
Understanding the Java ClassLoader

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. Introduction 3

3. The ClassLoader structure 5

4. The CompilingClassLoader 8

5. ClassLoader changes in Java 2 10

6. The source code 12

7. Wrapup 17

Understanding the Java ClassLoader Page 1

Section 1. Tutorial tips

Should I take this tutorial?
The Java ClassLoader is a crucial, but often overlooked, component of the Java run-time
system. It is the class responsible for finding and loading class files at run time. Creating your
own ClassLoader lets you customize the JVM in useful and interesting ways, allowing you to
completely redefine how class files are brought into the system.

This tutorial provides an overview of the Java ClassLoader and takes you through the
construction of an example ClassLoader that automatically compiles your code before loading
it. You'll learn exactly what a ClassLoader does and what you need to do to create your own.

A basic understanding of Java programming, including the ability to create, compile, and
execute simple command-line Java programs, as well as an understanding of the class file
paradigm is sufficient background to take this tutorial.

Upon completion of this tutorial, you will know how to:
* Expand the functionality of the JVM
* Create a custom ClassLoader
* Learn how to integrate a custom ClassLoader into your Java application
* Modify your ClassLoader to accommodate the Java 2 release

Getting help
For questions about the content of this tutorial, contact the author, Greg Travis, at
mito@panix.com .

Greg Travis is a freelance programmer living in New York City. His interest in computers can
be traced back to that episode of "The Bionic Woman" where Jamie is trying to escape a
building whose lights and doors are controlled by an evil artificial intelligence, which mocks her
through loudspeakers. Greg is a firm believer that, when a computer program works, it's a
complete coincidence.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 2

mailto:mito@panix.com

Section 2. Introduction

What is a ClassLoader?
Among commercially popular programming languages, the Java language distinguishes itself
by running on a Java virtual machine (JVM). This means that compiled programs are
expressed in a special, platform-independent format, rather than in the format of the machine
they are running on. This format differs from traditional executable program formats in a
number of important ways.

In particular, a Java program, unlike one written in C or C++, isn't a single executable file, but
instead is composed of many individual class files, each of which corresponds to a single Java
class.

Additionally, these class files are not loaded into memory all at once, but rather are loaded on
demand, as needed by the program. The ClassLoader is the part of the JVM that loads classes
into memory.

The Java ClassLoader, furthermore, is written in the Java language itself. This means that it's
easy to create your own ClassLoader without having to understand the finer details of the JVM.

Why write a ClassLoader?
If the JVM has a ClassLoader, then why would you want to write another one? Good question.
The default ClassLoader only knows how to load class files from the local filesystem. This is
fine for regular situations, when you have your Java program fully compiled and waiting on
your computer.

But one of the most innovative things about the Java language is that it makes it easy for the
JVM to get classes from places other than the local hard drive or network. For example,
browsers use a custom ClassLoader to load executable content from a Web site.

There are many other ways to get class files. Besides simply loading files from the local disk or
from a network, you can use a custom ClassLoader to:
* Automatically verify a digital signature before executing untrusted code
* Transparently decrypt code with a user-supplied password
* Create dynamically built classes customized to the user's specific needs

Anything you can think of to write that can generate Java bytecode can be integrated into your
application.

Custom ClassLoader examples
If you've ever used the appletviewer included in the JDK or any Java-enabled browser, you've

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 3

almost certainly used a custom ClassLoader.

When Sun initially released the Java language, one of the most exciting things was watching
how this new technology executed code that it had loaded on the fly from a remote Web
server. (This was before we'd realized something more exciting -- that Java technology
provided a great language for writing code.) There was just something thrilling about it
executing bytecode that had just been sent through an HTTP connection from a distant Web
server.

What made this feat possible was the ability of the Java language to install a custom
ClassLoader. The appletviewer contains a ClassLoader that, instead of looking in the local
filesystem for classes, accesses a Web site on a remote server, loads the raw bytecode files
via HTTP, and turns them into classes inside the JVM.

The ClassLoaders in browsers and appletviewers do other things as well: they take care of
security and keep different applets on different pages from interfering with each other.

Echidna by Luke Gorrie is an open-source software package that allows you to safely run
multiple Java applications inside a single virtual machine. (See Further reading and references
on page 17.) It uses a custom ClassLoader to prevent the applications from interfering with
each other, by giving each application its own copy of the class files.

Our example ClassLoader
After you have a good idea of how a ClassLoader works and how one is written, we'll create
our own custom ClassLoader called CompilingClassLoader (CCL). CCL compiles our Java
code for us, in case we didn't bother to do it ourselves. It's basically like having a simple
"make" program built directly into our run-time system.

Note: Before we go any further, it's important to note that some aspects of the ClassLoader
system have been improved in JDK version 1.2 (also known as the Java 2 platform). This
tutorial was written with JDK versions 1.0 and 1.1 in mind, but everything in it works under later
versions as well.

ClassLoader changes in Java 2 on page 10describes the changes in Java version 1.2 and
provides details for modifying our ClassLoader to take advantage of these changes.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 4

Section 3. The ClassLoader structure

Overview
A ClassLoader's basic purpose is to service a request for a class. The JVM needs a class, so it
asks the ClassLoader, by name, for this class, and the ClassLoader attempts to return a
Class object that represents the class.

By overriding different methods corresponding to different stages of this process, you can
create a custom ClassLoader.

In the remainder of this section, you'll learn about the critical methods of the Java ClassLoader.
You'll find out what each one does and how it fits into the process of loading class files. You'll
also find out what code you'll need to write when creating your own ClassLoader.

In the next section, you'll put that knowledge to work with our example ClassLoader, the
CompilingClassLoader.

Method loadClass
ClassLoader.loadClass() is the entry point to the ClassLoader. Its signature is as
follows:

Class loadClass(String name, boolean resolve);

The name parameter specifies the name of the class that the JVM needs, in package notation,
such as Foo or java.lang.Object.

The resolve parameter tells the method whether or not the class needs to be resolved. You
can think of class resolution as the task of completely preparing the class for execution.
Resolution is not always needed. If the JVM needs only to determine that the class exists or to
find out what its superclass is, then resolution is not required.

In Java version 1.1 and earlier, the loadClass method is the only method that you need to
override to create a custom ClassLoader. (ClassLoader changes in Java 2 on page 10provides
information about the findClass() method available in Java 1.2.)

Method defineClass
The defineClass method is the central mystery of the ClassLoader. This method takes a
raw array of bytes and turns it into a Class object. The raw array contains the data that, for
example, was loaded from the filesystem or across the network.

defineClass takes care of a lot of complex, mysterious, and implementation-dependent

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 5

aspects of the JVM -- it parses the bytecode format into a run-time data structure, checks for
validity, and so on. But don't worry, you don't have to write it yourself. In fact, you couldn't
override it even if you wanted to because it's marked as final.

Method findSystemClass
The findSystemClass method loads files from the local filesystem. It looks for a class file in
the local filesystem, and if it's there, turns it into a class using defineClass to convert raw
bytes into a Class object. This is the default mechanism for how the JVM normally loads
classes when you are running a Java application. (ClassLoader changes in Java 2 on page 10
provides details on changes to this process in Java version 1.2.)

For our custom ClassLoader, we'll use findSystemClass only after we've tried everything
else to load a class. The reason is simple: our ClassLoader is responsible for carrying out
special steps for loading classes, but not for all classes. For example, even if our ClassLoader
loads some classes from a remote Web site, there are still plenty of basic Java libraries on the
local machine that must also be loaded. These classes aren't our concern, so we ask the JVM
to load them in the default way: from the local filesystem. This is what findSystemClass
does.

The procedure works as follows:

* Our custom ClassLoader is asked to load a class.
* We check the remote Web site, to see if the class is there.
* If it is, fine; we grab the class and we're done.
* If it's not there, we assume that this class is one from the basic Java libraries and call

findSystemClass to load it from the filesystem.

In most custom ClassLoaders, you would want to call findSystemClass first to save time
spent looking on the remote Web site for the many Java library classes that are typically
loaded. However, as we'll see in the next section, we don't want to let the JVM load a class
from the local filesystem until we've made sure that we've automatically compiled our
application's code.

Method resolveClass
As I mentioned previously, loading a class can be done partially (without resolution) or
completely (with resolution). When we write our version of loadClass, we may need to call
resolveClass, depending on the value of the resolve parameter to loadClass.

Method findLoadedClass

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 6

findLoadedClass serves as a cache: when loadClass is asked to load a class, it can call
this method to see if the class has already been loaded by this ClassLoader, saving the trouble
of reloading a class that has already been loaded. This method should be called first.

Putting it all together
Let's see how all these methods fit together.

Our example implementation of loadClass carries out the following steps. (We won't specify
here what special technique will be used to get the class file -- it might be loaded from the
Net, or pulled out of an archive, or compiled on the fly. Whatever it is, it's the special magic that
gets us our raw class file bytes.)

* Call findLoadedClass to see if we have already loaded the class.
* If we haven't loaded the class, we do special magic to get the raw bytes.
* If we have the raw bytes, call defineClass to turn them into a Class object.
* If we don't have the raw bytes, then call findSystemClass to see if we can get the

class from the local filesystem.
* If the resolve parameter is true, call resolveClass to resolve the Class object.
* If we still don't have a class, throw a ClassNotFoundException.
* Otherwise, return the class to the caller.

Taking stock
Now that you have a working knowledge of ClassLoaders, it's time to build one. In the next
section, we'll bring CCL to life.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 7

Section 4. The CompilingClassLoader

CCL revealed
The job of our ClassLoader, CCL, is to make sure our code is compiled and up to date.

Here is a description of how it works:

* When a class is requested, see if it exists on disk, in the current directory, or in the
appropriate subdirectory.

* If the class is not available, but the source is, call the Java compiler to generate the class
file.

* If the class file does exist, check to see if it is older than its source code. If it is older than
the source, call the Java compiler to regenerate the class file.

* If the compilation fails, or if for any other reason the class file could not be generated from
the existing source, throw a ClassNotFoundException.

* If we still don't have the class, maybe it's in some other library, so call
findSystemClass to see if that will work.

* If we still don't have the class, throw a ClassNotFoundException.
* Otherwise, return the class.

How Java compilation works
Before we get too far into our discussion, we should back up a bit and talk about Java
compilation. Generally, the Java compiler doesn't just compile the classes you ask it to. It also
compiles other classes, if those classes are needed by the classes you've asked it to compile.

The CCL will compile each class in our application, one by one, that needs to be compiled.
But, generally speaking, after the compiler compiles the first class, the CCL will find that all the
other classes that needed to be compiled have in fact been compiled. Why? The Java compiler
employs a rule similar to the one we are using: if a class doesn't exist or is out of date with
respect to its source, then it needs to be compiled. In essence, the Java compiler is one step
ahead of the CCL, and takes care of most of the work for it.

The CCL reports on what application classes it is compiling as it compiles them. In most cases,
you'll see it call the compiler on the main class in your program, and that will be all it does -- a
single invocation of the compiler is enough.

There is a case, however, in which some classes don't get compiled on the first pass. If you
load a class by name, using the Class.forName method, the Java compiler won't know that
this class is needed. In this case, you'll see the CCL run the Java compiler again to compile
this class. The example in The source code on page 12illustrates this process.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 8

Using the CompilationClassLoader
To use the CCL, we have to invoke our program in a special way. Instead of running the
program directly, like this:

% java Foo arg1 arg2

we run it like this:

% java CCLRun Foo arg1 arg2

CCLRun is a special stub program that creates a CompilingClassLoader and uses it to load up
the main class of our program, ensuring that the entire program will be loaded through the
CompilingClassLoader. CCLRun uses the Java Reflection API to call the main method of the
specified class and to pass the arguments to it. For more details, see The source code on
page 12.

Example run
Included with the source is a set of small classes that illustrate how things work. The main
program is a class called Foo, which creates an instance of class Bar. Class Bar creates an
instance of another class called Baz, which is inside a package called baz in order to illustrate
that the CCL works with code in subpackages. Bar also loads a class by name, namely class
Boo, to illustrate this ability also works with the CCL.

Each class announces that it has been loaded and run. Use The source code on page 12and
try it out now. Compile CCLRun and CompilingClassLoader. Make sure you don't compile the
other classes (Foo, Bar, Baz, and Boo) or the CCL won't be of any use, because the classes
will already have been compiled.

% java CCLRun Foo arg1 arg2
CCL: Compiling Foo.java...
foo! arg1 arg2
bar! arg1 arg2
baz! arg1 arg2
CCL: Compiling Boo.java...
Boo!

Note that the first call to the compiler, for Foo.java, takes care of Bar and baz.Baz as well.
Boo doesn't get called until Bar tries to load it by name, at which point our CCL has to invoke
the compiler again to compile it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 9

Section 5. ClassLoader changes in Java 2

Overview
The ClassLoader facility has been improved in Java versions 1.2 and later. Any code written
for the old system will work, but the new system can make your life a bit easier.

The new model is a delegation model, which means that if your ClassLoader can't find a class,
it asks its parent ClassLoader to do it. At the root of all ClassLoaders is the system
ClassLoader, which loads classes the default way -- that is, from the local filesystem.

Default implementation of loadClass
A custom-written loadClass method generally tries several things to load a requested class,
and if you write a lot of ClassLoaders, you'll find yourself writing variations on the same, fairly
complicated method over and over again.

The default implementation of loadClass in Java 1.2 embodies the most common approach
to finding a class and lets you customize it by overriding the new findClass method, which
loadClass calls at the appropriate time.

The advantage of this approach is that you probably don't have to override loadClass; you
only have to override findClass, which is less work.

New method: findClass
This new method is called by the default implementation of loadClass. The purpose of
findClass is to contain all your specialized code for your ClassLoader, without having to
duplicate the other code (such as calling the system ClassLoader when your specialized
method has failed).

New method: getSystemClassLoader
Whether you override findClass or loadClass, getSystemClassLoader gives you direct
access to the system ClassLoader in the form of an actual ClassLoader object (instead of
accessing it implicitly through the findSystemClass call).

New method: getParent
This new method allows a ClassLoader to get at its parent ClassLoader, in order to delegate
class requests to it. You might use this approach when your custom ClassLoader can't find a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 10

class using your specialized method.

The parent of a ClassLoader is defined as the ClassLoader of the object containing the code
that created that ClassLoader.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 11

Section 6. The source code

CompilingClassLoader.java
Here is the source code for CompilingClassLoader.java

// Id

import java.io.*;

/*

A CompilingClassLoader compiles your Java source on-the-fly. It
checks for nonexistent .class files, or .class files that are older
than their corresponding source code.

*/

public class CompilingClassLoader extends ClassLoader
{
// Given a filename, read the entirety of that file from disk
// and return it as a byte array.
private byte[] getBytes(String filename) throws IOException {
// Find out the length of the file
File file = new File(filename);
long len = file.length();

// Create an array that's just the right size for the file's
// contents
byte raw[] = new byte[(int)len];

// Open the file
FileInputStream fin = new FileInputStream(file);

// Read all of it into the array; if we don't get all,
// then it's an error.
int r = fin.read(raw);
if (r != len)
throw new IOException("Can't read all, "+r+" != "+len);

// Don't forget to close the file!
fin.close();

// And finally return the file contents as an array
return raw;

}

// Spawn a process to compile the java source code file
// specified in the 'javaFile' parameter. Return a true if
// the compilation worked, false otherwise.
private boolean compile(String javaFile) throws IOException {
// Let the user know what's going on
System.out.println("CCL: Compiling "+javaFile+"...");

// Start up the compiler
Process p = Runtime.getRuntime().exec("javac "+javaFile);

// Wait for it to finish running
try {
p.waitFor();

} catch(InterruptedException ie) { System.out.println(ie); }

// Check the return code, in case of a compilation error
int ret = p.exitValue();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 12

// Tell whether the compilation worked
return ret==0;

}

// The heart of the ClassLoader -- automatically compile
// source as necessary when looking for class files
public Class loadClass(String name, boolean resolve)

throws ClassNotFoundException {

// Our goal is to get a Class object
Class clas = null;

// First, see if we've already dealt with this one
clas = findLoadedClass(name);

//System.out.println("findLoadedClass: "+clas);

// Create a pathname from the class name
// E.g. java.lang.Object => java/lang/Object
String fileStub = name.replace('.', '/');

// Build objects pointing to the source code (.java) and object
// code (.class)
String javaFilename = fileStub+".java";
String classFilename = fileStub+".class";

File javaFile = new File(javaFilename);
File classFile = new File(classFilename);

//System.out.println("j "+javaFile.lastModified()+" c "+
// classFile.lastModified());

// First, see if we want to try compiling. We do if (a) there
// is source code, and either (b0) there is no object code,
// or (b1) there is object code, but it's older than the source
if (javaFile.exists() &&

(!classFile.exists() ||
javaFile.lastModified() > classFile.lastModified())) {

try {
// Try to compile it. If this doesn't work, then
// we must declare failure. (It's not good enough to use
// and already-existing, but out-of-date, classfile)
if (!compile(javaFilename) || !classFile.exists()) {

throw new ClassNotFoundException("Compile failed: "+javaFilename);
}

} catch(IOException ie) {

// Another place where we might come to if we fail
// to compile
throw new ClassNotFoundException(ie.toString());

}
}

// Let's try to load up the raw bytes, assuming they were
// properly compiled, or didn't need to be compiled
try {

// read the bytes
byte raw[] = getBytes(classFilename);

// try to turn them into a class
clas = defineClass(name, raw, 0, raw.length);

} catch(IOException ie) {
// This is not a failure! If we reach here, it might
// mean that we are dealing with a class in a library,
// such as java.lang.Object

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 13

//System.out.println("defineClass: "+clas);

// Maybe the class is in a library -- try loading
// the normal way
if (clas==null) {
clas = findSystemClass(name);

}

//System.out.println("findSystemClass: "+clas);

// Resolve the class, if any, but only if the "resolve"
// flag is set to true
if (resolve && clas != null)
resolveClass(clas);

// If we still don't have a class, it's an error
if (clas == null)
throw new ClassNotFoundException(name);

// Otherwise, return the class
return clas;

}
}

CCRun.java
Here is the source code for CCRun.java

// Id

import java.lang.reflect.*;

/*

CCLRun executes a Java program by loading it through a
CompilingClassLoader.

*/

public class CCLRun
{
static public void main(String args[]) throws Exception {

// The first argument is the Java program (class) the user
// wants to run
String progClass = args[0];

// And the arguments to that program are just
// arguments 1..n, so separate those out into
// their own array
String progArgs[] = new String[args.length-1];
System.arraycopy(args, 1, progArgs, 0, progArgs.length);

// Create a CompilingClassLoader
CompilingClassLoader ccl = new CompilingClassLoader();

// Load the main class through our CCL
Class clas = ccl.loadClass(progClass);

// Use reflection to call its main() method, and to
// pass the arguments in.

// Get a class representing the type of the main method's argument

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 14

Class mainArgType[] = { (new String[0]).getClass() };

// Find the standard main method in the class
Method main = clas.getMethod("main", mainArgType);

// Create a list containing the arguments -- in this case,
// an array of strings
Object argsArray[] = { progArgs };

// Call the method
main.invoke(null, argsArray);

}
}

Foo.java
Here is the source code for Foo.java

// Id

public class Foo
{
static public void main(String args[]) throws Exception {
System.out.println("foo! "+args[0]+" "+args[1]);
new Bar(args[0], args[1]);

}
}

Bar.java
Here is the source code for Bar.java

// Id

import baz.*;

public class Bar
{
public Bar(String a, String b) {
System.out.println("bar! "+a+" "+b);
new Baz(a, b);

try {
Class booClass = Class.forName("Boo");
Object boo = booClass.newInstance();

} catch(Exception e) {
e.printStackTrace();

}
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 15

baz/Baz.java
Here is the source code for baz/Baz.java

// Id

package baz;

public class Baz
{
public Baz(String a, String b) {
System.out.println("baz! "+a+" "+b);

}
}

Boo.java
Here is the source code for Boo.java

// Id

public class Boo
{
public Boo() {
System.out.println("Boo!");

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 16

Section 7. Wrapup

Wrapup
As you have seen in this short tutorial, knowing how to create a custom ClassLoader can really
help you get at the guts of the JVM. The ability to load class files from any source, or even to
generate them on the fly, can extend the reach of your JVM and allow you to do some really
interesting and powerful things.

Other ClassLoader ideas
As I mentioned earlier in this tutorial, custom ClassLoaders are crucial to programs like
Java-enabled browsers and appletviewers. Here are a few other ideas for interesting
ClassLoaders:

* Security. Your ClassLoader could examine classes before they are handed off to the
JVM to see if they have a proper digital signature. You can also create a kind of
"sandbox" that disallows certain kinds of method calls by examining the source code and
rejecting classes that try to do things outside the sandbox.

* Encryption. It's possible to create a ClassLoader that decrypts on the fly, so that your
class files on disk are not readable by someone with a decompiler. The user must supply
a password to run the program, and the password is used to decrypt the code.

* Archiving. Want to distribute your code in a special format or with special compression?
Your ClassLoader can pull raw class file bytes from any source it wants.

* Self-extracting programs. It's possible to compile an entire Java application into a
single executable class file that contains compressed and/or encrypted class file data,
along with an integral ClassLoader; when the program is run, it unpacks itself entirely in
memory -- no need to install first.

* Dynamic generation. They sky's the limit here. You can generate classes that refer to
other classes that haven't been generated yet -- create entire classes on the fly and
bring them into the JVM without missing a beat.

Further reading and references
The following resources should help in your quest to understand ClassLoaders:

* Read the online documentation for the ClassLoader class on the Sun Web site.
* The Java Developer Connection has a custom ClassLoader tutorial .
* Learn about class file loading in The Java Language Specification .
* The Java Virtual Machine Specification includes information about ClassLoaders .
* The JDK version 1.3 documentation has a list of core Java library classes that use

ClassLoaders.
* Echidna by Luke Gorrie is an example of a useful piece of software that depends on a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 17

http://java.sun.com/j2se/1.3/docs/api/java/lang/ClassLoader.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/ClassLoader.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/magercises/ClassLoader/help.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/magercises/ClassLoader/help.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/magercises/ClassLoader/help.html
http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44459
http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44459
http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44459
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Concepts.doc.html#19063
http://java.sun.com/j2se/1.3/docs/api/java/lang/class-use/ClassLoader.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/class-use/ClassLoader.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/class-use/ClassLoader.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/class-use/ClassLoader.html
http://falconet.inria.fr/~java/tools/echidna-a2/doc/

custom ClassLoader.
* " Create a Java 1.2-style custom ClassLoader " (JavaWorld, March 2000) provides

insight on building a ClassLoader under JDK 1.2.
* " Make classes from XML data " (developerWorks, August 2000) describes using a

custom ClassLoader to create new classes on the fly.
* If you are new to the Java platform, Java language essentials (developerWorks,

November 2000) provides a thorough guide to the platform fundamentals.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

For questions about the content of this tutorial, contact the author, Greg Travis, at
mito@panix.com .

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding the Java ClassLoader Page 18

http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www.javaworld.com/jw-03-2000/jw-03-classload.html
http://www-106.ibm.com/developerworks/library/data-binding2/index.html
http://www-106.ibm.com/developerworks/library/data-binding2/index.html
http://www-106.ibm.com/developerworks/library/data-binding2/index.html
http://www-106.ibm.com/developerworks/library/data-binding2/index.html
http://www-106.ibm.com/developerworks/library/data-binding2/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
mailto:mito@panix.com

