designer\eclipse\links to the
<WTP_Eclipse_IDE_Home>\eclipse\links

1. Download latest drool(JBoss Rules-4.0.x) plugin for
eclipse Europa 3.3 workbench

The plugin can be downloaded from
http://labs.JBoss.com/drools/downloads.html

2. Extract the downloaded zip file.

Adding Drools

Plugin

 3. Zip contains one jar file org.drools.eclipse_4.0.x.jar
and a folder org.drools.eclipse.feature_4.0.x which
contains an xml file name feature.xml. Copy the folder
into <WTP_Eclipse_IDE_Home>\eclipse\features
and the jar into
<WTP_Eclipse_IDE_Home>\eclipse\plugins

 4. Restart the Studio
 1. Open the eclipse editor by double clicking the

<WTP_Eclipse_IDE_Home>\eclipse\eclipse.exe with
the following icon.

Verification of
Insallation of
jBPM Process
Designer

 2. This will open up the following.

 Page 7 of 99

http://labs.jboss.com/drools/downloads.html

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 3. The next wizard shows a welcome screen like this.

4. Close the welcome screen and Press Control+N. This

will launch a wizard like this.

The screen shows that the JBoss jBPM has been
installed successfully within eclipse workbench.

Verification of
Insallation of
jBPM drools
engine.

 5. Drools workbench will be visible to your editor means a
successful drools installation is done.

 Page 8 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Page 9 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.0 Building Blocks for Modeling
The following section details the building blocks for process modeling in jBPM studio which is built on top of eclipse.

3.1. Creating a Process Project.

A jBPM process project is the collection of resources (models, external resources, codes) and represents a

deployable unit. The following table lists out the steps to create a process Project in jBPM

Steps Description Comments

1. Start your WTP eclipse editor.

2. Click File Menu->New->Other

Create a new
project

3. Double Click on JBoss jBPM

 Page 10 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a new
project (Contd...)

4. Select Process Project. Click Next

 Page 11 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

5. Give The Name Of your Process Project. Click Next.

6. Choose the jBPM Location from the Drop Down. Click Finish when Done. 1.If the JBPM
runtime is not
populated in the
dropdown it
needs to be set
previously by
pointing to the
jbpm<version>
installation
directory.
2.If developer
doesn’t want to
generate
sample process
definition,action
handler and
Junit Test case
then the
checkbox can
be unchecked.

Create a new
project (Contd...)

7. A Process Project can be viewed in the Project Explorer pane on the left side of the
editor.

On creating a
Process Project
the following
folders get
generated.

 Page 12 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Page 13 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.2. Creating a Process

A Process is where the business process scenario is modeled. A process can have multiple activities.

Steps Description Comments

Creating a new
Process

1. In left of the editor pane (package explorer window) click on the Sign associated
with the created process project name.

Creating a new
Process (Contd...)

1. In the left of the editor pane (navigator pane) select src\main\jpdl.

 2. Right click on it. Select new->Other

 Page 14 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Creating a new
Process (Contd ...)

3. Double click on jBPM. Select Process Definition. Click Next when done

 Page 15 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 4. Give the name of the process.

 Page 16 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Page 17 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.3. Creating Swimlane

A swimlane defines a role function for a speicifc work being done in a process. Swimlane acts as role handlers

for different types of activities.

3.3.1. Swimlane with Actor-Assignment

A swimlane corresponds to a specific user or a group of users. Each user belongs to a specific role and

thus become categorized under different swimlane. A swimlane can be created specifying a single user or

multiple users. It should be noted that the user should have a valid existence which may be found in

jBPM_ID_USER table. (Refer to section 3.5.)

The following table describes the procedure to create Swimlane in jBPM using an Actor Assignment.

Steps Description Comments

 1. Select the processdefinition.xml of the selected process by clicking on the
sign and navigate to process-project name/ (src/main/jpdl)/process name in
the project explorer window pane and double click to open it in the editor.

 Page 18 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 2. Click Properties tab.

Creating a new
Swimlane

 3. Click on the tab Swimlanes.

4. Right Click on the vertical white space area. Creating a new
Swimlane (Contd
...)

 Page 19 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 5. Choose New Swimlane.

 6. Give a suitable name to the Swimlane.

Assignment 7. Click on the Assignment tab.

 Page 20 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 8. Choose an Assignment type as “Actor” from the drop down.

9. Give a valid/existing actor or user name in Actor textbox. Here we give it as
manger.

jBPM by default
offers 4 users
‘manager’,’admin’,
’shipper’,’user’
with the role
‘manager/admin/u
ser’,
‘admin/user’,’user’
,’user’
accordingly. User
information can
be obtained from
jBPM_ID_USER
table. (Refer to
section 3.5 .)

 Page 21 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.3.2. Swimlane using pooled actor

Pooled actor stands for a group of users. When a swimlane is assigned to a group of users - each user

belonging to that group will be a part of the same swimlane.

The following table describes the procedure to create Swimlane in jBPM using pooled Actor.

Steps Description Comments

Creating a new
Swimlane

1. Create a new Swimlane. Refer to swimlane
with actor
assignment
section (Sec-
3.3.1)

 2. Click on the Assignment tab.

Assignment

 3. Choose an Assignment type as “Pooled Actors” from the drop down.

 Page 22 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

jBPM by default
offers 4 users
‘manager’,’admin’,
’shipper’,’user’
with the role
‘manager/admin/u
ser’,
‘admin/user’,’user’
,’user’ accordingly.
User information
can be obtained
from
jBPM_ID_USER
table. (Refer to

4. Give a valid/existing actor or user name in Pooled Actors textbox. Here we give
it as manager. Optionally the actor name can be given as shipper,user and
admin.

section 3.5 .)

 Page 23 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.3.3. Swimlane using Expression

It is an assignment expression for the jBPM identity component. Management of users, groups and

permissions is commonly known as identity management. The actors will be resolved from the expression.

The following depicts that how a swimlane can be associated with a user using expression.

Steps Description Comments

Creating a new
Swimlane

1. Create a new Swimlane. Refer to
swimlane with
actor
assignment
section (Sec-
3.3.1)

 2. Click on the Assignment tab.

Assignment

 3. Choose an Assignment type as “Expression” from the drop down.

 Page 24 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

jBPM by
default offers 4
users
‘manager’,’ad
min’,’shipper’,’
user’ with the
role
‘manager/admi
n/user’,
‘admin/user’,’u
ser’,’user’
accordingly.
User
information
can be
obtained from
jBPM_ID_USE
R table. (Refer
to

4. Give a valid/existing actor or user name in the textbox using expression. Here
we give it as Manager. Optionally the actor name can be given as Shipper,
User and Admin (which is default user provided).

section 3.5.)

 Page 25 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.3.4. Swimlane using Handler

jBPM provides org.jBPM.taskmgmt.def.AssignmentHandler interface using which an user can be

assigned to a swimlane. The mentioned interface consists of a method with the following signature that is

responsible to assign a user to a swimlane.This approach is more relevant when an user is to associated

with a swimlane at runtime.

void assign (Assignable assignable, ExecutionContext executionContext) throws Exception;

The following table shows the procedure to create a swimlane using a handler

Steps Description Comments

1. Create a new Swimlane. Refer to swimlane
with actor
assignment
section (

Creating a new
Swimlane and
enter the
following code
snippet.

Sec-
3.3.1)

Create a class
named
AssignUser

This class is
responsible to
assign an actor
‘manager’ to a
swimlane with
which this class
will be associated.
The class has to
implement the
AssignmentHan
dler interface and
implement the
assign method.

Package com.cts.user;

import org.jbpm.graph.exe.*;
import org.jbpm.taskmgmt.def.*;
import org.jbpm.taskmgmt.exe.Assignable;

public class AssignUser implements AssignmentHandler {

 private static final long serialVersionUID = 1L;

 public void assign(Assignable assignable, ExecutionContext
executionContext) {
 assignable.setActorId("manager");
 }

 Page 26 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 2. Click on the Assignment tab.

Assignment

3. Choose an Assignment type as “Handler” from the drop down.

4. Click on the search button to find the designated class. Swimlane handler
implements
AssignmentHan
dler.Therefore
the screen will
search only
those classes
which
implements
Assignment
Handler
interface. Here it
is newly created
AssignUser
class.

 Page 27 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Assignment(Cont
d …)

5. Type the few letters of the designated class in the textbox. This will show the
all possible class that one can associate with the swimlane.

 6. Click OK to finish.

 Page 28 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4. Creating Process Definition Entities
These entities define a manual or automated task that corresponds to a step within a process design. Adding a

new entity allows one to create a new step and assign it to a Swimlane (optionally) within a process.

3.4.1. Creating a Start Node

A start node is used to start a process. Without using a start node subsequent activities inside a process can’t

be performed. It is the entry point to a jBPM process.

The following table describes how to include a start node in a workflow

Steps Description Comments

Creating a
start node

1. Click on the Start node from the left window toolbar pane of the editor.

Creating a
start node
(Contd.)

2. Drop it on the design editor.

 Page 29 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

3. Click on the properties tab below the design editor. Alternatively one can
change the name of
the Node and enter a
brief description on
that node from the
‘General’ tab.

4. Click on the task tab. Attribute-Task If on the start of the
Configuration process some

manual work is
required then a task
can be associated
with the ‘Start’ node.

5. Check the Configure Task checkbox. Attribute-Task
Configuration
(Contd ...)

 Page 30 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

6. Enter the name of the task that will be associated with the Start-Node. Here it is given
as StartTask as shown below.

7. Click on the Details tab. And Click on the Generate Form button. Generate Form Attribute-Task
Configuration option is responsible
Task form to generate a
Generation <nodename>.xhtml

file which will be
associated with the
task during runtime
and allow a user who
will be working upon
that task to enter
certain field values.

 Page 31 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Attribute-Task This wizard is
Configuration responsible to create
(Contd ...) a task variable in the
Task form ContextInstance of
Generation the Process.

8. Click on the add button to add a variable to the left. Attribute-Task
Configuration
(Contd ...)
Task form
Generation

Attribute-Task
Give the name of the variable. Here it is ‘name’. Press Enter. Enter the label. By default Configuration

(Contd ...) access permission of each variable entered in the entry is Read and Write. Additionally if
Task form ‘Required’ checkbox is selected then this variable becomes mandatory with the related
Generation task.

9. Click on Add in Define the form buttons section. Enter the name of the transition on Attribute-Task
Configuration which the execution flow will take place. Enter the label of the button.

 Page 32 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

(Contd ...)
Task form
Generation

10. Click on the Assignment tab. Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration

11. If runtime assignment is required as a business need then use ‘Assignment Handler’ Attribute-Task Appropriate
Configuration assignment handler option with the task created in previous steps.
(Contd ...) is used to define the
Assignment user or a set of users
Configuration who are capable of
using a starting the task. A
handler handler assignment

expects a class which
implements the
Assignment handler

 interface of which
assign method is
responsible to set a

 Page 33 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

user or a group of
user at runtime to
work upon this task.

12. Create a java class AssignUser. Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration
using a
handler

Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration
using a
handler

13. Click on the Search button to find the assignment handler class.

Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration
using a
handler

14. Choose the assignment handler class from the wizard. Click OK when done.

import org.jbpm.graph.exe.*;
import org.jbpm.taskmgmt.def.*;
import org.jbpm.taskmgmt.exe.Assignable;

public class AssignUser implements
AssignmentHandler {

 private static final long serialVersionUID = 1L;

 public void assign(Assignable assignable,
ExecutionContext executionContext) {
 assignable.setActorId("powellb");
 }
}

 Page 34 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

15. If at design time the user is to be associated with the task choose ‘Actor’ from the Attribute-Task Actor is a valid user.
Configuration A set of valid user is dropdown.
(Contd ...) available in
Assignment jBPM_ID_USER
Configuration table.
using an
Actor

16. Enter the name of the Actor (user). Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration
using an
Actor

 Page 35 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

17. If a set of actors is to work upon the task then choose ‘Pooled Actors’ from the Attribute-Task A pooled actors
Configuration means a set of valid dropdown under assignment tab.
(Contd ...) actors
Assignment
Configuration
using an
Pooled Actors

18. Give a set of valid user name in a comma-separated expression in Pooled Actors Attribute-Task
Configuration textbox.
(Contd ...)
Assignment
Configuration
using an
Pooled Actors

19. Alternatively one can also use choose ‘Expression’ to associate a single user(actor) Attribute-Task
Configuration from the dropdown.
(Contd ...)
Assignment
Configuration
using
expression

20. Enter the expression text box to fill the expression like user (<valid user name>). Attribute-Task
Configuration
(Contd ...)
Assignment
Configuration
using
expression

NB:-Expression syntax is like the following

syntax : first-term --> next-term --> next-term -->

 Page 36 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 * first-term ::= previous |
 * swimlane(swimlane-name) |
 * variable(variable-name) |
 * user(user-name) |

 * group(group-name)
* next-term ::= group(group-type) |

 * member(role-name)

21. If a swimlane is previously configured then one can choose ‘Swimlane’ from the Attribute-Task
Configuration dropdown and allocate the task under this swimlane.
(Contd ...)
Assignment
Configuration
using
swimlane

22. Enter the name of the swimlane into the textbox. Name is case-sensitive. Attribute-Task Refer to section-3.3
Configuration to know how to
(Contd ...) create a swimlane.
Assignment
Configuration
using
swimlane

23. To attach some exception handling policy click on the ‘Exceptions’ tab under Attribute-
Exception properties tab.
handling

 Page 37 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

24. Right Click on the blank vertical box. Click new Exception Handler. Attribute-
Exception
handling
(Contd.)

25. Give the name of an exception class. Here it is java.lang.Exception class. The Attribute- An exception class
Exception may be any standard exception handler name is populated with the exception class name specified in the
handling exception. Here for text box.
(Contd.) each exception one

has to associate an
action so that an
action class will be
called when specified
exception occurs
during the task
execution and might
be some corrective
operations can be
taken in the action
class. For custom
exception class to be
declared one has to
create an exception
class extending
java.lang.Exception
class.

26. Under the newly created exception handler right click on it and click on New Action. Attribute-
Exception
handling
(Contd.) using
Action

27. On creating a new action a separate wizard will open which will ask for a name of the Attribute- This action will get
Exception triggered once an action.
handling exception of type
(Contd.) using java.lang.Exception is
Action thrown from a

 Page 38 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

particular activity.

28. Go to details tab to associate a class with this action. Separately an expression also Attribute-
Exception can be attached with this action.
handling
(Contd.) using
Action

29. Choose the appropriate action details. Either a handler or an expression. A handler is Attribute-
Exception nothing but an action class. Here we associate using an action class.
handling
(Contd.) using
Action

30. Create a Java class ExceptionAction Attribute- Refer to Section 3.4.3
Exception on Creating
handling Transition at Step 5.
(Contd.) using
Action

If the associated
action class in the
start-state throws an
exception of type
java.lang.Exception
then the following
ExceptionAction will
be executed.
Execution flow will
take place in the
transition named to
end. In case of a
multiple transitions
developer will have a
choice to direct the
execution flow in
whichever transition
the business needs
drives.

Attribute-
Exception
handling
(Contd.) using
Action

31. Click on the search button to get the action handler class.

import org.jbpm.JbpmConfiguration;
import org.jbpm.graph.def.ActionHandler;
import org.jbpm.graph.exe.ExecutionContext;

public class ExceptionAction implements ActionHandler
{

public void execute(ExecutionContext executionContext)
throws Exception {
System.out.println("*******EXCEPTION IS
CAUGHT*********");
 executionContext.getProcessInstance().getRootTok
en().signal("to end");
 } }

}

 Page 39 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

32. Choose the action handler class from the wizard. Click OK when done. Attribute-
Exception
handling
(Contd.) using
Action

33. If the task is to be based on certain event occurrences then click on the Events tab. Attribute-
Events

34. Right Click on the right blank area and click New Event. Attribute- Every node is state
Events(Contd. and each node is
.) using associated with an
Actions event.

35. Choose appropriate Event Type from the dropdown that might occur during the Attribute- Since a task has
Events(Contd. already being execution of a start node. Here task-create event type has been chosen.
.) using associated with the

 Page 40 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

start-node hence this Actions
event will get
triggered once the
process is started.

36. An event with name of an event-type will be generated. Attribute-
Events(Contd.
.) using
Actions

37. Right click on the generated event. Select New Action. Attribute-
Events(Contd.
.) using
Actions

38. An action will be generated in the right pane as the figure shows. Attribute-
Events(Contd.
.) using
Actions

39. Configure the action. Attribute- Refer to section 3.4.3
Events(Contd. Creating a transition
.) using with attribute Action
Actions to know how to

configure action with
an event.

 Page 41 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.2. Creating a End Node

An End node is the exit point of the process.

Steps Description Comments

1. Click on the End node from the left window toolbar pane of the editor. Creating an End
node

2. Drop it on the design editor. Creating a End
node (Contd.)

3. Click on the properties tab below the design editor.

 Page 42 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

4. Rename your end node if required.

5. The Changes will be reflected in the design editor.

 Page 43 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.3. Creating Transition
Transitions have a source node and a destination node. A transition is responsible for traversing an execution token

from one node to the other during a process flow. Transitions are, therefore, very important in the context of process

execution flow.

Steps Description Comments

1. Click on the transition from the left window toolbar pane of the editor. Creating a
transition

2. Select the source node. Drag up to the destination node. Creating a
transition (Contd.)

3. Click on the properties tab below the design editor. Creating a Transition
transition (Contd.) properties gives

additional scope
to the developer

 Page 44 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

to associate
action-class,
exception
handler, type of
transition such
as
condition/uncon
ditional etc.

4. Default transition doesn’t have any name. A name can be provided in the General
tab under ‘Name’ textbox section.

 Creating a
transition (Contd.)

5. The Changes will be reflected in the design editor.

6. Refer to section-3.4.1Attribute-
Exception
handling

 under Attribute-Exception handling steps. .

7. Select the transition from the Process Design Area. Attribute-Action-
Handling

 Page 45 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

8. Select the property tab below the Process design editor. Attribute-Action-
Handling

9. Select the Actions tab to add action. Attribute-Action-
Handling (Contd
...)

10. Right click on the right blank area and click on New Action. Attribute-Action-
Handling (Contd
...)

 Page 46 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

11. Give the name of the action as follows. Attribute-Action-
Handling (Contd
...)

12. Click on details tab as depicted. Attribute-Action-
Handling (Contd
...)

13. Choose the appropriate Action either as handler or Expression. Here the chosen Attribute-Action-
Handling (Contd one is a Handler.
...)

14. Choose the appropriate action handler class that one has to create before this step. Attribute-Action- Note that an
Handling (Contd action handler To choose the handler (Java class) click on the Search button.
...) will be a java

class which has
to implement

 Page 47 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

jBPM provided
ActionHandler
interface.

15. Choose the appropriate action handler class from the matching items. Click OK Attribute-Action-
Handling (Contd when finished.
...)

16. Click on the advanced tab. Attribute-Action- The wizard is
Handling (Contd responsible for
...) event

propagation and
asynchronous
behavior.
Default is
true|yes. (Refer
jBPM Wiki Page
139)

Asynchronous
implementation
is a known bug
issue in jBPM.
Refer to JIRA-
#1114

 Page 48 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.4. Creating a Node

This node serves the situation where the task is automatic. The node expects one sub element action. The

action is executed when the execution token arrives at the node. This node can be used if one wants to use

Java to implement some functional logic that is required for the business process.

Steps Description Comments

1. Select the Node from the design toolbar. Creating a Node

2. Create a workflow as shown. Create a
Workflow

 Page 49 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

3. Select the Node. Click on the properties tab below. Configuring Node

4. Change the default name of the Node from ‘node1’ to a name as shown ‘Approval’. Configuring Node
(Contd...)

 Page 50 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

5. Changes will be reflected to the Node named approval. Configuring Node
(Contd...)

6. Click on the Action tab in left window property bar. Node Attribute-
Action

7. Check the Configure Action checkbox. Node Attribute-
Action(Contd …)

8. Refer to Node Attribute-
Action -Handler

Section 3.4.1 under Start-state Attribute Events using actions

 Page 51 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

9. Refer to Node-Attribute
Exceptions

Section 3.4.1 under Start-state Attribute Exceptions

10. Refer to Node-Attribute
Events

Section 3.4.1 under Start-state Attribute Events Nodes are not
relevant for tasks
therefore a task
related event is not
applicable to a node.

11. Click on the tab timer in the left window property bar. Node-Attribute Timers are required if
Timers we want an action

associated with this
node to occur on a
scheduled basis.

12. Right click on the left blank area and click on New Timer. Node-Attribute
Timers (Contd
...)

13. Following screen will appear to configure the timer. Node-Attribute
Timers (Contd
...) Configuration

 Page 52 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Due-Date-It is the 14. Give name of the timer, Transition, Due Date, Repeat in the textbox provided. Node-Attribute Duration (optionally Timers (Contd expressed in ...) Configuration business hours) that
specifies the time
period between the
creation of the timer
and the execution of
the timer.

Repeat-If set to true
then the action will repeat after every
due date.

.
A transition-Name of
the next node to flow
to

15. Click on the Action tab. Node-Attribute Specify the action
Timers (Contd corresponding to a
...) Action timer that will be
Configuration executed when the

timer fires.

16. Select action from the Action Type dropdown. Node-Attribute
Timers (Contd
...) Action
Configuration

17. Refer to Node-Attribute
Timers (Contd
...) for Action
Configuration

Section 3.4.1 under Start-state Attribute Events using actions

18. Check the checkbox to make the timer asynchronous if required. Node-Attribute Asynchronous
Advanced implementation is a

known bug in jBPM.
Refer to JIRA-#1114

 Page 53 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.5. Creating a Task Node

A task node represents one or more tasks that are to be performed by human. So when execution arrives in a

task node, task instances will be created in the task lists of the workflow participants. After that, the node will go

to a wait state meaning that some manual work is required for completion of the task. So when the users

perform their task, the task completion will trigger the resuming of the execution.

Steps Description Comments

1. Select the Task-Node from the design toolbar. Creating a Task
node

2. Drop it on the process design Editor. Workflow after creating a task node. Creating a Task
node (Contd...)

3. Click on the properties tab. Creating a Task
node (Contd...)

 Page 54 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

4. Enter the name of the task in the ‘Name’ textbox. Creating a Task
node (Contd...)

5. Changes will be reflected in the process design editor as follows. Creating a Task
node (Contd...)

6. Refer to Task-Node
Attribute
Exceptions

Section 3.4.1 under Start-state Attribute Exceptions

Task-Node
Attribute Tasks

7. Refer to section-3.4.1 under Start-state Attribute-Task Configuration

Task-Node
Attribute Events

8. Refer to section-3.4.1 under Start-state Attribute-Events

 Page 55 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Task-Node
Attribute Timers

9. Refer to section-3.4.4 under Node Attribute-Timers

10. Refer to section-3.4.4Task-Node
Attribute
Advanced

 under Node Attribute-Advanced

 Page 56 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.6. Creating a Decision Node

There are two ways to specify the decision criteria in a jbpm process. One is by adding condition elements on

the transitions. Conditions are script expressions that returns a ‘Boolean’. At runtime the decision node will loop

over its leaving transitions and evaluate each condition. The first transition for which the conditions resolve to

'true' will be taken. Alternatively, an implementation of the DecisionHandler can be specified. Then the decision

is generated by a Java class and the selected leaving transition is returned by the decide-method of the

DecisionHandler implementation.

Steps Description Comments

1. Select the Decision Node from the toolbar. Creating a
decision node

2. Drop on the process design editor. Design your process in the process design editor. Creating a
decision node
(Contd...)

 Page 57 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

3. Click on the properties tab below. Creating a
decision node
(Contd...)

4. Change the name to ‘Approve/Disapprove’ Creating a
decision node
(Contd...)

Changes will be reflected in the process design editor. Creating a
decision node
(Contd...)

5. Click on the Handler tab. Decision node-
Attribute Handler

 Page 58 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

6. Select choose type Delegation from the dropdown. Decision node-
Attribute Handler
(Contd...)

7. Create a custom Decision Handling class for the decision handler. Decision node- The custom
Attribute Handler DecisionHandler
(Contd...)

class will
implement jBPM
provided
interface
Decision
Handler and
implement the
decide method
which returns
the transition
name. Token
will traverse to
that transition
which decide ()
will return.

Decision node-
Attribute Handler
(Contd...)

8. Choose your newly created class to set the delegation. Click the search button and
set the decision handler class.

import org.jbpm.graph.exe.ExecutionContext;
import org.jbpm.graph.node.DecisionHandler;
public class DecisionMaker implements DecisionHandler {
 private static final long serialVersionUID = 1L;
 public String decide(ExecutionContext
executionContext) throws Exception {
 String transition="";
/*For the time being assume that the flag approve has
been set to true to it's prior state*/
boolean approve=true;
/* assume that an approval flag is generated from the
previous task. Check whether the flag is true or
false.If it's true delegate the token to the End state
else return it back to the Approval node.*/
 if(approve==true)
 {
 //Set the transition name to this
variable.Delegation will take place over that
transition upon returning the transition name.
 transition="Approved";
 }
 else
 {
 transition="Not Approved";
 }
 return null;
 }
}

 Page 59 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Click OK to finish.

9. Refer to Decision node-
Attribute
Exception

Section 3.4.1 under Start-state Attribute Exceptions

10. Refer to Section 3.4.1Decision node-
Attribute Events

 under Start-state Attribute Events

11. Refer to section-3.4.4Decision node-
Attribute
Advanced

 under Node Attribute-Advanced

 Page 60 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.7. Creating a Fork

 A fork splits one path of execution into multiple concurrent paths of execution. The default fork behavior is to

create a child token for each transition that leaves the fork, creating a parent-child relation between the token

that arrives in the fork. However, concurrent paths of execution don't have to run in separate threads in

persistence mode. The important thing is to isolate each transaction to other. It should be noted that though the

execution flow is not multithreaded but each transaction (A transaction is a token traversal mechanism after the

token generates and reaches either to a wait state or an end state) is separate from the other.

Steps Description Comments
1. Select fork from the design toolbar. Creating a fork

2. Drop it on the design editor. Creating a fork

(Contd...)

3. After creating a fork workflow may be created as follows. Creating a fork

(Contd...)
Join is associated task to fork.

 Page 61 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

4. Click on the properties tab below the process design editor. Creating a fork

(Contd...)

5. Change the name of the newly created fork if required. Default name is

‘fork1’ for creating a first fork in the entire process.
Creating a fork
(Contd...)

6. Refer to Fork-Attribute

Exceptions
Section 3.4.1 under Start-state Attribute Exceptions

7. Refer to Section 3.4.1Fork-Attribute
Events

 under Start-state Attribute Events

Fork-Attribute
Timers

8. Refer to section-3.4.4 under Node Attribute-Timers

Fork-Attribute
Advanced

9. Refer to section-3.4.4 under Node Attribute-Advanced

 Page 62 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.8. Creating a Join

The default join assumes that all tokens that arrive in the join are children of the same parent. This situation is

created when using the fork,all tokens created by a fork arrive at the same join. A join will end every token that

enters the join. Then the join will examine the parent-child relation of the token that enters the join. When all

sibling tokens have arrived in the join, the parent token will be propagated over the (unique) leaving transition.

When there are still sibling tokens active, the join will behave as a wait state.

Steps Description Comments

Creating a Join 1. Select join from the design toolbar.

Creating a Join
(Contd...)

2. Drop it on the process design editor.

Creating a Join
(Contd...)

3. After creating a Join workflow may be created as follows.

 Page 63 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Creating a Join
(Contd...)

4. Click on the properties tab below the process design editor.

Creating a Join
(Contd...)

5. Change the name of the newly created join if required. Default name is
‘join1’ for creating a first join in the entire process.

 6. Refer to Join-Attribute

Exceptions
Section 3.4.1under Start-state Attribute Exceptions

 7. Refer to Join-Attribute
Events

Section 3.4.1 under Start-state Attribute Events

 8. Refer to section-3.4.4Join-Attribute
Timers

 under Node Attribute-Timers

 9. Refer to section-3.4.4Join-Attribute
Advanced

 under Node Attribute-Advanced

 Page 64 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.4.9. Creating a Process-State

Process composition is supported in jBPM by means of the process-state. The process state is a state that is

associated with another process definition. When graph execution arrives in the process state, a new process

instance of the sub-process is created and it is associated with the path of execution that arrived in the process

state. The path of execution of the super process will wait until the sub process instance ends for a

synchronous execution. In case of asynchronous executions, process state still goes to blocking mode. As

mentioned in section 3.4.4 step 18, this defect of the tool is already logged (Refer to JIRA-#1114). When the sub

process instance ends, the path of execution of the super process will leave the process state and continue

graph execution in the super process.

Steps Description Comments

Creating a process
State

1. Click on the Process-State tool in the Process design toolbar.

Creating a process
State(Contd ..)

2. Drop it on the process design editor. Click on the properties tab to
change the name of your process state. Default is ‘process-state1’.

Creating a process
State (Contd ...)

3. Workflow model after creating a process state.

 Page 65 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

4. Click on the Subprocess tab under Process-State Property. Process-State

Attribute
Subprocess

5. Enter the sub process name. Process-State

Attribute
Subprocess
(Contd...)

Refer to figure at
step-9 below to
design the
subprocess .

6. Click Add to add the variables of parent process that are to be mapped

with the child process.
Process-State
Attribute
Subprocess
(Contd...)

7. Enter the variables of parent process that are to be mapped with the

child process.
Process-State
Attribute
Subprocess
(Contd...)

 Page 66 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

8. Define access permission as per business need. Three permissions
are allowable, Read, Write and Required.

Process-State
Attribute
Subprocess
(Contd...)

9. Design the Child Process workflow as follows. Process-State

Attribute
Subprocess
(Contd...)

Refer figure at step-5
above. The following
picture shows the
process flow diagram
of the process
ssnValidationSubPro
cess which is
entered as the
subprocess name of
the property
subprocess of
Process State.

 10. Refer to Process-State -

Attribute
Exceptions

Section 3.4.1 under Start-state Attribute Exceptions

 11. Refer to Process-State -
Attribute Events

Section 3.4.1 under Start-state Attribute Events

 12. Refer to section-3.4.4Process-State -
Attribute Timers

 under Node Attribute-Timers

 13. Refer to section-3.4.4Process-State -
Attribute Advanced

 under Node Attribute-Advanced

 Page 67 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.5. Migrating jBPM to Oracle Database

Migrating to Oracle is required due to limited functionality provided by the JBoss in-built database Hypersonic.

Hypersonic does not provide more than one connection at a time to a database schema. It generates a lock file

as soon as a JBoss application server is started. Consequently a standalone client application which tries to

execute the process deployed on the server fails to obtain a connection instance to the database. To overcome

this limitation it’s advisable to migrate jBPM from Hypersonic to Oracle or to any other supported enterprise

databases.

The following table describes step by step procedure how to migrate Jbpm database scripts to Oracle

database.

Steps Description Comments

1. Create an user in Oracle database so that the JBPM schema can be created using that
user credential.

2. Create a schema using the given Oracle Script located at <jBPM_JPDL_HOME>\db
named as jBPM.jpdl.oracle.sql.

Setting up Oracle
schema and user
for necessary
authentication

3. Create user as defined in web.xml located at jBPM-console.war\WEB-INF. A user who
wants to login into the jBPM-console should have at least a ‘user’ role. Additional role is
defined for a user for accessing further modules of a jBPM deployed process. For
example a user without having admin role can’t delete a process using jBPM-Console.
Similarly a user without having ‘manager’ role can’t start a process. Three tables in the
schema are responsible to maintain jBPM authentication and authorization -constraints.
An ER diagram to those tables is given below.

 Page 68 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

1. Extract jBPM-console.war from <jBPM_JPDL_HOME>\server\server\jbpm\deploy Setting up jBPM-
console.war

2. Make following changes to the \WEB_INF\classes\hibernate.cfg.xml file. Setting up jBPM- The database
console. connection url
war(Contd ...)

will be specific to
the installed
database server
connection
parameters.

 <!-- hibernate dialect -->
<property
name="hibernate.dialect">org.hibernate.dialect.Oracle9
Dialect</property>
<!-- JDBC connection properties (begin) ===-->

<property
name="hibernate.connection.driver_class">oracle.jdbc.d
river.OracleDriver</property>
<property
name="hibernate.connection.url">jdbc:oracle:thin:@10.2
27.32.35:1521:orcl</property>
<property
name="hibernate.connection.username">sa</property>
<property
name="hibernate.connection.password">sa</property>
 <!--==== JDBC connection properties (end) -->
<property
name="hibernate.cache.provider_class">org.hibernate.ca
che.HashtableCacheProvider</property>

 Page 69 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

3. Replace the existing <jBPM_JPDL_HOME>\server\server\jBPM\deploy\jBPM-ds.xml with
the following entries. This is required since an Oracle datasource needs to be defined to
authenticate and authorize a user from the jBPM identity tables that has been migrated
to Oracle Database now. The JNDI name provided here is referred by

<jBPM_JPDL_HOME>\server\server\jBPM\conf\login-config.xml in its jBPM application-
policy element. The following is the content of jBPM-ds.xml.

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
</local-tx-datasource>
<jndi-name>JbpmDS</jndi-name>
<connection
url>jdbc:oracle:thin:@10.227.32.35:1521:orcl</connec
tion-url>
 <driver-
class>oracle.jdbc.driver.OracleDriver</driver-class>
 <user-name>sa</user-name>
 <password>sa</password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>5</idle-timeout-
minutes>
 </local-tx-datasource>
</datasources>

 Page 70 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

4. Additionally configuring datasource is required since
<jBPM_JPDL_HOME>\server\server\jBPM\conf\login-config.xml requires a dsJndiName
(datasource JNDI name) in its jBPM application policy. Below shows that how jBPM
application policy in login-config.xml uses the datasource. So before creating a datasource
make sure that the datasource has been deployed on the server and the jndi has got
registered to the server and is specified appropriately with the login-config.xml. Otherwise
most of the time a login violation occurs at the jBPM console due to inappropriate jndi
specification.

5. Download latest Oracle driver jar ojdbc14.jar and copy it to <jBPM-Console.war
extract>/WEB-INF/lib as well copy the jar file to the <server>/lib folder.

6. Recreate jBPM-console.war

7. Redeploy the war file to the server.

Setting up jBPM-
console.
war(Contd ...)

8. Restart the server.

 <application-policy name = "jbpm">
 <authentication>
 <login-module
code="org.JBoss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">java:/JbpmDS</module-
option>
 <module-option name="principalsQuery">
 SELECT PASSWORD_ FROM jBPM_ID_USER WHERE
NAME_=?
 </module-option>
 <module-option name="rolesQuery">
 SELECT g.NAME_,'Roles'
 FROM jBPM_ID_USER u,
 jBPM_ID_MEMBERSHIP m,
 jBPM_ID_GROUP g
 WHERE g.TYPE_='security-role'
 AND m.GROUP_ = g.ID_
 AND m.USER_ = u.ID_
 AND u.NAME_=?
 </module-option>
 </login-module>
 </authentication>
 </application-policy>

 Page 71 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.6. Process Deployment

Typical deployment of jBPM process will include persistent storage of process definitions. When a process is

deployed the back-end database tables are populated with different information related to a jPDL such as

process-id, nodes, transition, roles, swimlane, variables etc.

Steps Description Comments

 Deploy Process 1. Double click on the jpdl folder of a process project.

In case of a
process
comprising of
sub-processes,
the sub-
processes
must be
deployed
before the
main process
because the
main process
at runtime
refers to the
sub-process Id
which gets
created in the
database only
after the
process is
deployed.

Deploy Process
(Contd...)

2. Double click on the desired process you want to deploy. Here click on the
loanProcess.

 Page 72 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Deploy Process
(Contd...)

3. Double Click on the processdefintion.xml of the process.

Deploy Process
(Contd...)

4. Above will open the following.

 Page 73 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Deploy Process
(Contd...)

5. Click on the deployment tab below the process design editor.

Java classes
and
Resources
are for back-
end beans,
action classes
etc that are
associated
with the
process
entities.
Choose the
checkbox as
per the runtime
deployment
requirements.

Deploy Process
(Contd...)

6. This window will open the deployment wizard.

 Page 74 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Deploy Process
(Contd...)

7. Click on the test connection before any deployment. For this click on the Test
Connection. Upon successful testing the following will appear.

 Deploy Process
(Contd...)

8. Click on the Deploy Process Archive button for deployment.

Deploy Process
(Contd...)

9. Upon successful deployment the following message will be displayed.

 Page 75 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

jBPM -console 10. Log into the jBPM-console http://<host-name>:8080/jBPM-console(As per jBPM-

3.2.2) specification.

Verification of the
deployed process

11. After login the following will appear with the process name that you have deployed
recently.

 Page 76 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.7. Creating a Client to invoke jBPM deployed process
Sometimes business scenario needs to invoke certain process application outside the BPM environment. jBPM

offers a set of APIs to invoke a jBPM process outside its environment.

The following table shows step by step implementation for creating a standalone process client.

Process Overview: The following process validates a SSN entered by the user who wants to apply for a loan. The

SSNValidation (Social Security Number) will be done in a sub process.

Steps Description Comments

1. Create a process named loanProcess. Below shows the workflow of our loanProcess. Creating a jBPM
Main Process

2. The main process has a Process State. Corresponding to this we create a child Creating a jBPM
subprocess process or a subprocess. Our subprocess workflow is as below.

 Page 77 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Page 78 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

jPDL of Main
Process

<process-definition xmlns="urn:jbpm.org:jpdl-3.2"
name="loanProcess">
 <start-state name="Start">
 <task name="StartTask">
 </task>
 <transition to="SSNCreditValidation"></transition>
 <event type="task-create">
 <action name="startaction"
class="com.sample.action.StartingAction"></action>
 </event>
 </start-state>
 <process-state name="SSNCreditValidation">
 <sub-process name="ssnValidationSubProcess"></sub-
process>
 <variable access="read,write" name="status" mapped-
name="status"></variable>
 <variable access="read,write" name="SSNvalue" mapped-
name="SSNvalue"></variable>
 <transition to="Check-Status"></transition>
 </process-state>
 <node name="Check-Status">
 <action name="Check-SSNApproval"
class="com.sample.action.CheckStatus"></action>
 <exception-handler exception-
class="java.lang.Exception">
 <action name="exceptionhandle"
class="com.sample.action.MessageActionHandler"></action>
 </exception-handler>
 <transition to="End"></transition>
 </node>
 <end-state name="End"></end-state>
</process-definition>

jPDL of Sub
Process

<process-definition xmlns="urn:jbpm.org:jpdl-3.2" name="
ssnValidationSubProcess">
 <start-state name="start-state1">
 <transition to="ValidateSSN"></transition>
 </start-state>
 <node name="ValidateSSN">
 <action name="creditAction"
class="com.cts.child.ValidateSSN"></action>
 <exception-handler exception-
class="java.lang.NullPointerException">
 <action name="ValidateException"
class="com.sample.action.MessageActionHandler"></action>
 </exception-handler>
 <transition to="end-state1"></transition>
 </node>
 <end-state name="end-state1"></end-state>
</process-definition>

 Page 79 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

3. Create action class in the following folder under the process project. Create suitable package under this Create action
class folder.

The Class CheckStatus is responsible to retrieve the variable value status which is the validation result of com.sample.actio
n.CheckStatus SSN entered by the user and returned by the subprocess.
Class in main
Process

public class CheckStatus implements ActionHandler {
 private static final long serialVersionUID = 1L;

 public void execute(ExecutionContext executionContext)
throws Exception {
 System.out.println("***********Inside Parent
Process*****");
 String
status=(String)executionContext.getContextInstance().getVariable("
status");
 System.out.println("Status :"+status);
 }

}

 Page 80 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

This action class is triggered whenever an exception is generated by the Exception handler. com.sample.actio
n.MessageAction
Handler

public class MessageActionHandler implements ActionHandler {

 private static final long serialVersionUID = 1L;
 String message;
 public void execute(ExecutionContext context) throws
Exception {
 context.getContextInstance().setVariable("message",
"Status is :" +
(String)context.getContextInstance().getVariable("status"));

 System.out.println((String)context.getContextInstance().getVa
riable("message"));
 }

}

 Page 81 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

The following class is used to Validate a SSNvalue entered by the user.Currently this one randomly com.cts.child.Vali
dateSSN in sub generates a true/false value irrespective of the SSNvalue.The logic of validation is kept simple.
process

4. Deploy Child Process first. Refer to
section-3.6 to
know how to
deploy the
Process

Deployment of
the Process

5. Deploy Main Process. Refer to
section-3.6 t to
know how to
deploy the
Process.

public class ValidateSSN implements ActionHandler
{
 private static final long serialVersionUID = 1L;

 public void execute(ExecutionContext executionContext) throws
Exception
 {
 String ssn="";

ssn=(String)executionContext.getContextInstance().getVariable("SSN
value");
 if(!ssn.equals(null))
 {
 System.out.println("Before status set in child
process
:"+(String)executionContext.getContextInstance().getVariable("stat
us"));
 Random rnd=new Random();
 if(rnd.nextBoolean()==true)
 {

executionContext.getContextInstance().setVariable("status",
"true");

executionContext.getNode().leave(executionContext);
 }
 else
 {

executionContext.getContextInstance().setVariable("status",
"false");

executionContext.getNode().leave(executionContext);
 }
 }
 }
}

 Page 82 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

1. Graph Oriented Programming (GOP) is highly based on hibernate persistence perspective. Hibernate
persistence relates to different configuration files. default.jBPM.cfg.xml is the parent of the entire
jBPM-hibernate configuration related files. Whatever information is related to a process is maintained
internally by the back-end database using persistence which requires various queries , datasource
configuration related information, isolation of transaction, establishing connection to the back-end,
mapping object to a table (as per hibernate fundamentals) etc. Therefore jBPM accumulates all this
information from the specified file which in turn uses internally different persistence configuration files.
JbpmConfiguration class retrieves all this information by parsing the default.jBPM.cfg.xml. Code
snippet as follows

static JbpmConfiguration jbpmConfiguration = null;

jbpmConfiguration =
JbpmConfiguration.parseResource("default.jBPM.cfg.xml");

2. A graphSession is a generic session specific to a GOP (Refer to Wiki Chapter -4 for GOP). Any jBPM
process requires a graphSession to obtain an instance of that process. Before getting a graphSession
one has to create a jbpmContext. JbpmContext will help to create a session.

JbpmContext jbpmContext=jbpmConfiguration.createJbpmContext();
 GraphSession gpsession=jbpmContext.getGraphSession();

3. Using grapSession one can retrieve the existing/deployed process’s definition using
findLatestProcessDefinition() method. In previous step created graphSession is required to fetch the
deployed process’s ProcessDefinition.

ProcessDefinition
pdef=gpsession.findLatestProcessDefinition("loanProcess");

4. Create a new Instance of the process using existing processDefinition.
ProcessInstance processInstance = pdef.createProcessInstance();

5. loanProcess is the parent of the ssnValidationSubProcess process. So set the value of the parent’s
context variables SSNvalues (Entered by the client process) and status (default set to false).

processInstance.getContextInstance().setVariable("SSNvalue", "123");

processInstance.getContextInstance().setVariable("status", "false");

Standalone Client
that will invoke
the main Process

6. According to GOP a token traversal mechanism takes place when execution flow reaches one state to
other. This continues till a wait state or end state is reached. In a wait state one has to manually send
a signal to the traversed token to continue execution. Our loanprocess has wait state at the start of the
process. Therefore manually a signal must be sent to the start node.

Token token = processInstance.getRootToken();
token.signal();

 Page 83 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

To retrieve the result from a loan process the following code snippet should be written in the standalone
client.The parent and child process are already mapped using the ‘Process State’ construct.

String
ssn=(String)processInstance.getContextInstance().getVariable("status");

Finally close the context.
jbpmContext.close();

A Typical
Standalone Client
that will invoke
the main Process

public class ClientApp {
 static JbpmConfiguration jbpmConfiguration = null;
 public static void main(String args[])
 {
 jbpmConfiguration =
JbpmConfiguration.parseResource("default.jbpm.cfg.xml");
 JbpmContext
jbpmContext=jbpmConfiguration.createJbpmContext();
 GraphSession
gpsession=jbpmContext.getGraphSession();

 //Create Parent Process Instance
 ProcessDefinition
pdef=gpsession.findLatestProcessDefinition("loanProcess");
 ProcessInstance processInstance =
pdef.createProcessInstance();
 //Set default value to the parent's
Context variable

 processInstance.getContextInstance().setVariable("SSNvalue
", "123");

 processInstance.getContextInstance().setVariable("status",
"false");

 Token token = processInstance.getRootToken();
 token.signal();
 String
ssn=(String)processInstance.getContextInstance().getVariable("SS
Nvalue");
 System.out.println("***********SSNvalue :"+ssn);
 jbpmContext.close();

 }
}

 Page 84 of 99

 Business Process Modeling
 using jBPM 3.2.2

3.8. Drools Integration with jBPM

Process Engines (also capable of workflow) such as jBPM are required to graphically (or programmatically)

describe steps in a process - those steps can also involve decision points which are in them a simple rule.

JBoss jBPM uses expressions and delegates in its Decision nodes; which control the transitions in a Workflow.

Limitation of a decision node is that much more nested if-else code style, lengthy and congested and almost

difficult to comprehend. JBoss rules provide more flexibility to define complex business rule in a more human

readable and understandable format. Integrating JBoss rules engine (Drools) with jBPM can therefore

overcome the inherent limitation of jBPM decision nodes by leveraging Drool’s flexibilities.

Process Overview: The following process is responsible to incorporate certain rule inside the loanApproval mechanism.

a) Below Limit: If the dollar amount of an order is under $1000, then the order is approved automatically.
b) Over Limit: For non-platinum customers, if the dollar amount of the order is greater than or equal to $1000, then the

order requires manual approval.
c) Platinum Member: If the customer’s status is platinum, then the order is approved automatically, regardless of the

amount of the order.

Steps Description Comments

Create a Process 1. Create the Process definition as follows:

Classpath 2. The following jar files should be in the jBPM project classpath.

<jBPM_HOME>/jBPM-jpdl.jar
<jBPM_HOME>/jBPM-identity.jar
<jBPM_HOME>/lib/activation.jar
<jBPM_HOME>/lib/antlr-2.7.6.jar
<jBPM_HOME>/lib/asm.jar
<jBPM_HOME>/lib/axiom-impl-1.2.4.zip
<jBPM_HOME>/lib/bsh.jar
<jBPM_HOME>/lib/cglib.jar
<jBPM_HOME>/lib/commons-collections.jar
<jBPM_HOME>/lib/commons-logging.jar
<jBPM_HOME>/lib/dom4j.jar
<jBPM_HOME>/lib/hibernate3.jar
<jBPM_HOME>/lib/hsqldb.jar
<jBPM_HOME>/lib/JBoss-backport-concurrent.jar

 Page 85 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments
<jBPM_HOME>/lib/JBoss-j2ee.jar
<jBPM_HOME>/lib/JBoss-retro-1.1.0-rt.jar
<jBPM_HOME>/lib/jcr-1.0.jar
<jBPM_HOME>/lib/junit.jar
<jBPM_HOME>/lib/log4j.jar
<jBPM_HOME>/lib/mail.jar
<jBPM_HOME>/lib/ojdbc14.jar
<jBPM_HOME>/lib/servlet-api.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/antlr-runtime.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/drools-compiler.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/drools-core.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/drools-decisiontables.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/drools-jsr94.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/jsr94.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/junit.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/jxl.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/mvel14.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/xercesImpl.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/xml-apis.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/xpp3.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/xpp3_min.jar
<ECLIPSE_HOME>/configuration/org.eclipse.osgi/bundles/577/
1/.cp/lib/xstream.jar
<ECLIPSE_HOME>/plugins/org.eclipse.jdt.core_3.3.1.v_780_R3
3x.jar
<ECLIPSE_HOME>/plugins/org.drools.eclipse_4.0.3.jar
org.drools.eclipse_4.0.3.jar(latest available drools jar)
should also be copied into the server lib folder.

 Create a rule

project
3. Click on the Drools workbench.

 Page 86 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Create a rule
project (Contd...)

4. Click on new rule project.

 Create a rule

project (Contd...)
5. Give a name of the project in the wizard. Click next when done.

Create a rule
project (Contd...)

6. Click finish . Uncheck sample
HelloWorld rule and
sample java class if
default files are not
required.

 Create a rule

project (Contd...)
7. This will create a new project with the project name in left of the project

explorer pane.

 Page 87 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
project (Contd...)

8. Right Click on the loanApprovalRule and Click on New->Other.

Create a rule
Resource

9. Double Click on the Drools.

Create a rule
Resource (Contd...)

10. Click on the Rule Resource. Click next when done.

 Page 88 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
Resource (Contd...)

11. Select the Rule project from the Project Explorer. Select rules folder as shown
below:

 Page 89 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

This step is mandatory. Create a rule

Resource (Contd...)
12. Enter the name of the Rule resource. Pattern of the rule resource file is *.drl.

Enter the name of the rule resource file. Enter the package name as ‘rules’ or
any package name. Click finish when done.

 Page 90 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

 Page 91 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
Resource (Contd...)

13. Create a customer bean object which consists of customer name and status.

import java.io.Serializable;

public class CustomerObject implements Serializable{
 private String customerName;
 private String customerStatus;

 public CustomerObject(){

 }
 public CustomerObject(String name,String
status){
 this.setCustomerName(name);
 this.setCustomerStatus(status);

 }
 public String getCustomerName() {
 return customerName;
 }
 public void setCustomerName(String
customerName) {
 this.customerName = customerName;
 }
 public String getCustomerStatus() {
 return customerStatus;
 }
 public void setCustomerStatus(String
customerStatus) {
 this.customerStatus = customerStatus;
 }
}

 Page 92 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
Resource (Contd...)

14. Create an Order bean which consists of OrderId and orderValue as shown
below.

import java.io.Serializable;

public class Order implements Serializable{
 private int orderValue;
 private int OrderId;

 public Order(){

 }
 public Order(int value,int id){
 this.setOrderId(id);
 this.setOrderValue(value);
 }
 public int getOrderValue() {
 return orderValue;
 }
 public void setOrderValue(int orderValue) {
 this.orderValue = orderValue;
 }
 public int getOrderId() {
 return OrderId;
 }
 public void setOrderId(int orderId) {
 OrderId = orderId;
 }

}

Create a rule
Resource (Contd...)

15. statusAndOrderCheck.drl as follows

#created on: Jan 11, 2008
package

import
com.ct
import
import

global
rule

when

or (CustomerObject (customerStatus ==
and

then

end

rules

s.BusinessObjects.Customer.CustomerObject;
com.cts.BusinessObjects.Order.Order;
org.jbpm.context.exe.ContextInstance;

ContextInstance ci

"Determine Manager Approval Flag"

 CustomerObject (customerStatus ==
"Silver")
"Gold") Order(orderValue>=1000))

 ci.setVariable("approvalFlag","true");

 Page 93 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
Resource (Contd...)

16. Create a rule action handler as follows.

public class RulesActionHandler implements
ActionHandler {
 private static final long serialVersionUID = 1L;
 public List objectNames;
 public String ruleFile;
 public List queryStrings;
 /**
 * The RulesActionHandler gets variables from
the ContextInstance, and asserts
 * them into the Rules Engine and invokes the
rules.
 */
public void execute(ExecutionContext executionContext)
throws Exception {
 System.out.println("Rules action handler
class called");
 // load up the rulebase
 RuleBase ruleBase = readRule(ruleFile);
 WorkingMemory workingMemory =
ruleBase.newStatefulSession();
 // get an iterator of fully qualified
object names
 Iterator iter = objectNames.iterator();
 String objectName = "";
 ContextInstance ci =
executionContext.getContextInstance();
while (iter.hasNext()) {
 objectName = (String) iter.next();

// assume the objects are stored as process variables
 Object object = ci.getVariable(objectName);
 workingMemory.insert(object);

 }
// now assert the context instance as a global, so
that the rules
// can update the process, and fire the rules
 workingMemory.setGlobal("ci", ci);

 workingMemory.fireAllRules();

 if
(executionContext.getVariable("approvalFlag") ==
null){
executionContext.setVariable("approvalFlag", "false");
 }
 // propogate the token so that the process
continues
 executionContext.getToken().signal();
 }

 Page 94 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Create a rule
Resource (Contd...)

/**
 * Please note that this is the "low level"
rule assembly API.
 */
 private static RuleBase readRule(String
ruleFileName) throws IOException,
 DroolsParserException,
RuleIntegrationException,
 PackageIntegrationException,
InvalidPatternException, Exception {
 PackageBuilder builder = new
PackageBuilder();
 builder.addPackageFromDrl(new
InputStreamReader(
RulesActionHandler.class.getResourceAsStream(ruleFil
eName)));
 RuleBase ruleBase =
RuleBaseFactory.newRuleBase();

 ruleBase.addPackage(builder.getPackage());
 return ruleBase;
 }
}

Rules Integration 17. Copy all the rule related files into the existing jBPM project created in step-1
from the ‘Rule project’.

This step is done
because currently
jBPM Process Project
and Rules Project
come as separate
Projects.

 Page 95 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Deploy Process 18. Deploy Process as mentioned in section-3.6. Before deployment necessary
Java classes and Resources such as *.drl files must be included.

Additionally before
deployment the
following entry is
required in the
‘.classpath’ file
<classpathentry
kind="src"
path="src/main/rules"/>
so that the rules folder
can be read from the
disk by the Rule Action
Handler class.

 Page 96 of 99

 Business Process Modeling
 using jBPM 3.2.2

Steps Description Comments

Rule Process
Standalone Client
to test the Rules
integrated jBPM
process

jbpmConfiguration =
JbpmConfiguration.parseResource("default.jbpmConfiguration.cfg.
xml");
 JbpmContext jbpmContext =
jbpmConfiguration.createJbpmContext();
 try{
 GraphSession graphSession =
jbpmContext.getGraphSession();
 ProcessDefinition processDefinition =
graphSession.findLatestProcessDefinition("loanProcess");
 System.out.println("Process Definition Id" +
processDefinition.getId());
 ProcessInstance instance = new
ProcessInstance(processDefinition);

 prepareTestData(instance.getContextInstance());
 Token tok = instance.getRootToken();
 tok.signal();
 System.out.println("Flag is " +
instance.getContextInstance().getVariable("approvalFlag"));
 jbpmContext.close();
 }catch(Exception ex){
 }
 }
 public static void prepareTestData(ContextInstance
contextInstance){
 com.cts.BusinessObjects.Order.Order order = new
com.cts.BusinessObjects.Order.Order(5000,56);
 CustomerObject customer = new
CustomerObject("Fred","Silver");
 contextInstance.setVariable("order", order);
 contextInstance.setVariable("customer", customer);
}

 Page 97 of 99

 Business Process Modeling
 using jBPM 3.2.2

4.0 Annexure

4.1. Glossary

jBPM Process Definition Language. JPDL specifies an xml schema and the
mechanism to package all the process definition related files into a process
archive

JPDL

http://docs.jboss.com/jbpm/v3/userguide/jpdl.html. This might also
refer to Java Process Definition Language
(http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-
8612&yr=2007&track=7)

Whether both refer to the same process definition language or have some
common features is out of scope of the document.

A process archive is a .par file. The central file in the process archive is
processdefinition.xml. The main information in that file is the process graph.
The processdefinition.xml also contains information about actions and tasks.
A process archive can also contain other process related files such as
classes, ui-forms for tasks,rules files etc.

The process archive

A state defines a dependency on a result provided by an external party. State

Is a model of behavior composed of a finite number of states, transitions
between those states, and actions.

Finite State Machine

Business Activity Monitoring/Business Intelligence BAM/BI
Graph Oriented Programming GOP

 Page 98 of 99

http://docs.jboss.com/jbpm/v3/userguide/jpdl.html
http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-8612&yr=2007&track=7
http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-8612&yr=2007&track=7

 Business Process Modeling
 using jBPM 3.2.2

5.0 References

Document Source Comments

JBoss jBPM jPDL
3.2

http://docs.jboss.com/jbpm/v3/userguide/ User Manual for
jBPM v 3.2

jBPM Forum For
Discussion

http://www.JBoss.com/?module=bb&op=viewforum&f=2
17

All queries may be
raised regarding
doubts concepts etc.

jBPM JIRA Issue http://jira.JBoss.org/jira/browse/jBPM An issue may be
raised against a bug,
enhancements etc.

jBPM v5.7
Installation guide

http://www.JBoss.org/wiki/Wiki.jsp?page=JbpmWiki Wiki’s jBPM
Installation Guide

Best Practices for
Exception Handling

http://www.onjava.com/pub/a/onjava/2003/11/19/except
ions.html?page=1

Best Practices for
Java Exception
Handling

Hibernate tutorial http://www.hibernate.org/hib_docs/reference/en/html/tut
orial.html

jBPM Persistence
concepts are related
to Hibernate

 Page 99 of 99

	1.0 Introduction
	1.1. Intended Audience
	1.2. Assumptions/ Prerequisites
	1.3. Overview
	2.0 Readying the Environment
	3.0 Building Blocks for Modeling
	3.1. Creating a Process Project.
	3.2. Creating a Process
	3.3. Creating Swimlane
	3.3.1. Swimlane with Actor-Assignment
	3.3.2. Swimlane using pooled actor
	3.3.3. Swimlane using Expression
	3.3.4. Swimlane using Handler

	3.4. Creating Process Definition Entities
	3.4.1. Creating a Start Node
	3.4.2. Creating a End Node
	3.4.3. Creating Transition
	3.4.4. Creating a Node
	3.4.5. Creating a Task Node
	3.4.6. Creating a Decision Node
	3.4.7. Creating a Fork
	3.4.8. Creating a Join
	3.4.9. Creating a Process-State

	3.5. Migrating jBPM to Oracle Database
	3.6. Process Deployment
	3.7. Creating a Client to invoke jBPM deployed process
	3.8. Drools Integration with jBPM

	4.0 Annexure
	4.1. Glossary

	5.0 References

