JBoss
WORLD

CHICAGO 2009

FOLLOW US§.
TWITTER.COM/REDHATSUMMIT

TWEET ABOUT US
ADD #SUMMIT AND/OR #JBOSS




JBoss
WORLD

CHICAGO 2009

The Tao of Teiid

Steve Hawkins

Principal Software Englneerﬂ,@----"*—“” w
Red Hat oV e
Sept. 4, 2009

presented by t'



What is Teiid?
Telid is an open source solution for scalable
information integration through a relational abstraction.

Teild focuses on:

Real-time integration performance
~eature-full integration via SQL/Procedures/XQuery

Providing JDBC access
Telld enables:

Data Services / SOA
Legacy / JPA integration

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Overview

Background
Architecture
Internals
Wrap-up
Q&A

JBoss
WORLD

4 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Where did Teiid come from?

Project lineage is from MetaMatrix starting in ~1999.
Teiid - http://www.jboss.org/teiid
Teiid Designer - http://www.jboss.org/teiiddesigner
DNA - http://www.jboss.org/dna/

MetaMatrix was the leader in Enterprise Information
ntegration (Ell) — hence Teiid.

Red Hat acquired MetaMatrix in 2007.
_ast major MetaMatrix product release, 5.5.3 - 10/2008

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009


http://www.jboss.org/teiid
http://www.jboss.org/teiiddesigner
http://www.jboss.org/dna/

Project Status

Open source 2/2009 — heavily refactored from 5.5 line
6.0 Initial release 3/2009
6.1 Teiid / Teiid Designer release 6/2009

6.2 Coming Soon! Embedded/server deployments,
Designer-less usage, AdminShell, and much more.

Anticipate a platform release combining Teiid and other
JBoss technologies next year.

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



JBoss
WORLD

CHICAGO 2009

Archltectu e

presented by |. |



Architecture

Membership
Admin Roles
AdminAPI h % JDBC
r Admin Methods g CiLE 24 Connector RDBMS
Services
I
Netty 3 Data Roles
NIO Y/ Text
—> Query Engine Connector Files
|DBC Sockets
Driver ¥ Parser/Resolver
Validator/Rewriter ~ Processor Gl
Optimizer Y XML Web
Connector Service

SEDA - Connector bindings, socket transport, query engine,
admin methods all have queues/thread pools

Each connector binding operates independently

Other services include JBoss Transactions JTA, BufferManager,

sessioning, etc. JBoss
WORLD

8 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Connector API

Simplified object form of JDBC with concepts of JCA.
Pooling, caching, some security handled by the runtime.
Queries are resolved objects not just a string.

Extended metadata (ConnectorCapabilities) directs the
optimizer source query formation.

In addition to out of the box offerings, our JDBC
Connector is easily extended.

Can be thought of as a JDBC toolkit.

JBoss
WORLD

9 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Other Extension Points

10

Logging (Log4j), specific contexts for audit and
commands

MembershipDomains — handle authentication/group
assignment. Provide File and LDAP by default.

User defined functions — Implementation method in
Java, currently only defined through Designer.

Scripting through AdminShel

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



JBoss
WORLD

CHICAGO 2009

presented by ‘. ]



Telid Internals

12

Integration Features
Planning
Processing

Transactions

JBoss World 2009 | Steve Hawkins

JBoss
WORLD

CHICAGO 2009



Integration Features

Access Patterns — criteria requirements on pushdown queries
Pushdown — decompose user query into source queries
Remove unused select clause items

Decompose aggregates over joins/unions

Dependent Joins (can use hints) — feed equi-join values from
one side of the join to the other

Optional Join (can use hints) — removes an unused join child

Multi-source connector bindings — allows for multiple
homogeneous schemas to be used through the same model.

Copy Criteria — uses criteria transitivity to minimize join tuples.

JBoss
WORLD

13 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Planning

14

Distinct phases: parse, resolve, validation, rewrite,
optimization, process plan creation.

Rewrite canonicalizes and simplifies.

The optimization phase follows with rules/hints/costing
Procedures/XQuery not formally optimized
Non-federated optimization is similar to mature RDBMS

Optimizer plan structure is a flexible tree - distinct from
the command form and processing plans.

Planning is typically quick and deterministic — prepared

lans are recommended
P JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Visualizing a Plan

select e.title,
Departments as d ON e.dept id

e.lastname from Employees as e JOIN

d.dept id where

year (e.birthday) >= 1970 and d.dept name = 'Engineering'

title, lastnarne

yeare hirthday) == 1970
LHD d.dept_narne = 'Engineering

Diata

edept 1d=ddept 1d

Eraplotees &5 e

Departroents 25 d

15

JBoss World 2009 | Steve Hawkins

Project(groups=[e] ...)
Select(groups=[e,d] ...)
Join(groups=[e,d] ...)
Source(groups=[€] ...)
Source(groups=[d] ...)

JBoss
WORLD

CHICAGO 2009



Understanding Planning

16

Initial canonical plans follow the logical SQL
processing flow:

from/where/group by/having/select/order by/limit/into
Each node corresponds to a logical SQL operation

Canonical relational plans not performant for federated
queries — optimization is necessary

Processing plans and intermediate plans can be shown
In the log/obtained by the client.

select * from .. option debug - With DETAIL logging

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Plan Rules

Initial sequence driven by query form - some rules trigger others

Move/create/delete/modify nodes toward more optimal form

RemoveVirtual — Removes inline views or nested transformations
RaiseAccess — Ensures access nodes are raised meaning more will be
executed by the connector

PushSelectCriteria — Moves criteria toward tuple origin

CollapseSource — Takes plan nodes below an Access node and creates
a query (not the final query sent to the source, which will get translated
by the connector)

RulePlanSorts — Combines sort processing operations

... many others ...

Many rules correspond directly to federated optimizations —
CopyCriteria, AggregratePushdown, RemoveOptionalJoins, etc.

JBoss
WORLD

17 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Example Rule Application

SetOperation(groups=[], props={USE_ALL=true, SET_OPERATION=UNION})
Project(groups=[BQT1.SmallA], props={PROJECT COLS=[IntKey]})
Access(groups=[BQT1.SmallA], props={MODEL_ID=Model(BQT1)})
Source(groups=[BQT1.SmallA], props={NESTED COMMAND=null})
Project(groups=[BQT1.SmallA AS SmallA__ 1], props={PROJECT_COLS=[SmallA__1.IntNum]})
Access(groups=[BQT1.SmallA AS SmallA__ 1], props={MODEL_ID=Model(BQT1)})
Source(groups=[BQT1.SmallA AS SmallA__ 1], props={NESTED_COMMAND=null})

EXECUTING RaiseAccess

AFTER:
Access(groups=[], props={MODEL_ID=Model(BQT1)})
SetOperation(groups=[], props={USE_ALL=true, SET_OPERATION=UNION})
Project(groups=[BQT1.SmallA], props={PROJECT COLS=[IntKey]})
Source(groups=[BQT1.SmallA], props={NESTED COMMAND=null})
Project(groups=[BQT1.SmallA AS SmallA__ 1], props={PROJECT_COLS=[SmallA__1.IntNum]})
Source(groups=[BQT1.SmallA AS SmallA__ 1], props={NESTED_COMMAND=null})

JBoss

18 JBoss World 2009 | Steve Hawkins mggg !3(9



Join Planning

19

The most complicated parts of the optimizer

It is not exhaustive, but does consider ordering (left
linear), satisfying access patterns, and algorithm
([Partitioned] Merge / Nested Loop)

Ordering/algorithm is only important for federated joins.
Once a join is pushed, it's declarative to the source

Merge joins have dependent variants, which can have
large impact on performance — especially an
unnecessary dependent join (see makenotdep)

JBoss

JBoss World 2009 | Steve Hawkins mggg !3(9



Use of Costing

20

Specified as attributes at the table and column level - will
have a runtime interface soon

Mostly based on cardinality with a simplistic cost model of
execution

Assign costs to different join ordering and implementations
to pick the best one

Using small, or inappropriate values, could lead to
unexpected performance

See plan info “Estimated Node Cardinality”, “Estimated
Independent/Dependent ...”, etc. for values used in

planning.

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Processing

21

A relational processing plan is composed of discrete operations
organized as a tree — very similar to the optimizer form:

AccessNode — Source Query/Procedure

GroupingNode — Grouping operations and aggregate calculation
JoinNode — Joins the left and right tuple sources together
LimitNode — Honors limits and offset

ProjectNode — Converts tuples (select clause)

SelectNode — Applies selection (where clause) criteria
SortNode — Sorts incoming tuples

Procedure plans are composed of instructions.

Tuples are processed in batches. The BufferManager is set to a
specific memory limit; excess batches are written to disk.

Processing algorithms are sort based, variants chosen during
planning and processing.

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Example Process Plan

select * from System.DataTypeElements

ProjectNode(1) [dt.Name AS DataTypeName, c.NAME, ...]
JoinNode(2) [PARTITIONED SORT JOIN (SORT/SORT_DISTINCT)] [INNER JOIN]
\ criteria=[c.PARENT_UUID=dt.UID]
AccessNode(3) SELECT ¢.PARENT _UUID, ... FROM SystemPhysical. COLUMNS AS c
ProjectNode(4) [dt. NAME, dt.IS_BUILTIN AS IsStandard, ...]
JoinNode(5) [MERGE JOIN (SORT/SORT)] [LEFT OUTER JOIN]
\ criteria=[dt.UUID=a.ANNOTATED_UUID]
AccessNode(6) SELECT dt.UUID, dt.NAME, ... FROM SystemPhysical. DATATYPES AS dt
AccessNode(7) SELECT a.ANNOTATED UUID, ... FROM SystemPhysical. ANNOTATIONS AS a

Shows decomposition into 3 source queries.

Also the optimizer has combined a distinct operation into
JoinNode(2) loading of the right child.

JBoss
WORLD

22 JBoss World 2009 | Steve Hawkins CHICAGO 2009



Handling Load

23

Memory Usage — the BufferManager acts as a memory
manager for batches (with passivation) to ensure that
memory will not be exhausted.

Non-blocking source queries — rather than waiting for
source query results processor thread detach from the plan
and pick up a plan that has work.

Time slicing — plans produce batches for a time slice before
re-queuing and allowing their thread to do other work
(preemptive control only between batches)

Caching — ResultSets at the connector and user query
level can be reused on a session or vdb basis

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Transactions

Three scopes

Global (through XAResource)
Local (autocommit = false)

Command (autocommit = true)

All scopes are handled by JBoss Transactions JTA

Command scope behavior is handled through
txnAutoWrap={ON|OFF|OPTIMISTIC|PESSIMISTIC}

Isolation level is set on a per connector basis.

JBoss
WORLD

24 JBoss World 2009 | Steve Hawkins CHICAGO 2009



JBoss
WORLD

CHICAGO 2009

presented by |. |



Performance

26

Raw (cpu-intensive) overhead is typically sub-
millisecond per prepared user query.

Integration performance — check the processing plan.
We'll usually have the best form.

Consider using UDFs (Java) for reusable subroutines
rather than stored procedures.

Client result sets can be scroll insensitive and backed
by the BufferManager.

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



27

Differences with traditional Java DBs

Flexible planning architecture

Geared to high-performance integration processing — task
specific queues and thread pools, advanced buffer
management, batching, etc.

Lack of DDL support
Loose constraint handling

pk/fk, unique, and type constraints are in metadata, but
are not enforced at runtime.

Temp tables backed by BufferManager rather than a
relational/indexed storage engine.

JBoss
WORLD

JBoss World 2009 | Steve Hawkins CHICAGO 2009



Future Releases

28

We'll look even more like a database - direct usage of
DDL for metadata.

More features around materialization, data locality, and
caching.

Continued integration with other JBoss projects.

More design-time integration with Eclipse DTP
http://www.eclipse.org/datatools/

JBoss
JBoss World 2009 | Steve Hawkins WORLD

CHICAGO 2009


http://www.eclipse.org/datatools/

QUESTIONS?

TELL US WHAT YOU THINK:
REDHAT.COM/JBOSSWORLD-SURVEY



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

