
Callbacks

There are two types of callbacks supported within the JBoss Remoting package; pull and push.
Pull callbacks (sometimes referred to as synchronous) are made up of a callback listener
registering to receive callbacks from the server and then programmatically getting its callbacks
from the server. The server will merely hold these callbacks until the client requests them.
Push callbacks (sometimes referred to as asynchronous) are made up of a callback listener
registering to receive callbacks from the server and the server sending these callbacks to the
registered listener upon receipt of a callback.

Regardless of using push or pull callbacks, the server sub-system will be responsible for
registering a callback handler and generating the callbacks to be fired to the callback handlers.
The actual callback handler to be registered with the server sub-system, the
ServerInvokerCallbackHandler, will be a proxy representation of the client callback
handler.

server : ServerInvoker

subsystemHandler : ServerInvocationHandlerinternalCallbackHandler : InvokerCallbackHandler

2. addListener()

3. handleCallback()

1. Create ServerInvokerCallbackHandler

Figure 1 - Server Sub-System

This callback handler proxy will then determine if it should hold the callbacks until requested by
the client, in the case of pull callbacks, or send the callback to the client, in the case of push
callbacks. The server sub-system will not be aware of if the client is using pull or push
callbacks.

Pull Callbacks

Pull callbacks within JBoss remoting allow the user to control when callbacks are received by
having the client call on the server for its callbacks. The request to get the callbacks from the
server is a synchronous, blocking call and will return a collection of the callbacks that exist for
the calling client (which can contain zero or more callbacks).

Pull Callback Process

This section will walk through the process of registering and retrieving pull callbacks.

Register for callbacks

The first step is for the user to create an implementation of the InvokerCallbackHandler.
The only method within the InvokerCallbackHandler is the handleCallback() method,
which does not require any implementation for pull callbacks. However, a callback handler is
required so can be registered and unregistered with server so that the server knows when to
start and stop collecting callbacks for the client.

Next the user will need to call addListener() on its Client object (see general JBoss Remoting
documentation for more information on the Client class). There are two addListener()
methods, one with just InvokerCallbackHandler as a parameter and the other with both a
InvokerCallbackHandler and a InvokerLocator. In order to use pull callbacks, the user
must call the method with the one parameter. The parameter, InvokerCallbackHandler, is
just the user’s empty shell implementation

Upon calling addListener(), the Client will then register the callback handler with the target
server by calling addListener(). At this point, the callback handler is not actually sent to the
target server. Instead, the target server will create an internal proxy callback handler, using the
session id from the Client’s invocation as an identifier. The target server will then register this
proxy callback handler with the server’s subsystem handler by calling addListener(). The
client is now setup to retrieve callbacks.

Network
Boundary

User

client : Client

1. addListener()

server : ServerInvoker

2 addListener()

subsystemHandler : ServerInvocationHandler

internalCallbackHandler : InvokerCallbackHandler

3. addListener()

4. invoke()

5/9. invoke()

6. invoke()

7. handleCallback()

8. getCallbacks()

10. getCallbacks()

Figure 2 - Pull Callback

Retrieving callbacks

Callbacks are originally initiated by the target subsystem’s handler. Often a callback will be
initiated in response to an invocation made by the client (as illustrated in Figure 2 - Pull
Callback). When this occurs, the subsystem handler will call handleCallback() on the proxy
callback handler that was previously registered with it. The internal proxy callback handler will
then store the callback within its internal collection.

The user can then call on the Client to retrieve its callbacks by calling getCallbacks(), which
will return a List of callback objects. The server’s proxy callback handler will continue to store
the callbacks for the client until the client is unregistered by calling removeListener() on the
Client.

 2

Push Callbacks

Push callbacks within JBoss remoting should be used when the user wants receive callbacks
from the server as soon as the server receives them from the server’s subsystem handler
without blocking. Using push callbacks can be more powerful than pull callbacks because it
allows to user to specify a different transport protocol to call back on, but can also be more
complex to setup.

Push Callback Process

This section will walk through the process of registering and receiving push callbacks, as well as
covering some of the more discrete details of push callbacks.

Register for callbacks

The first step is for the user to create an implementation of the InvokerCallbackHandler
(how to implement this interface will be discussed in detail later). The only method within the
InvokerCallbackHandler is the handleCallback() method, which will receive the
callback object.

Next the user will need to call addListener() on its Client object (see general JBoss Remoting
documentation for more information on the Client class). There are two addListener()
methods, one with just InvokerCallbackHandler as a parameter and the other with both a
InvokerCallbackHandler and a InvokerLocator. In order to use push callbacks, the user
must call the method with the two parameters. The first parameter,
InvokerCallbackHandler, is just the user’s implementation on which to receive callbacks.
The second, InvokerLocator, is the locator to the server the user wishes to initially receive
the callbacks from the server, which will be referred to as the callback server. The callback
server can be any JBoss Remoting server, using any transport protocol or subsystem as its
handler (see general JBoss Remoting documentation for more information about JBoss
Remoting servers). However, the most common configuration will be to use a remoting server
that is within the same VM as the client and using the same subsystem as client.

Once the user calls the addListener() method on its Client, the Client will first call the
callback server to register the provided callback handler to receive callbacks. The Client will be
unaware of if the callback server is local to the same VM or a remote server (Figure 4 - Push
Callback (Remote Callback Server) indicates that the callback server is remote and Figure 3 -
Push Callback (Local Callback Server) indicates that the callback server is local). Since in most
cases the callback server will be local, this scenario will be covered in this section. The scenario
where the callback server is remote will be covered in detail in the InvokerCallbackHandler
section.

Once the callback handler is registered with the callback server, the Client will then register the
callback handler with the target server by calling addListener(). At this point, the callback
handler is not actually sent to the target server. Instead, the target server will create an internal
proxy callback handler, using the session id from the Client’s invocation as an identifier as well
as the locator to the callback server. The target server will then register this proxy callback
handler with the server’s subsystem handler by calling addListener(). The client’s callback
handler is now setup to receive callbacks.

 3

Receiving callbacks

Callbacks are originally initiated by the target subsystem’s handler. Often a callback will be
initiated in response to an invocation made by the client (as illustrated in Figure 3 - Push
Callback (Local Callback Server)). When this occurs, the subsystem handler will call
handleCallback() on the proxy callback handler that was previously registered with it. The
internal proxy callback handler will then use its Client object, which refers to the callback server
based on the locator that was originally used to register the client callback handler with the
target server, to callback on the callback server. This callback is really just a remoting
invocation and uses the exact same mechanism that is used by the user’s Client to call the
target server. Once again, the proxy callback handler’s Client is unaware of the physical
location of the callback server (so could be within local VM or remote).

N
etw

ork
B

oundary

User

client : Client

clientCallbackHandler : InvokerCallbackHandler

1. addListener()

callbackServer : ServerInvoker

2.1 addClientListener()

server : ServerInvoker2.2 addListener()

callbackClient : Client

subsystemHandler : ServerInvocationHandler

internalCallbackHandler : InvokerCallbackHandler

3. addListener()

4. invoke()
5. invoke()

6. invoke()

7. handleCallback()

8. invoke()

9. invoke()

10. handleCallback()

Figure 3 - Push Callback (Local Callback Server)

The callback server will then call handleCallback() on the callback handler the user
originally registered. It is important to note that sub-system associated with the callback server
is not directly involved in the dispatching of callbacks to the client callback handler; this is all
handled within the JBoss Remoting layer.

Once the user no longer wishes to receive callbacks, the user will need to remove the callback
handler by calling removeListener() on the Client.

InvokerCallbackHandler

When implementing the InvokerCallbackHandler the biggest consideration will be if the
callback server to be used will be local to the Client to be used (within the same VM) or will be a
remote callback server. In most cases, using a callback server that is local will be sufficient
(and also the most efficient). In this case, all that is needed is to implement the
InvokerCallbackHandler interface.

There may be some cases when the use of a remote callback server is desired. Although this
requires a little more effort, it is possible. The first step in accomplishing this is to create a new
interface that extends the InvokerCallbackHandler interface as well as the Serializable

 4

interface and then implement this newly created interface. This is required since the default
pull callback implementation, which uses the un-serializable InvokerCallbackHandler
interface, assumes that no remoting is required to register the client callback handler with the
callback server.

N
etw

ork
B

oundary

User

client : Client

clientCallbackHandler : InvokerCallbackHandler

1. addListener()

callbackServer : ServerInvoker

2.1 addClientListener()

server : ServerInvoker2.2 addListener()

callbackClient : Client

subsystemHandler : ServerInvocationHandler

internalCallbackHandler : InvokerCallbackHandler

3. addListener()

4. invoke()
5. invoke()

6. invoke()

7. handleCallback()

8. invoke()

9. invoke()

10. handleCallback()

Network
Boundary

Figure 4 - Push Callback (Remote Callback Server)

The second step is to consider how this new serializable callback handler will process its
callbacks. Therefore, it is important to understand exactly what the process for receiving
callbacks will be in this remote callback server scenario (see Figure 4 - Push Callback (Remote
Callback Server). Since the new callback handler will actually be serialized and sent to the
remote callback server (step 2.1), there will be two instances of this new callback handler; one
instance within the client VM and another in the remote callback server VM. The two will not
have direct knowledge of one another (unless explicitly added to the callback handler
implementation). This means that when the handleCallback() method is called (step 10 in
Figure 4 - Push Callback (Remote Callback Server)), the callback handler will not have any
implied connection back to the original client. At this point, it will be completely up to the user’s
implementation of the callback handler to figure out what further processing is needed once the
callback is delivered.

 5

	Callbacks
	Pull Callbacks
	Pull Callback Process
	Register for callbacks
	Retrieving callbacks

	Push Callbacks
	Push Callback Process
	Register for callbacks
	Receiving callbacks
	InvokerCallbackHandler

