[image: image1.png]@ *csonorRedtiat

JAVAEE5 TCK Guide

for JBoss 5.0

14 July, 2006

Overview

This document describes the steps to take to install and run the JAVAEE5 TCK against JBoss 5.0. Steps to run the JAVAEE5 TCK against the JAVAEE5 reference implementation will be briefly mentioned, but is covered completely within the CTS quick start PDF document that will be obtained as part of setup.

Note: This is a living document and will be updated often during the certification process.

Setup

Obtaining the JBoss TCK

The TCK distribution has been augmented with a few customizations so that it will actually work and so that can be configured to run against JBoss server more easily.

Checkout the module j2eetck-mods with a –P option from CVS with CVSROOT of :ext:[user]@cvs.jboss.com:/home/cvs) This should create a root directory called ‘j2eetck-mods’.

Obtaining and installing the TCK

The latest tck downloads are available from the sun partner site:

https://java-partner.sun.com/portal/service/private/redhat/everyone/
Contact scott.stark@jboss.com for an account on the site. The current content is also available from cvs.jboss.com from the javaee5-cts module. Checkout this module.

To install the TCK:

· Unzip the javaee5_cts-patch_A_b03.zip archive to create a javaeetck directory. This directory becomes your TS_HOME.

· Unzip the javaee5_cts-doc.zip and javaee5_cts-patch_A_b01-doc.zip. These contain documentation for configuring and running TCK5 and API docs. The javaee5_cts-patch_A_b01-doc.zip has updated chapter 4 of TCK user guide.

Obtaining and installing JBoss 5.0

Checkout jboss-head from svn

https://svn.jboss.org/repos/jbossas/trunk/
Anonymous SVN access:

http://anonsvn.jboss.org/repos/jbossas/trunk/
All TCK related changes to jboss-head should be checked in here.

Note: Running of the TCK does not work using cygwin. The scripts to not transform the unix ‘:’ path separator correctly. There also seems to be a problem with how the harness locates targets.

Obtaining and installing the JAVAEE5 RI (Reference Implementation)

The javaee5-cts module has javaee5_ri-9.0-linux.jar or javaee5_ri-9.0-windows.jar under the module javaee5-cts. Unjar the RI corresponding to your OS.

java –Xmx256m –jar javaee5_ri-9.0-linux.jar

This should create a glassfish directory.

From glassfish directory, run ‘ant –f setup.xml setup’ to configure the JAVAEE5_RI. The glassfish directory is your JAVAEE_HOME.

Configuration and Running Tests

Most of this information is covered in CTS_Users_Guide under javaee5-cts\javaee5_cts-doc\docs\guides directory. The j2eetck-mods directory contains a build.xml script that configures the javaeetck for use with either the RI or JBoss depending on the j2ee.server property. To begin configuration, first set the following environment variables:

· Set TS_HOME environment variable to the location of javaeetck directory.

· Set JAVAEE_HOME to the location of the JAVAEE5 RI (glassfish) installation.

· Set JAVA_HOME to a JDK 5+ installation

Configuring JBoss for CTS

To begin configuration, first set the following environment variables:

· Set JBOSS_HOME to the jboss-5.0.x distribution directory, or edit the j2eetck-mods/ant.properties file and set the jboss.home property.

· Set TS_HOME environment variable to the location of javaeetck directory.

· Set JAVAEE_HOME to the location of the JAVAEE5 RI (glassfish) installation.

· Set JAVA_HOME to a JDK 5+ installation

From within the j2eetck-mods directory, run ant passing in –Djavaee.server=jboss (or no args since jboss is the default j2ee.server setting) as shown here:

[rrajasekaran@dev17 j2eetck-mods]$ ant

Buildfile: build.xml

setup:

 [echo] TS_HOME=/home/rrajasekaran/tck5/javaeetck

 [echo] JAVAEE_HOME=/home/rrajasekaran/tck5/glassfish

 [echo] JAVA_HOME=/opt/x86_64/jdk1.5.0_05/jre

 [echo] JBOSS_HOME=/home/rrajasekaran/tck5/jboss-head/build/output/jboss-5.0.0.Beta

 [echo] path.separator=:

 [echo] Unix format TS_HOME=/home/rrajasekaran/tck5/javaeetck

 [echo] Unix format JAVAEE_HOME=/home/rrajasekaran/tck5/glassfish

 [echo] Unix format JBOSS_HOME=/home/rrajasekaran/tck5/jboss-head/build/output/jboss-5.0.0.Beta

 [echo] Trying JBoss setup...

setup-jboss:

 [echo] Copying the ts-jboss.jte to /home/rrajasekaran/tck5/javaeetck/bin

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin

 [echo] Building the JBoss TCK porting jars

jboss-porting:

prepare:

compile-classes:

 [mkdir] Created dir: /home/rrajasekaran/tck5/j2eetck-mods/output/classes

 [javac] Compiling 47 source files to /home/rrajasekaran/tck5/j2eetck-mods/output/classes

 [javac] Note: Some input files use unchecked or unsafe operations.

 [javac] Note: Recompile with -Xlint:unchecked for details.

rmic:

build:

 [mkdir] Created dir: /home/rrajasekaran/tck5/j2eetck-mods/output/lib

 [jar] Building jar: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/jboss-porting.jar

 [war] Building war: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/cts-status.war

 [copy] Copying 17 files to /home/rrajasekaran/tck5/javaeetck/jboss

 [copy] Copying 3 files to /home/rrajasekaran/tck5/javaeetck/jboss/lib

 [mkdir] Created dir: /home/rrajasekaran/tck5/javaeetck/jboss/security

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/jboss/security

 [mkdir] Created dir: /home/rrajasekaran/tck5/javaeetck/jboss/etc

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/jboss/etc

 [copy] Copying 5 files to /home/rrajasekaran/tck5/javaeetck/jboss/etc

 [copy] Copied 5 empty directories to 4 empty directories under /home/rrajasekaran/tck5/javaeetck/jboss/etc

 [jar] Building jar: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/jboss-iiop-ssl-test.jar

 [jar] Building jar: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/jboss-iiop-ssl-test-client.jar

 [jar] Building jar: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/jboss-iiop-ssl-test.ear

 [jar] Building jar: /home/rrajasekaran/tck5/j2eetck-mods/output/lib/ri-iiop-ssl-test.jar

 [delete] Deleting 2 files from /home/rrajasekaran/tck5/j2eetck-mods/output/lib

 [echo] Copying TS top level build.xml to /home/rrajasekaran/tck5/javaeetck/bin

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin

 [echo] Copying JBoss javaee_vi.xml

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin/xml

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin/xml

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin/xml

 [echo] Copying JBoss conf and deploy

 [copy] Copied 11 empty directories to 5 empty directories under /home/rrajasekaran/tck5/javaeetck/jboss

 [echo] Trying RI setup...

setup-ri:

 [echo] Completed ts.jte setup for javaee.server=jboss

 [echo] Copying javadb startup script to: /home/rrajasekaran/tck5/glassfish/javadb/frameworks/NetworkServer/bin

 [copy] Copying 2 files to /home/rrajasekaran/tck5/glassfish/javadb/frameworks/NetworkServer/bin

 [echo] Updating the current cts exclusions file

 [copy] Copying 1 file to /home/rrajasekaran/tck5/javaeetck/bin

BUILD SUCCESSFUL

Total time: 39 seconds

This sets up the javadb (derby) configuration, copies the javadb startup script under RI’s javadb/frameworks/NetworkServer/bin directory and copies the jboss JSR-88/CTS porting jars to ${TS_HOME}/jboss.

Two properties you may want to change in the j2eetck/bin/ts.jte are:

· mailuser1 – can be set to your e-mail address if you want, the default is to the javaeetck@jboss.org JAVAEE TCK group list.

· mailHost – set to the SMTP server you wish to use for sending reports (optional since already has mail.navisite.com).

Run $TS_HOME/bin/tsant.bat config.vi (make sure JBoss is not running). This creates a custom $JBOSS_HOME/server/cts configuration that is a subset of the all configuration.

The CTS uses a deep package hierarcy, hence depending of the location of your JBOSS_HOME path the path to some classes in expanded war files will exceed the Win32 limit of 256 characters.

If you see ClassNotFoundException during jsp or servlet tests you need to set the jboss.server.temp.dir in JBOSS_HOME/bin/run.conf as shown here:

 JAVA_OPTS="-server –Xms256m –Xmx256m -Djboss.server.temp.dir=/jboss-temp"

Note, the case of the drive letter matters. (JBWS-182)

You also might want to increase the heap size to -Xmx256m to prevent an OutOfMemoryError

Starting and Initializing javadb (derby database)

To start javadb execute tsant with the start.javadb target.

$TS_HOME/bin/tsant –f xml/s1as.xml start.javadb

Initialize the javadb database by running the following target.

$TS_HOME/bin/tsant init.javadb

This command references database properties in ts.jte and database-specific DDL and DML files to generate SQL statement files that are read by the JAVA EE 5 CTS when you start the test suite.

To stop javadb once you have finished running the tests

$TS_HOME/bin/tsant –f xml/s1as.xml stop.javadb

Executing tests against JBoss (GUI mode)

Note: Sun has communicated to us that tests should NOT be run in GUI mode as some tests will fail, so should really use the command-line mode for running most tests. Sun bug number 4872645. However, the gui is good for displaying real time tests results while the tests are being run as well as log of errors and running reports on tests run.

Start JBoss server using the cts configuration (-c cts).

In separate terminal, run javaeetck/bin/tsant gui.

This will start the JavaTest Harness GUI. Upon starting for the first time, create a new working directory. You will be able to execute individual tests or all test via the GUI.

Run the tests in com/sun/ts/tests/samples. They should all work.

Executing tests against JBoss (Command-Line mode)

Start JBoss server using the cts configuration (-c cts).

In separate terminal, change directory to any directory under <TS_HOME>/src/com/sun/ts/tests (com/sun/ts/tests/samples , for example). Execute runclient target to start the JavaTest run:

<TS_HOME>/bin/tsant runclient

Configuring the J2EE RI for CTS interop tests

The additional step needing for setting up the CTS to run the interop tests using both JBoss and the RI include the following:

Configure the RI

$TS_HOME/bin/tsant config.ri

This prepares the RI for running the interop tests and initializes and starts javadb.

Initialize javadb

$TS_HOME/bin/tsant init.javadb

Make sure javadb is running

Start RI

To start RI (glassfish)

Run $JAVAEE_HOME/bin/asadmin start-domain

Make sure JBoss is also running before you run the interop tests.

Running the Tests in a Debugger

The easiest way I have found to run the tests in a debugger is to modify the TS_HOME/bin/build.xml file to add the following lines to the

 <target name="gui" depends="check.java.options, no.java.options, translatepath">

 <!-- create the needed sun-acc.xml for the RI appclient -->

 <ant antfile="j2ee_ri.xml" dir="${ts.home}/bin/xml" target="config.cts"/>

 <java classname="com.sun.javatest.tool.Main" failonerror="yes" fork="yes" dir="${ts.home}/src">

...

 <arg line="-EsysProps" />

 <jvmarg value="-Xdebug"/>

 <jvmarg value="-Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y"/>

 <jvmarg value="-Xms150m"/>

 <jvmarg value="-Xmx150m"/>

 </java>

 </target>

 <target name="runclient" depends="init, prepare.work.report.dirs, check.selec

ted.test, no.selected.test,

 check.java.options, no.java.options, translatepath">

...

 <arg line=" -runtests ${report.arg}"/>

 <jvmarg value="-Xdebug"/>

 <jvmarg value="-Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y"/>

 <jvmarg value="-Xms32m"/>

 <jvmarg value="-Xmx96m"/>

 </java>

 </target>

You then start the tests as usual using ‘tsant gui’ or ‘tsant runclient’ and when the script pauses in the debugger, attach to it from IntelliJ.

Described better in an email from ThomasD:

there are 3 VMs involved when running the CTS. I'll talk you through the

debugging options for all three of them.

1) Debugging the Harness

This guy you want to debug, when you have trouble with packaging, or

parameters you want to pass on to a test. The tests themselves run in a

different VM.

The test harness is started with 'tsant gui'. Look for

j2eetck\bin\build.xml <target name='gui' ...>

Add this line at to the java task

 <jvmarg line="-Xdebug -Xnoagent -Djava.compiler=NONE

-Xrunjdwp:transport=dt_shmem,server=y,suspend=n,address=harness"/>

In IntelliJ you use:

Transport: Shared Memory

Mode:
Attach

Adress: harness

Shared Memory only works on on windows. Attach means, that you start the

gui first and later you can attach/detach IntelliJ debugger.

A good place for your first breakpoint is

JBossDeployment2.getDeploymentPlan.

2) Remote Debugging JBoss

In bin/run.sh you find

JPDA options. Uncomment and modify as appropriate to enable

remote debugging.

#JAVA_OPTS="$JAVA_OPTS -Xdebug -Xnoagent -Djava.compiler=NONE

-Xrunjdwp:transport=dt_shmem,server=y,suspend=n,address=jboss"

Uncomment, and in IntelliJ you use

Transport: Shared Memory

Mode:
Attach

Adress: jboss

You start jboss first and attach/detach IntelliJ later. When changing

the implementation of a class (while the debugger is attached) you can

use Ctrl+Shift+F9 which will compile a single file and do a hot swap.

This is a big time saver. You can't change the signature of a class.

I also attach my current IntelliJ project files, they live in

jboss-head. With this you should be able to debug through all of Jboss.

They contain the setup for all the various modules and their

dependencies.

3) Remote Debugging a test

Debugging the test classes that get deployed on Jboss you use the above,

but when you want to debug a test client you must start the IntelliJ

debugger first and wait for the client VM to attach to it.

In IntelliJ you use:

Transport: Socket

Mode:
Listen

Port: 5005

In j2eetck\bin\ts.jte you find

JPDA options. Uncomment and modify as appropriate to enable

remote debugging.

#jboss.test.debugging=-Xdebug -Xnoagent -Djava.compiler=NONE

-Xrunjdwp:transport=dt_socket,server=n,address=5005,suspend=y

which you uncomment before you start the harness. The trouble with test

debugging is that the test will only run if the debugger is listening.

The debugger is detached when the test VM stops. The harness forks a

new VM for every test it runs. This means you can only run tests one by

one and you have

To start the debugger again, before you run the next test. In the GUI

right click on the test you want to run.

Configuring the J2EE RI for CTS and executing sample tests

From within the j2eetck-mods directory, run ant passing in –Dj2ee.server=ri as shown here:

[starksm@lamiaw j2eetck-mods]$ ant -Dj2ee.server=ri

Buildfile: build.xml

setup:

 [echo] J2EE_HOME=C:/cvs/JBG/j2eeri-1_4

 [echo] JBOSS_HOME=/cvs/JBossHead/jboss-head/build/output/jboss-5.0.0alpha

 [echo] path.separator=;

 [echo] Unix format JBOSS_HOME=/cvs/JBossHead/jboss-head/build/output/jboss-5.0.0alpha

 [echo] Unix format J2EE_HOME=/cvs/JBG/j2eeri-1_4

 [echo] Trying JBoss setup...

setup-jboss:

 [echo] Trying RI setup...

setup-ri:

 [echo] Copying the ts-ri.jte to ../j2eetck/bin

 [copy] Copying 1 file to C:\cvs\JBG\j2eetck\bin

 [echo] Copying RI j2ee_vi.xml + deploy to ../j2eetck/bin

 [copy] Copying 1 file to C:\cvs\JBG\j2eetck\bin\xml

 [echo] Completed ts.jte setup for j2ee.server=ri

 [echo] Copying pointbase jars to: C:/cvs/JBG/j2eeri-1_4/pointbase/lib

 [copy] Copying 3 files to C:\cvs\JBG\j2eeri-1_4\pointbase\lib

 [echo] Updating the current cts exclusions file

 [copy] Copying 1 file to C:\cvs\JBG\j2eetck\bin

BUILD SUCCESSFUL

Total time: 1 second

This copies the j2eetck-mods/bin/ts-ri.jte file to j2eetck/bin/ts.jte, copies the j2eetck-mods/bin/j2ee_vi-ri.xml to j2eetck/bin/xml/j2ee_vi.xml and also copies the three jars from the j2eetck-mods/internal/lib directory (pbclient.jar, pbembedded.jar, pbtools.jar) to the RI’s pointbase/lib directory. The SunOne AppServer comes with a limited Pointbase database (restricted to 5MB max), so we are replacing this with a licensed version.

Two properties you may want to change in the j2eetck/bin/ts.jte are:

· mailuser – can be set to your e-mail address if you want, the default is to the j2eetck@jboss.org J2EE TCK group list.

· mailHost – set to the SMTP server you wish to use for sending reports, the default is mail.navisite.com.

Run $TS_HOME/bin/tsant.bat config.vi (make sure RI is not running). This will take a while (10 - 15 minutes). This will start the RI server (domain1) and deploy all resources, etc. need for test. This leaves the RI server instance running when finished.

Note: Had some problems when running the tsant config.vi where would get an error saying something like: java.net.BindException: Address already in use: JVM_Bind. This seems to be a problem related to network configuration (firewall). If you have Symantec internet security, it might be blocking this port.

In new console, start the PointBase database server (pointbase/tools/serveroption/startserver.bat). Be sure to have eval libs copied before starting.

Run $TS_HOME/bin/tsant init.pointbase. This will create all the tables needed for the test.

Run $TS_HOME/bin/tsant enable.jacc. This will configure the JACC provider for the J2EE RI.

Go to the $TS_HOME/src/com/sun/ts/tests/samples directory. Enter:

$TS_HOME\bin\tsant runclient

According to Getting Started Guide, “All sample tests will be run, and should pass.”

When the sample test is finished, can stop the RI server by entering \bin\asadmin stop-domain. Can stop PointBase by entering the q command in the PointBase console window.

When running the TCK tests against the RI make sure that deployed test components get cleaned up after test runs (is known to have problems cleaning up the deployed components in some instances). If you run another test while the J2EE RI has deployed test components, it will likely fail. To check for this, enter:

· asadmin list-components --user admin --password adminadmin

from the bin directory of the J2EE RI install. This will list all the deployed components. It should only contain:

MEjbApp <j2ee-application>

__ejb_container_timer_app <j2ee-application>

adminapp <web-module>

If there are others listed, undeploy using:

· asadmin undeploy --cascade=true –user admin –password adminadmin [component name]

Corba Tests – Sun JDK

To run the corba tests with the Sun JDK, make sure you have 1.4.2_04 or later, to fix this bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4911077

Configuring the J2EE RI for CTS interop tests

The additional step needing for setting up the CTS to run the interop tests using both JBoss and the RI include the initial steps described in section 4.3.4:

· Set the create.interop.tables.only=true in the j2eetck/bin/ts.jte properties file

· Configure the RI:

· tsant config.ri (starts ri/domain1 in background - takes ~10mins)

· Reinitialize pointbase using (while the pointbase server is running):

· tsant init.pointbase

In addition, you need to follow the various addition setup steps for certain types of tests like the csiv2, tx, webservices, etc. Read the corresponding section in chapter 4 of the CTS 1.4.1 guide for the details.

CSIv2

For each group of csiv2 tests, both JBoss and RI server *must* be restarted! This is necessary due to a bug in Sun’s code that prohibits proper undeployment. Since csiv2 tests are grouped in 2 or 6, running all of them takes a *lot* of time.

Make sure “null transaction context propagation” is disabled in jboss’s deploy/iiop-service.xml, for org.jboss.iiop.CorbaORBService MBean.. This is necessary to avoid getting exceptions from RI’s logging subsystem when running the csiv2 tests.

Run the csiv2-certs target from j2eetck-mods/build.xml, to import the tomcat.cer into the RI's truststore, and also to update the tomcat.keystore with the certificate that was generated by the RI installation process. This target basically invokes the vi-csiv2 and the ri-csiv2 targets, that are responsible for updating JBoss and RI truststores, respectively.

Note: every time the RI is reinstalled a new certificate is generated, causing the JBoss truststore to become outdated. When this happens, the s1as certificate contained in tomcat.keystore needs to be updated. This can be accomplished by simply running the vi-csvi2 target, that will import the generated cert into the tomcat.keystore as a trusted cert entry, replacing the previous and now outdated certificate.

JAXR Setup in JBoss starting JBoss 5.0.x

The following instructions should be used until I configure the CTS setup to handle the JAXR setup also. The JAXR setup is just a few steps.

Step 1: Go to /server/cts/juddi-service.sar/META-INF directory. You will have to change two settings to deal with the hypersonic database.

Update juddi-service.sar/META-INF/jboss-service.xml

 <!-- Whether we want to run the db initialization scripts -->

 <!-- Should all tables be created on Start-->

 <attribute name="CreateOnStart">true</attribute>

 <!-- Should all tables be dropped on Stop-->

 <attribute name="DropOnStop">true</attribute>

 <!-- Should all tables be dropped on Start-->

 <attribute name="DropOnStart">true</attribute>

 <!-- Datasource to Database-->

What you basically are telling the JUDDI Service to create the tables on startup and drop them when the service is shutting down.

Step 2: Update the ts.jte file

jboss.ws4ee.classpath=${jboss.deploy.dir}/jboss-ws4ee.sar/jboss-ws4ee.jar:${jboss.client.dir}/jboss-ws4ee-client.jar

:${jboss.client.dir}/axis-ws4ee.jar:${jboss.client.dir}/commons-discovery.jar:${jboss.client.dir}/commons-logging.jar

:${jboss.client.dir}/wsdl4j.jar

jboss.jaxr.classpath=${jboss.deploy.dir}/juddi-service.sar/scout.jar

:${jboss.deploy.dir}/juddi-service.sar/juddi-service.jar

:${jboss.client.dir}/juddisaaj.jar

:${jboss.deploy.dir}/juddi-service.sar/juddiws.war/WEB-INF/lib/juddi.jar

jboss.client.classpath=${jboss.client.dir}/jbossall-client.jar

:${jboss.client.dir}/jboss-deployment.jar

:${jboss.client.dir}/log4j.jar

:${jboss.ws4ee.classpath}

:${jboss.home}/lib/commons-logging.jar

:${jboss.home}/lib/gnu-regexp.jar

:${jboss.home}/lib/dom4j.jar

:${jboss.home}/lib/jboss-common.jar:${jboss.home}/lib/jboss-jmx.jar

:${jboss.home}/lib/jboss-system.jar:${jboss.lib.dir}/activation.jar

:${jboss.lib.dir}/mail.jar:${jboss.lib.dir}/javax.servlet.jar

:${jboss.lib.dir}/jacorb.jar:${jboss.lib.dir}/avalon-framework.jar:${jboss.lib.dir}/jboss-iiop.jar:${jboss.jaxr.classpath}

command.testExecuteAppClient= \

 com.sun.ts.lib.harness.ExecTSTestCmd DISPLAY=${ts.display} HOME="${user.home}" \

 LD_LIBRARY_PATH=${j2ee.home}/lib \

 windir=${windir} \

 SYSTEMROOT=${SYSTEMROOT} \

 PATH="${j2ee.home}/nativelib" \

 TZ=${tz} \

 ${JAVA_HOME}/bin/java \

 ${jboss.test.debugging} \

 -Djavatest.maxOutputSize=1000000 \

 -Dcts.tmp=$harness.temp.directory \

 -Djboss.deploy.dir=${jboss.deploy.dir} \

 -Djava.security.auth.login.config=${ts.home}/jboss/security/appclientlogin.conf \

 -Djavax.net.ssl.keyStore=${ts.home}/bin/certificates/clientcert.jks \

 -Djavax.net.ssl.keyStorePassword=changeit \

 -Djavax.net.ssl.trustStore=${jboss.conf.dir}/keystores/tomcat.keystore \

 -Djavax.net.ssl.trustStorePassword=rmi+ssl \

 -Djavax.xml.registry.ConnectionFactoryClass=org.apache.ws.scout.registry.ConnectionFactoryImpl \

 -Djuddi.proxy.transportClass=org.jboss.jaxr.juddi.transport.SaajTransport \

jaxrSecurityCredentialType = 0

providerCapability=0

registryURL = http://localhost:8080/juddi/publish

queryManagerURL = http://localhost:8080/juddi/inquiry

jaxrUser=jboss

jaxrPassword=jboss

jaxrUser2=jbosscts

jaxrPassword2=jbosscts

jaxrUDDIProvider=yes

Step 4: IMPORTANT STUFF

Update the /server/cts/conf/jboss-service.xml file for the system properties MBean

<!-- CTS system properties -->

 <mbean code="org.jboss.varia.property.SystemPropertiesService"

 name="jboss:type=Service,name=SystemProperties">

 <attribute name="Properties" replace="false">

 vendor.javax.security.jacc.policy.provider=org.jboss.security.jacc.DelegatingPolicy

 vendor.javax.security.jacc.PolicyConfigurationFactory.provider=org.jboss.security.jacc.JBossPolicyConfigurationFactory

 javax.security.jacc.policy.provider=com.sun.ts.tests.jacc.provider.TSPolicy

 javax.security.jacc.PolicyConfigurationFactory.provider=com.sun.ts.tests.jacc.provider.TSPolicyConfigurationFactoryImpl

 log.file.location=${jboss.server.home.dir}/log

 javax.xml.registry.ConnectionFactoryClass=org.apache.ws.scout.registry.ConnectionFactoryImpl

 juddi.proxy.transportClass= org.jboss.jaxr.juddi.transport.SaajTransport

 javax.net.ssl.keyStore=${jboss.server.home.dir}/conf/keystores/clientcert.jks

 javax.net.ssl.keyStorePassword=changeit

 </attribute>

 </mbean>

As you have set them in the classpath in ts.jte, just ensure that the following files are located in the following places:

/jboss-5.0.0alpha/client/juddisaaj.jar

/jboss-5.0.0alpha/server/cts/deploy/juddi-service.sar/scout.jar

