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What is Imperfection?

Imperfection

Imperfection, be it Imprecision or Uncertainty, pervades . . . systems
that attempt to provide an accurate model of the real world

P.Smets, 1999
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What is Imperfection?

Imperfection

Imperfection, be it Imprecision or Uncertainty, pervades . . . systems
that attempt to provide an accurate model of the real world

P.Smets, 1999

Uncertainty

Uncertainty is a condition where Boolean truth values are
unknown, unknowable, or inapplicable . . .
W3C Incubator Group on Uncertainty Reasoning for the Web, 2005
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What is Imperfection?

Imperfection - a negative definition

Uncertainty/Imperfection is the opposite of preciseness and
certainty, i.e. of what Boolean logic models
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An Ontology for Imperfection

Uncertainty

Nature Derivation Type Model

Aleatory
Episthemic

Subjective
Objective

Incompleteness
Vagueness

Inconsistency
Randomness

Ambiguity

FuzzySets
RoughSets

RandomSets
Belief

Probability

more. . .
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An Ontology for Imperfection

Uncertainty

Nature Derivation Type Model

Aleatory
Episthemic

Subjective
Objective

Incompleteness
Vagueness

Inconsistency
Randomness

Ambiguity

FuzzySets
RoughSets

RandomSets
Belief

Probability

more. . .

Vagueness / Fuzzy Logic
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What is Imperfection?

Possible Applications

Information Processing
Clinical Procedures
Semantic Web

Classification
Symptom Matching
Fraud Detection

Prediction
Prognosis
Stock Market

Diagnosis
Health Care
Machine Failure

Monitoring
Vital Sign Monitoring
Video-Surveillance

. . .
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Why Imperfection ?

Using Imperfection

Rules should handle uncertainty, not ignore it

Benefits

Conciseness

Robustness

Drawbacks

Complexity

Correctness and Coherence

”If you place your bet on an improbable number,
and it gets extracted on next round,

then expect an increase in your capital”
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Why Imperfection ?

Some Issues

”If you place your bet on an improbable number,
and it gets extracted on next round,

then expect an increase in your capital”

Truth-functionality

Simplifies computation
Not always possible (e.g.
probability)

Transparency

Automatic computation
User should not be aware
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∧ improbable(Number)
∧extracted(Number,T+1)
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eval(bet(Sum,Number,T),B)

evalF (improbable(Number), D)
evalP(extracted(Number), P)
eval∧(B,D,P,Number,T,X )

eval→(X ,Number,T)
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probability)
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User should not be aware
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Modus Ponens

Generalized Inference

〈P(x),P(X )→C (Y )〉
C (y)

Classic Modus Ponens

Premise and Implication entail Consequence

Example

Rich(X ) ∧ Healthy(X )→ Happy(X )
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Modus Ponens

Generalized Inference

〈Φ(...,Aj(x)/εj ,... ),P(X )→C (Y )〉
C (y)

Premise

Atomic constraints are
evaluated
General, pluggable
Evaluators
A Degree is returned

Example

Rich(x)0.6 ∧ Healthy(x)0.8 → Happy(X )
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Modus Ponens

Generalized Inference

〈Φ(...,Aj(x)/εj ,... )/εP ,P(X )→C (Y )〉
C (y)

Premise

Atomic constraints are
evaluated
General, pluggable
Evaluators
A Degree is returned

Premise

Atoms are aggregated in
formulas
using generalized logic
Connectives
evaluated by Operators

Example

Rich(x) ∧0.6 Healthy(x)→ Happy(X )
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Modus Ponens

Generalized Inference

〈P(x)/εP , →(X ,Y )/ε→〉
C (y)

Implication

Implication has a Degree
often given a priori

Example

Rich(x) ∧ Healthy(x)→0.4 Happy(X )



Introduction A generalized inference schema Applications Conclusions

Modus Ponens

Generalized Inference

〈P(x)/εP , →(X ,Y )/ε→〉
C (y)/εC

Implication

Implication has a Degree
often given a priori

Modus Ponens

MP computes the Degree
of the Consequence

Example

Rich(x) ∧0.6 Healthy(x)→0.4 Happy(x)0.4
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Modus Ponens

Generalized Inference

〈P1,→1〉
C1/εC1

,...,
〈Pn,→n〉
Cn/εCn

C (y)/εC

Merging multiple sources

Multiple premises for the same conclusion
Solve conflicts
Handle missing values

Example

Rich(x) ∧ Healthy(x)→ Happy(x)0.4∩0.2∩0.7
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Language and Engine Enhancements

Language extensions : Example

r u l e "Rule"
// custom : i m p l i c a t i o n s and MP
i m p l i c a t i o n @[ degree =”0.75” ]
d e d u c t i o n @[ kind=”min” ]

when
$o1 : Type ( $ f 1 : f i e l d 1

/∗ custom : e x t e r n a l e v a l u a t o r ∗/
== @[ i d=”i 1 ” , kind=”e x t e r n a l ” , params =”...” ]

"val" )
or @[ kind=”max” ] // custom : o p e r a t o r s

$o2 : AnotherType (
f i e l d 3 == 0
ˆˆ // custom : o p e r a t o r s
f i e l d 3 == @[ c r i s p ] $ f 1 ) // custom : b e h a v i o u r

then
/∗ consequence d e g r e e ∗/
. . . = d r o o l s . getConsequenceDegree ( ) ;



Introduction A generalized inference schema Applications Conclusions

Language and Engine Enhancements

Generalized Degrees

Degrees generalize the boolean true/false

truth: compatibility with a prototype

probability: ratio of relevant events over total

belief: opinion in assuming a property to be true.

possibility: disposition towards accepting a situation to be
true.

confidence: strength of an agent’s belief in a statement.

Different models, including:

ε

Simple

τ

ϕ

Interval

≈ ε
Type-II degrees
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Language and Engine Enhancements

Custom Evaluators

Object × Object 7→ Degree

when
P a t i e n t ( f e v e r ˜seems ‘ ‘ h igh ’ ’ )

then
. . .

Wrap an external function

Define (and evaluate) a property p(L,R)

Return a Degree
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Language and Engine Enhancements

Custom Operators

{(Tuple),Degree}n 7→ Degree

r u l e "Ops"
i m p l i c a t i o n
deduction

when
$p : P a t i e n t ( t e m p e r a t u r e ˜>= 38 ˆˆ ˜<= 41 )
and
e x i s t s M e d i c i n e ( t h i s not ˜ a l l e r g e n i c $p )

then
. . .

Aggregate evaluations

Better if truth-functional

Return a Degree

Noteworthy : implication and modus-ponens
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Language and Engine Enhancements

Configuration Attributes

Control the behaviour of the engine

id : assign id to constraint/operator

kind : choose evaluator/operator implementation

degree : set “prior” degree

params : additional initialization info

crisp : cast to boolean

filter : configure propagation strategy

more...
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Language and Engine Enhancements

Injection1

r u l e "Inject"
when

$p : P a t i e n t ( t e m p e r a t u r e ˜>= 38 )
then

i n j e c t ( ‘ ‘ i d F e v e r ’ ’ , $p )
end

r u l e "Injected"
when

$p P a t i e n t ( f e v e r ˜seems @[ i d =‘‘ idFever ’ ’ ] ‘ ‘ h igh ’ ’ )
. . .

Chaining by evaluation: source conseguence degree sets the
target’s

1Soon to be deprecated in form, but not in concept
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Language and Engine Enhancements

Refactored Rule Structure

when
$p : P a t i e n t ( age ˜> 18 )
i m p l i e s
Person ( t h i s == $p , w e i g h t ˜> 50)

then
. . .
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Language and Engine Enhancements

Refactored Rule Structure

⇒

→

∧

H $p :P |

age > 18

∧

H P ∧

|

this ==$p

|

wgt > 50

→
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Language and Engine Enhancements

Extended RETE

#

this
enabled

#1,#5

$p

Person

#2,#6

age > 18

#3

∧3

#4

# #

weight
> 50 #8∧2

#9∧3
#10

#

this
== $p

#7

→2

#11

→0

#12

⇒2

#13 #ExIII
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Language and Engine Enhancements

Factory

ChanceFactory

+ True() : IDegree

+ False() : IDegree

+ Unknown() : IDegree

+ Random() : IDegree

+ buildDegree(String degree) : IDegree
+ buildDegree(double value) : IDegree

+ getOp() : Op
+ getOp(String type) : Op
+ getOp(String type, String params) : Op

IDegree

+ asBoolean() : boolean
+ getValue() : double

Factory controls the coherence

Builds Degrees

Builds Operators

Attributes become params for the factory
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Applications

Pure Logic-Based Approaches

Symbolic reasoning

Rules are annotated with
degrees

Computation of facts and
degrees according to
inference rules

Hybrid Approaches

Mixed
Symbolic/Sub-Symbolic
reasoning

Rule delegate, embed or
emulate SC techniques
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Logic-Based Approaches

Certainty Factors

r u l e "Mycin"
i m p l i c a t i o n @[ degree = ‘ ‘0.7 ’ ’ ]

when
$s : S i t e ( t h i s ˜ s t e r i l e )

I n f e c t i o n ( c a u s e ˜== ‘ ‘ b a c t e r e m i a ’ ’ ,
s i t e == @[ c r i s p ] $s )

. . .
then

// I n f e c t i o n i s b a c t e r o i d
end

Simple rule structure

Evaluators return CF

Rules have CF themselves
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Logic-Based Approaches

Bayesian Logic Programs

r u l e "BLP"
//CPT h e r e : p (m| S1 , S2 )

i m p l i c a t i o n @[ degree = ‘ ‘ . . . ’ ’ ]
when

$s1 : Symptom1 ( . . . )
$s2 : Symptom2 ( . . . )

then
// I l l n e s s i s . . .

end

Conditional probabilities over state of premises
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Logic-Based Approaches

Many-Valued (Fuzzy) Logic Programs

r u l e "MVL"
i m p l i c a t i o n @[ kind =‘‘Lukas ’ ’ ]

when
P a t i e n t ( p r e s s u r e ˜seems ‘ ‘ h igh ’ ’

| | @[ kind =‘‘max’ ’ ]
t e m p e r a t u r e ˜seems ‘ ‘ h igh ’ ’ )

then
// . . .

end

Variety of operators (families)

Full fuzzy set chaining not complete (yet)
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Logic-Based Approaches

Possibilistic Logic Programs

Degrees given by Necessity/Possiblity intervals

Similar in form to a specific MVL

Specific operators
Specific semantics
Not gradual truth, nor probability!!

... but generalizes to fuzzy possibility easily
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Logic-Based Approaches

Hybrid Logic Programs

r u l e "Hybrid Imperfect"
// p r o b a b i l i t y
i m p l i c a t i o n @[ degree = ‘ ‘0.99 ’ ’ ]

when
// t r u t h
t r u e @[ degree = ‘ ‘0.5 ,0.7 ’ ’ ] (

P a t i e n t ( t e m p e r a t u r e ˜seems ‘ ‘ h igh ’ ’ )
)

then
// . . .

end

Uncertain/Vague Mix

Consequence is given a specific probability...

... if and only if premise is true to a certain degree
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Soft Computing and Hybrid Systems

Soft Computing

Alternative (?) to Rule-Based Systems

A vast family

Basically, everything that is not (purely) symbolic

Fuzzy Logic

Neural Networks

Genetic Algorithms

Bayesian Network

Clustering
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Soft Computing and Hybrid Systems

No Integration - External Call

r u l e "No integration"
when

$s : SCModule ( . . . )
then

$s . i n v o k e ( . . . ) ;
end

Rules, at best, select the SC module

SC module is invoked in RHS

Compatible with boolean logic
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Soft Computing and Hybrid Systems

Loose Integration - Wrapper

r u l e "Cytofluorimetry"
when

// Us ing a n e u r a l c l a s s i f i e r
$c : C e l l ( $ f : f e a t u r e s ˜ isA ‘ ‘ r e d g l o b u l e ’ ’ )

then
. . .

end

SC module is embedded in a custom evaluator

SC module must evaluate a predicate

i.e. the return value must be a Degree

Boolean return value would be a limitation
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Soft Computing and Hybrid Systems

Strong Integration - Emulation

SC module is implemented using (imperfect) rules

Based on Degree manipulation - using operators
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Soft Computing and Hybrid Systems

Induction

r u l e "Induction"
when

f o r a n y ( $p : P a t i e n t ( h e a r t ˜ r i s k ‘ ‘ h igh ’ ’ )
s u b j e c t t o

P a t i e n t ( t h i s == $p ,
w e i g h t ˜seems ‘ ‘ heavy ’ ’ ) )

then
. . .

Generalized quantifier

Accumulates quantitative degrees
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Soft Computing and Hybrid Systems

Self-Organizing Map

r u l e "Map Query"
when

$x : Sample ( )
e x i s t s Neuron ( p o s i t i o n ˜ c l o s e $x )

then
// ( G r a du a l ) R e c a l l . . .

Rule-based Training algorithm

Rule-based querying
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Soft Computing and Hybrid Systems

Self-Organizing Map

Example: 10 neurons in a 2D space:
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Soft Computing and Hybrid Systems

Feed-Forward Neural Network

x1

x2

x3

y1

y2

y3

Hidden
layer

Input
layer

Output
layer

Function-Approximating Networks → Invoke

Classification Networks → Wrap

Emulation feasible, under development
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Soft Computing and Hybrid Systems

Bayesian Network

Alarm

QuakeBurglar

John Mary

Wrappable for use in probabilistic logic

Emulation is possible (still too verbose)
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Conclusions

Uncertainty exists in many forms

→ Uncertainty should be embedded in rules

Several Imperfect Logics do exist

Uncertainty can be handled using other approaches:

Bayesian Networks, Neural Networks, Fuzzy Systems, . . .

Current Goal : Provide a unified and integrated framework
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