[image: image1.png]

Web Services for jBPM

Alejandro Guízar

August 8, 2005

Abstract

This paper proposes the process definition syntax and execution semantics of interactions through web service interfaces in the jBPM process definition language (jPdl). The interaction model of BPEL constitutes the basis for the present work. It strives to leverage the strengths of the foundation model while fulfilling the added goals of simplicity and suitability with the existing constructs of jPdl.

1 Introduction

A process definition can be perceived as the code of a conventional program, with special provisions for long periods of inactivity. In turn, a process instance is a particular execution of that program; as such, it has a data context and follows the instructions specified in the code.

Web Services for jBPM describes two new features:

1. Consume web services in the request/response or the one-way modes.

2. Provide web services whose observable behavior is connected to the partial execution of a process instance.

The content for outgoing messages comes from the data context, and the content of incoming messages goes to the data context, too. The syntax proposed for data extraction and assignment is the same in both scenarios, to prevent confusion.

2 Deployment

The lifetime of a process instance ranges from hours to months. The instance is idle most of the time, waiting for a signal from some external agent. Keeping the resources allocated by an instance during periods of inactivity is wasteful, so jBPM saves the instance’s constituent objects in a database. Later on, when the signal arrives, jBPM restores the instance objects.
jBPM makes the declarative statements from the process definition available to process instances in the form of definition objects. These are also saved to the database so that instance objects can refer them directly.

Process definitions deployed in the stated way should maintain their declarative nature. Ideally, all pieces of data needed to consume and produce services would appear in the process definition. The user would neither write code nor build deployment packages.
Dynamic invocation (that is, free of extra code and deployment packages) is so frequent that JEE already addresses it. Conversely, dynamic publication is very unusual. Implementations deal with it in a proprietary manner, if at all. Given this inconvenience, two approaches exist:

1. Introduce a service publication façade. Use the proprietary publication mechanism of each relevant implementation to call the façade.
2. Supply tools to extract publication settings from the process definition. Generate standard deployment packages with those settings automatically.
3 Invoking Web Services

Actions are pieces of java code that are executed upon process instance events. jBPM configures an action with the element that declares it in the process document. At runtime, jBPM provides an action with the data context related to a path of execution.

Consuming a web service fits neatly in the action model. The new ws-invoke action extends the list of "well-known" action types with the ability for invoking an operation on a service endpoint.

Section 3.1 specifies the syntax of the <ws-invoke> element to accommodate the configuration needed for dynamic invocations. Whereas the scope of this work is limited to SOAP-bound endpoints, the configuration does not include any SOAP-specific item. Since the WSDL document location is provided, the implementation could move from direct JAX-RPC to Apache WSIF in the future, with no change in the syntax.
The SOAP binding, as defined in WSDL 1.1, distinguishes RPC- and document-oriented operations. In JAX-RPC, however, the differences between both styles are hidden from the developer. For this reason, the proposed syntax is the same regardless of the style of the target endpoint.

3.1 Invoke Action Element

The basic attributes to invoke a service are the location of the WSDL document, the service qualified name, the port name and the operation name. The port name is optional when the specified service has one port only.

<ws-invoke wsdl="url" service=”qname” port=”ncname”? operation=”ncname”>

 <input>
 <param name=”ncname”>rvalue</param>*
 </input>
 <output>?
 <return>lvalue</return>?
 <param name=”ncname”>lvalue</param>*
 </output>
</ws-invoke>

The input and output elements wrap the input and output parameters, respectively. The absence of an output element denotes an one-way operation.

3.2

3.2.1

The invoke action evaluates the (Beanshell?) expression contained in each param child of the input element and assigns the value to an input parameter of the call. If the output element is present, the invoke action assigns the return value to the location indicated by return. Afterwards, it assigns the value of each output parameter of the call to the location specified in each param child of the output element.
3.2.2 Implementation

JAX-RPC 1.1 performs the actual invocation. The values assigned to input parts must be instances of the Java types enumerated in section 5.3 of the JAX-RPC 1.1 specification. The output parts must carry content of the XML data types described in section 4.2 so that Java objects can be extracted from them.

It is recognized that the Java(XML mapping model of JAX-RPC is coupled to its communications model and is not flexible enough to represent even moderately complex XML schema constructs as Java objects. Nonetheless, the principle of the RPC style is to mirror the passing of structured data found in procedure-oriented and object-oriented languages. The mapping rules of JAX-RPC follow that principle, and so (should) do existing RPC endpoints.

Given that plain Java objects comprise the data context of a jBPM process, adhering to JAX-RPC rules is not a burden in most cases. Invoking a document style endpoint might pose bigger challenges. The limitations of the JAX-RPC mapping model quickly become evident when calling this kind of endpoints, which led to the introduction of a mapping document in Web Services for J2EE (JSR-109).
Unfortunately, JSR-109 does not define a standard programming model for Java SE clients.

 The client-side JAX-RPC API does not accommodate the mapping information because it predates JSR-109. Some JSR-109 implementations such as JBossWS provide automatic discovery of a mapping document present in the class path.
In jBPM, processes needing additional mapping information would include the mapping document in the classes directory of the process archive. This is the most favorable option, as it does not require the use of a proprietary API method to pass the mapping information.
3

