SBVR-DRL Integration - Draft proposal - Maurizio De Tommasi - 2007-03-30

SBVR-DRL Integration

Draft proposal

Version: 0.1 Draft

Author: Maurizio De Tommasi

Date: 28/03/07
Summary
41
Introduction

41.1
Related documents

52
SBVR-DRL Integration

52.1
SBVR2DRL generation process

5Example

82.2
Categories of Business Rules

102.3
SBVR2DRL implementation

10Extending SBeaVeR

10SBVR2DRL library

102.4
Reverse path

Index of figures
6Figure 1 Sample class diagram

8Figure 2 Categories of Business Rules

9Figure 3 Relevant business rule categories

1 Introduction
This document is a first draft hypothesis for a SBVR-DRL integration tool to be further discussed. It is intended to study the feasibility of such integration making some initial assumption about how to implement such tool.
1.1 Related documents

· OMG, Semantics of Business Vocabulary and Business Rules Specification, Interim Convenience Document dtc/06-03-02

2 SBVR-DRL Integration

2.1 SBVR2DRL generation process

SBVR Structured English notation aims at being a formalism to represent formal business vocabularies and business rules. It acts at an higher level of abstraction than JBoss Rules drl format and encompasses many features.
A first goal to achieve integration between SBVR and JBoss Rules is to generate drl starting from a SBVR Structured English vocabulary plus ruleset. This is what we call SBVR2DRL generation process.
Starting from a SBVR SE (Structured English) vocabulary it is possible to generate Java code representing the “object model” on which drl rules are based. Such vocabulary can be also used as a sort of lexer when parsing business rules since a rule in SBVR is based on vocabulary. A SBVR SE ruleset (at least the production rules) now can be parsed to generate drl.

Example

As an example, let’s consider the following SBVR Vocabulary:
person

Definition:

human being
client

Definition:

someone who pays for goods or services

General concept:
person

Synonym:

customer
salary

Definition:

something that remunerates

Concepì type:

positive integer
person receives salary

Synonymous form:
salary is received by person
Necessity:

Each person receives exactly one salary
 //the default multiplicity is 0..n
person has name

Concept type:

is-property-of fact type
person has surname

Concept type:

is-property-of fact type
person has age

Concept type:

is-property-of fact type
name

Concept type:

role

Concept type:

text
surname

Concept type:

role

Concept type:

text
age

Concept type:

role

Concept type:

positive integer
client type
Concept type:

categorization type
Definition:

concept that specifies the concept ‘client’ and that classifies a client based on salary
golden client

Concept type:

client type
silver client

Concept type:

client type
platinum client
Concept type:

client type
Such vocabulary defines some concepts and relations between them (a.k.a. fact types) using some SBVR features. It can be represented as a UML class diagram like the following one:

[image: image1.png]Person

&name : String
&sumame : String
&age : Integer
&salary : Integer

SPersan()
Client | selientTyps |__ClentType
SClient() SClientType()
Golden Siver Pltinum
SGold) Ssilver() SPlatinum()

Figure 1 Sample class diagram
Java code can be easily generated containing also getter and setter methods. In particular, 2 Java classes can be generated as follows:
public class Person {

protected String name;

protected String surname;

protected Integer age;

protected Integer salary;

public Person(){

}

public Person(String name, String surname, Integer age, Integer salary) {

super();

this.name = name;

this.surname = surname;

this.age = age;

this.salary = salary;

}

public Integer getAge() {

return age;

}

public void setAge(Integer age) {

this.age = age;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public Integer getSalary() {

return salary;

}

public void setSalary(Integer salary) {

this.salary = salary;

}

public String getSurname() {

return surname;

}

public void setSurname(String surname) {

this.surname = surname;

}
}

public class Client extends Person {

protected String clientType;

public Client() {

super();

}

public Client(String name, String surname, Integer age, Integer salary, String clientType) {

super(name, surname, age, salary);

this.clientType=clientType;

}

public String getClientType() {

return clientType;

}//getClientType

public void setClientType(String clientType) {

this.clientType = clientType;

}//setClientType
}//class Client

In SBVR a rule is based on fact types defined in some imported vocabulary. Hence, using the previously defined sample vocabulary it is possible to define the following SBVR SE rule:
If a client receives a salary that is at least 100000 dollars then it is necessary that the client is a platinum client.
Guidance type:

structural business rule
Description:

…
Note:

This rule can have several representations but only a logical formulation. A synonymous form is: It is necessary that a client that receives a salary which is at least 100000 dollars is a platinum client.
Such business rule can be transformed in the following drl rule:
rule "Platinum client"

no-loop true

when

client : Client(salary >= 100000)

then

client.setClientType("Platinum");

modify(client);

end
2.2 Categories of Business Rules
A Business Rule in SBVR is expressed by a statement and can be of two types:
· Operative Business Rule;

· Structural Business Rule.

The following class diagram shows the categories of Business Rules supported by SBVR:
[image: image2.png]Business Rule

tructural Business
Rule

Operative Business Level of

Rule

Enforcement

Business Rule

Statement
expresses
[Structural Business Rule [Operative Business Rule
Statement Statement
f restricted % Restricted
Necessity Impossibilty Possibilty Obligation Proibitive Aeeie

Figure 2 Categories of Business Rules
An operative business rule is expressed using obligation, prohibitive or restricted permissive claims (e.g. “It is obligatory that …”). A structural business rule is expressed using necessity, restricted possibility or impossibility claims (e.g. “It is necessary that …”). For the SBVR2DRL generation process, we have to consider obligation and necessity statements.
Any of the afore mentioned business rules can contain logical operators (e.g. conjunctions, disjunctions, implications, equivalence, …). The most relevant logical operation for the SBVR2DRL generation process is the implication. Therefore, logical operators that must be taken into account in the generation process are:
if p then q
 implication
q if p

 implication
Therefore, a Structured English business rule (either operative expressing obligation or structural expressing necessity) containing an implication can be considered
 a potential drl production rule.
[image: image3.png][Structural Business Rule [Operative Business Rule
Statement Statement

f restricted % Restricted

[Cecessity | [impossibility Foseibilty [CObligation Prohibitive ey

Figure 3 Relevant business rule categories
In SBVR the same business rule can have multiple statement expressing its meaning. In other terms, multiple business rule statement can have the same logical formulation.
As an example, let’s consider the following business rule statement:
If the name of a client is ‘Michael’ then it is obligatory that the client is a platinum client.

It is an obligation claim containing implication and can be transformed in the following drl production rule:
rule "Platinum client"

no-loop true

when

client : Client(name == "Michael")

then

client.setClientType("Platinum");

modify(client);

end
Nevertheless, the previous Structured English business rule can have other synonymous forms:

It is obligatory that a client that has name ‘Michael’ is a platinum client.

A client that has name ‘Michael’ must be a platinum client.

It is obligatory that a client is a platinum client if the name of the client is ‘Michael’.

According to the SE notation when the keyword ‘that’ occurs after a designation for a noun concept and before a designation for a fact type, this is used to introduce a restriction on things denoted by the previous designation based on facts about them. In other terms, such synonymous forms can be also used to generate the corresponding drl rule.
2.3 SBVR2DRL implementation
In this section some initial assumption about how to implement SBVR2DRL are described.

Extending SBeaVeR

SBVR2DRL generator can be embedded into SBeaVeR allowing the generation of Java code starting from the vocabulary and drl from the ruleset.
SBVR2DRL library

A more flexible solution can be a Java library that allows to convert Structured English business rules into drl rules. Such Open Source library could be used by SBeaVeR to provide new drl generation/export functionality as well as by JBoss Rules to import SBVR business rules.
2.4 Reverse path
Another possibility that can be taken into account is the DRL2SBVR generation process that can support business people to validate drl rules and that can be combined to the SBVR2DRL generator for a full-duplex conversion process. Such scenario would allow business analysts and drl developers to have a body of shared meaning that can be represented both in SBVR Structured English and drl.
� At least initially.

PAGE
9

