JBOSS IDE

A few Eclipse plugins already have support for JBoss, but the JBoss-IDE plugin is by far the easiest to install, update, and use. The plugin supports starting and stopping servers, debugging server-side code, packaging archive files, and deploying archive files. It also has support for XDoclet code-generation. Best of all, the JBoss-IDE is developed and maintained by JBoss Inc., the makers of the JBoss Application Server itself

· Installing the Plugin

Many Eclipse plugins are packaged as a ZIP file that you download and unzip directly into Eclipse's plugin directory. But the JBoss-IDE uses Eclipse's built-in update management functionality which makes initial installation easy and subsequent updates even easier.

Here is the 2 ways

1. Download the zip file from http://www.jboss.com/products/jbosside/downloads and choose JBoss Eclipse IDE Tools 1.5M2 its size is 55 MB then extract to plugins & features of the Eclipse assure from eclise that the plugin have been installedfrom Help>About Eclipse IDE>plugins

2. Select Help > Software Updates > Find and Install...

Select Search for new features to install

Select Add Update Site from the right menu. In the dialog fill the name with JBossIDE and the URL with http://download.jboss.org/jbosside/updates/stable
Expand the JBossIDE tree, and check the feature named 3.1Click Next, and Eclipse will scan for the current releases. After the scan is complete, select the 1.4.0 release and click Finish.

At the end of the installation, you will be prompted to restart Eclipse. Click yes.

[image: image1.jpg]€ Updates

Search Results

Select features to instal from the search resul st

Select the features to nstall

IDE Update Hanager Site for Ecip
= [0 3.0

5 Boss-IDE [Ecpse 3.1/ E 1.5 1.4.1,e31e15
4 [0 A0P

- C]000 AOP-Standdone:

3B0ss-IDE Update Site for Ecipse 2.1/3.0/3.1

10f 6 selected,
¥ Shawthe latest versian of aFeature only

I Fiker Features included in ather features on the st

Next >

Adding the Shortcuts to the Top Menu

The JBoss-IDE plugin provides a set of buttons to start, stop, and terminate a server, as well as view the server console and log files. These buttons only operate on a single server that you define as a Default Server. Configuring the Default Server will come later; for now, here's how to make the buttons visible on the toolbar:

Eclipse 3.x

1. Right click on the top toolbar.

2. Select Customize Perspective.

3. Select Commands.

4. Check Default Server in the Available Command Groups pane.

5. Click OK.

Configuring and Launching a Server

Download the JBoss server from http://www.jboss.org/ we used Jboss 4

In order to start your JBoss server, you must create a Debug Configuration. Running JBoss in a Debug Configuration allows you to set and use breakpoints in your server code.

Run—>Debug and you should see several new "JBoss" Configurations in the left pane. Click on JBoss 4.0.x

The Debug option on the right allows you to define which perspective Eclipse will switch to when you launch your JBoss server. change it from Debug to None(no perspective change).

After defining the perspective, click New to create a new instance of your JBoss configuration. Give your configuration a name and point it to the home directory for your JBoss server

Click on Close and then go to Window—>Preferences—>JBoss IDE—>Launcher. You'll need to designate a Default Server so that you can use the buttons that we added to the top tool bar earlier

After you click OK, you should be able to use the buttons that were added to the top tool bar earlier.

[image: image2.jpg]& Preferences

type fiter tet v Launcher

e
P
o et Server
ipe Boss .05 o confgaatin 1)
b
frre

oeoer

s

¥ ¥Dockt
ML Syntax

38oss j8PH

Plug-in Development.

Runjoebug

SQLEsplorer

Team

ieh and YL

XMLBuddy

Creating a Servlet

Now to learn how to use the plugin, you'll create a simple "Hello World!" Servlet and deploy it to JBoss.

Put your source code (.java files) in a source folder and your compiled classes (.class files) in an output folder. Follow these steps to configure your source and output folders (Figure 3).

Right-click on your project in the Package Explorer.

Go to Properties—>Java Build Path.

Click on the Source tab.

Click on Add Folder.

Click on Create New Folder.

Set the folder name to "src".

Next, you need to set your CLASSPATH by defining the libraries (JAR files) that Eclipse should use to compile your code. You also need to add a JAR file that will allow you to compile a Servlet. Luckily, Eclipse comes equipped with a Tomcat plugin, which contains the library you will need you to compile a servlet.

Follow these steps

Click on the Libraries Tab (while still under Properties—>Java Build Path).

Click Add Variable.

Select ECLIPSE_HOME and click Extend.

Navigate to the plugins/org.eclipse.tomcat.4.1.x directory.

Select servlet.jar and click OK.

[image: image3.jpg]& Properties for Hello

3R and class Folders an the buld path

type fiter text v Java Build Path
nfo
Buiders & Source | 2 projects B Lbraries | % Order and Export |
Deployment
Hbermate Settings
Java Buld Path Add IR
1 Java Code Style
1 Java Compler = JRE System Lirary [jdk1.5] EERTRAS
Javadoc Location), Web Services 1.0 Libraries (JBoss-IDE) T
35 Complation Support |
Packaging Canfigurations add Lbrary
Project References
#Dockt Configuratons A Closs Folder
e
Remove

Default output folder

| [Felefarostesses o
Concel

|a

Click OK to exit the properties dialog.

Now copy file HelloWorld.java to src folder

Next, you need a deployment descriptor so that JBoss will know how to access your Servlet. The deployment descriptor (web.xml) goes under a folder called WEB-INF in the .war file. Create a folder under src called WEB-INF. Then, copy the file called web.xml in that folder.

Setting Up the Packaging Configuration

Before you can deploy your application to JBoss, you need to define the structure of your WAR file through a Packaging Configuration, which you then run to create a WAR file.

Here's how to create a Packaging Configuration:

Right click on your project in the Package Explorer.

Select Properties—>Packaging Configurations.

Right click in the right frame and click Add Std. Archive.

Select Standard-WAR.war and click OK.

Right click on the configuration and click Edit.

Rename it to helloworld.war.

Expand the configuration.

Right click on the line with Manifest.MF and remove it.

Make sure your configuration looks like that shown in Figure.

[image: image4.jpg]€ Properties for Hello

type fter tet v Packaging Configurations

Info
Buiders Define the packaging configurations avaiable for generation,
Deployment = EI0) hellwarid.war add)

Hbernate Settings
Java Buid Path

1 Java Cods Style

1 Java Compler
Javadac Location
5P Compiation Support
Packaging Configurations
Project References
XDocket Configurations

[E) IHellojsre/WEB-INFfuweb, xril -3 WEB-INF
5] IHellojsre/WEB-INFfjboss-web.xml -» WEB-INF _Add Standard,
G5 Heloterget -> WEB-INFicasses

Edt

Remave

A L

& I Restore Defauks | Apply
o Cancel

Click OK and you should see a file in your project called packaging-build.xml

Creating and Deploying the WAR File

Create a WAR file by right-clicking on your project and clicking Run Packaging. You will have to right-click on the project and click Refresh before you see the WAR file. The file should be in the top level of you project.

Right click on the WAR file, select Deployment, and then Deploy To. You will see a Target Choice dialog appear, allowing you to select which application server you would like to deploy to

Now, pull up your Web browser and try it out. Go to http://localhost:8080/helloworld/Hello ,

or http://server_name/war_name/url-pattern

