[image: image1.png]

Web Services for jBPM

Alejandro Guízar

August 8, 2005

Abstract

This paper proposes the process definition syntax and execution semantics of interactions through web service interfaces in the jBPM process definition language (jPdl). The interaction model of BPEL constitutes the basis for the present work. It strives to leverage the strengths of the foundation model while fulfilling the added goals of simplicity and suitability with the existing constructs of jPdl.

1 Introduction

A process definition can be perceived as the code of a conventional program, with special provisions for long periods of inactivity. In turn, a process instance is a particular execution of that program; as such, it has a data context and follows the instructions specified in the code.

Web Services for jBPM describes two new features:

1. Consume web services in the request/response or the one-way modes.

2. Provide web services whose observable behavior is connected to the partial execution of a process instance.

The content for outgoing messages comes from the data context, and the content of incoming messages goes to the data context, too. The syntax proposed for data extraction and assignment is the same in both scenarios, to prevent confusion.

2 Deployment

The lifetime of a process instance ranges from hours to months. The instance is idle most of the time, waiting for a signal from some external agent. Keeping the resources allocated by an instance during periods of inactivity is wasteful, so jBPM saves the instance’s constituent objects in a database. Later on, when the signal arrives, jBPM restores the instance objects.
jBPM makes the declarative statements from the process definition available to process instances in the form of definition objects. These are also saved to the database so that instance objects can refer them directly.

Process definitions deployed in the stated way should maintain their declarative nature. Ideally, all pieces of data needed to consume and produce services would appear in the process definition. The user would neither write code nor build deployment packages.
Dynamic invocation (that is, free of extra code and deployment packages) is so frequent that JEE already addresses it. Conversely, dynamic publication is very unusual. Implementations deal with it in a proprietary manner, if at all. Given this inconvenience, two approaches exist:

1. Introduce a service publication façade. Use the proprietary publication mechanism of each relevant implementation to call the façade.
2. Supply tools to extract publication settings from the process definition. Generate standard deployment packages with those settings automatically.
3 Invoking Web Services

Actions are pieces of java code that are executed upon process instance events. jBPM configures an action with the element that declares it in the process document. At runtime, jBPM provides an action with the data context related to a path of execution.

Consuming a web service fits neatly in the action model. The new ws-invoke action extends the list of "well-known" action types with the ability for invoking an operation on a service endpoint.

Sections 2.1 thru 2.3 specify the schema of the <ws-invoke> element to accommodate the configuration needed for dynamic invocations. The scope of this work is limited to SOAP-bound endpoints, as other bindings have their own configuration.

The SOAP binding, as defined in WSDL 1.1, distinguishes RPC- and document-oriented operations. The differences between the two styles are noticeable enough to justify the proposition of separate notations. The invoke action element factors out the common attributes and pushes the particularities of each style down to a pair of mutually exclusive nested elements.

3.1 Invoke Action Element

The basic attributes to invoke a service are the address of the target endpoint, the operation mode, and the value of the SOAPAction HTTP header. Settings specific to a particular operation style appear in either an <rpc> or <document> child element.

<ws-invoke endpoint="url" mode="request|oneway"? soapaction="uri"?>

 <rpc/>|<document/>

</ws-invoke>

3.2 Remote Procedure Call

Explicit operation names and multipart messages characterize RPC operations. The distinct parts correspond to a parameter or a return value of the operation.

3.2.1 Notation

<rpc operation="qname" use="encoded|literal"?>

 <to part="ncname">rvalue</to>*

 <from part="ncname">lvalue</from>*

</rpc>

Attribute operation specifies the qualified name of the element within the SOAP body that wraps the part accessors. The local part matches an operation in the port type, and the namespace URI comes from the namespace attribute in the <soap:body> binding element.

The target endpoint may only understand messages produced by applying a certain encoding. The WS-I basic profile disallows encodings, but many existing endpoints still use the SOAP 1.1 encoding. Setting the use attribute to "encoded" activates legacy support for the SOAP 1.1 encoding. There is no support for any other encoding.

The invoke action evaluates the expression that each <to> element contains and assigns the result to a part of the input message. If the invocation mode is request/response, the invoke action finds the location that each <from> element contains and extracts there the value from a part of the output message.

3.2.2 Implementation

JAX-RPC 1.1 performs actual RPC operations. The values assigned to input parts must be instances of the Java types enumerated in section 5.3 of the JAX-RPC 1.1 specification. The output parts must carry content of the XML data types described in section 4.2 so that Java objects can be extracted from them.

It is recognized that the Java(XML mapping model of JAX-RPC is coupled to its communications model and is not flexible enough to represent even moderately complex XML schema constructs as Java objects. Nonetheless, the principle of the RPC style is to mirror the passing of structured data found in procedure- and object-oriented languages. JAX-RPC's mapping rules follow that principle, and so (should) do existing RPC endpoints.

Given that plain Java objects comprise the data context of a jBPM process, it is natural to play under JAX-RPC's rules. If there is a compelling need to invoke an operation that does not follow the above principle, one can fall back to the document style. The message can have any format there, including the RPC format.

3.3 Document Exchange

Document operations exchange messages carrying a single qualified element. Such element corresponds to a business document.

3.3.1 Notation

<document element="qname">

 <to location="path">rvalue</to>*

 <from location="path">lvalue</from>*

</document>

The SOAP body contains a single element whose name is the value of the element attribute.

The invoke action evaluates the expression that each <to> element contains and copies the result to a location within the element of the input message. If the invocation mode is request/response, the invoke action finds the location that each <from> element contains and extracts there the value from a location within the element of the output message.

The values assigned to input parts must be instances of Java types mapped to XML Schema simple types or DOM nodes. The values extracted from output parts are always DOM nodes. However, if they carry simple content, it is extracted as a Java object.

3.3.2 Implementation

Some JAX-RPC 1.1 implementations have a so-called messaging feature. If the input for an invocation is a single SOAP element, they attach the given element directly to the SOAP body instead of building the usual RPC operation wrapper. If such a feature is not commonly present in JAX-RPC implementations, the client communication facility of SAAJ 1.2 will perform document operations instead.

JAX-RPC is a better choice over SAAJ because the latter forces the developer to do all the work of formatting SOAP messages on one end and parsing and dispatching them on the other end. This is a never-ending task as the SOAP specification and the WS-I Basic Profile are in constant evolution. Conforming to those standards is the leit-motif of a Web services project, but not a process management project's.

here i would like to see a few (2 or 3) options on what API’s/libraries we could use, or what deployment packages to generate. together with your appreciation of those options. Two API choices are already offered along with my appreciation. A third is WSIF, but it requires WSDL definitions. As mentioned in section 2, invocation requires no extra code or deployment packages. Could you be more specific on what you want to see here?
4 Providing Web Services

TODO

2

