
Benchmark Comparison of Messaging Throughput in
Enterprise Messaging Systems using the Java Message
Service API

Tim Fox, Messaging Lead, JBoss by Red Hat

Clebert Suconic, Core Messaging Engineer, JBoss by Red Hat

Abstract

A simple set of messaging throughput benchmarks were defined and run against systems
implementing the Java Message Service (JMS) API. The benchmarks were chosen to cover the
most common messaging use cases, including both lightweight publish/subscribe messaging and
persistent point-to-point messaging. Default configuration for each system was used unless the
vendor specifically recommended particular tunings for performance in their documentation, or the
vendor's default configuration settings did not provide JMS specification compliance. In the
majority of the use cases, HornetQ out-performed all other systems, out-performing the next best
performing system by a factor of up to 2.5

Introduction

Enterprise Messaging Systems

The term enterprise messaging system is used throughout this paper. We define this as follows:

Enterprise messaging systems are general purpose messaging workhorses with a large feature set
which usually possess high end features such as clustering and high availability. Often they support
their own protocols, and the overwhelming majority support the Java Message Service (JMS)
standard API.

Apart from the enterprise messaging systems, there are other messaging systems that focus on low-
latency messaging – common in the financial services industry, where time sensitivity, e.g. for
financial instrument prices may be very high.

Typically, though not exclusively, these products have a narrow and specialised feature set and
often lack high end features, allowing them to concentrate on providing the lowest latency
deterministic messaging. Compared to the wider messaging arena, this low-latency market is a
niche area, with those implementations that lack enterprise capabilities prevented from being
suitable for general purpose messaging applications. Therefore, we do not include them in this
analysis.

This paper only concerns itself with the messaging throughput of enterprise messaging systems that
implement the JMS API.

Experimental set-up

Physical set-up

Three physical nodes were used for each benchmark. Each node had the following specification:

Model: IBM 3650

CPU: Quad core Intel Xeon 2.5Ghz

RAM: 16GiB (typically only a fraction of this RAM was used by the processes)

Disk: 2 x 73GiB local SAS drives configured as RAID-0 (striping)

Each node was connected via 1 Gib/s ethernet via a Cisco 4948 switch. The network was
completely isolated.

We disabled disk write cache on the disks so we could be sure that after a file sync is executed or a
completion is received for asynchronous IO, the data has really been persisted to physical storage,
not just written into the disk write cache.

Illustration 1: System set up

Messaging System Versions

The following versions of the messaging systems were used in the measurements. Where possible
these were the latest versions of the systems available at the time the measurements were taken.

HornetQ 2.1.1 final

ActiveMQ 5.3.2 GA

SwiftMQ 7.6

OpenMQ 4.4

Operating System and JVM

All nodes were running Red Hat Enterprise Linux 5.3 and Sun JDK 1.6.0-19 (64 bit).

Experimental Method

The benchmark

The Test Harness

The Sonic test harness (http://communities.progress.com/pcom/docs/DOC-29828) was used for the
benchmarks.

This is a simple and easy to use benchmarking tool that can be configured for many JMS uses cases
and allows JMS parameters such as message size, durability of messages, number of consumers,
number of producers to be configured.

The Sonic test harness has previously been used on other published JMS benchmarks, so is already
familiar to the messaging user and developer communities.

We made a small number of modifications and rebuilt the test harness from source to remove any
dependencies on SonicMQ specific libraries.

We also made a small number of changes to address some issues:

1) The test harness used Java integers to count messages during the run. Due to the very high
throughputs obtained in some runs this was insufficient and caused integer overflow. The
code was therefore changed to use Java longs to prevent any overflow.

2) SwiftMQ disallowed the '/' character in a JMS client id string. The test harness uses the '/'
character so would not work with SwiftMQ. A small change was made so the test harness
used the '-' character instead.

Messaging Throughput

All benchmarks consist of a single messaging server, a number of message producers and a number
of message consumers.

The messaging server is installed on it's own physical node, all the message producers are on a
single second node, and all message consumers are on a single third node.

Messages are sent at as high a rate as the system will sustain.

The benchmarks measure mean messaging throughput as seen by the messaging consumers during
the duration of the test run. If there are multiple message consumers then any figures shown are the
total messages consumed by the consumers during the run. E.g. in the case of 10 consumers who
each consume 1000 messages during a run, the throughput figure reported would be 10 x 1000 =
10000 messages per second.

Duration of run

Each benchmark run was performed for a duration of 1000 seconds (16 minutes and 40 seconds).
We believe this run time was sufficiently long to minimise indeterminacy in the results due to
factors such as garbage collection, Just-In-Time compilation etc.

Benchmark Scenarios

The benchmark sent and consumed messages as fast as possible while measuring the total
throughput of messages under different circumstances where we alternate these variables:

• Number of Producers

http://communities.progress.com/pcom/docs/DOC-29828

• Number of Consumers

• Size of the message

• Type of Destination: Queue / Topic

• Durability of Messages Persistent / Non Persistent

• Transacted / Non Transacted

• Elements per transaction

The benchmarks scenarios were chosen to cover the most common messaging use cases, including
both lightweight publish/subscribe messaging and persistent point-to-point messaging.

The set of benchmarks are not intended to be an exhaustive set that probes deeply into all corners of
each systems performance characteristics. They are intended to provide an easy to digest summary
of messaging throughput for the most common use cases.

For lightweight publish/subscribe messaging we used a small 12 byte message size. 12 bytes is
sufficient to convey useful information (e.g. a stock symbol id + price) but sufficiently small to
measure performance characteristics for small messages.

We also measured publish/subscribe messaging for 1kiB messages.

For point-to-point persistent messaging we chose a message size of 1kiB

It should be noted, the message size quoted here represents the size of the JMS message body. In
general a JMS message will be much larger than this due to the set of headers and other information
conveyed in the message by the particular provider. The actual total size of the message is
implementation specific.

No optimisations such as disabling message IDs or timestamps were configured.

In the case of non transacted consumers, AUTO_ACKNOWLEDGE mode was used throughout.

The scenarios measured are as follows:

• Scenario A – Non persistent 12 byte messages, 1 producer, 1 consumer, Topic

• Scenario B - Non persistent 12 byte messages, 1 producer, 15 consumers, Topic

• Scenario C - Non persistent 12 byte messages, 15 producers, 15 consumers, Topic

• Scenario D - Non persistent 1kiB messages, 1 producer, 1 consumer, Topic

• Scenario E - Non persistent 1kiB messages, 1 producer, 15 consumers, Topic

• Scenario F - Non persistent 1kiB messages, 15 producers, 15 consumers, Topic

• Scenario G - Persistent 1kiB messages, non transacted, 40 producers, 40 consumers, 40
queues

• Scenario H - Persistent 1kiB messages, transacted, 10 messages per transaction, 40
producers, 40 consumers, 40 queues

Publish / Subscribe – Small messages (12 bytes)

Scenario A

Single publisher, single subscriber on a topic with small messages. Which represents the simplest
publish/subscribe scenario possible.

• Number of publishers = 1

• Number of subscribers = 1

• Size of the message body = 12 bytes

• Topic

• Non persistent messages

• Non transacted

Illustration 2: Scenario A

Chart

Illustration 3: Benchmark A, Non persistent 12 byte messages, 1 producer, 1 consumer, Topic

Producer Subscriber
Topic

Server

A

0

50000

100000

150000

200000

250000

300000

HornetQ
ActiveMQ
SwiftMQ
OpenMQM

sg
s

/ s
e

c

Scenario B

Single publisher, 15 subscribers on a topic with small message. Each message produced is
consumer by all 15 subscribers. This will measure the capability of the server on handling multiple
references of thousands of messages per second.

• Number of publishers = 1

• Number of subscribers = 15

• Size of the message = 12 bytes

• Topic

• Non persistent messages

• Non transacted

Illustration 4: Scenario B

Chart

Illustration 5: Benchmark B, Non persistent 12 byte messages, 1 producer, 15 consumers, topic

B

0

100000

200000

300000

400000

500000

600000

700000

800000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer
Topic

Server

Consumer
Consumer

Subscriber

15 subscribers

Scenario C

15 publishers, 15 subscribers on a topic with small messages. Each message produced is consumer
by all 15 subscribers.

• Number of publishers = 15

• Number of subscribers = 15

• Size of the message = 12 bytes

• Topic

• Non persistent messages

• Non transacted

Illustration 6: Scenario C

Chart

Illustration 7: Benchmark C, Non persistent 12 byte messages, 15 producers, 15 consumers

C

0

100000

200000

300000

400000

500000

600000

700000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer
Topic

Server

Consumer
Consumer

Subscriber

15 consumers

Producer
ProducerProducer

15 producers

Publish / Subscribe – 1kiB messages

Scenario D

Same as Scenario A, with 1kiB messages

• Number of publishers = 1

• Number of subscribers = 1

• Size of the message = 1kiB bytes

• Topic

• Non persistent messages

• Non transacted

Illustration 8: Scenario D

Chart

Illustration 9: Benchmark D, Non persistent 1kiB messages, 1 producer, 1 consumer

D

0

10000

20000

30000

40000

50000

60000

70000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer Subscriber
Topic

Server

1kib msgs

Scenario E

Same as Scenario B, with 1kiB message

• Number of publishers = 1

• Number of subscribers = 15

• Size of the message = 1kiB bytes

• Topic

• Non persistent messages

• Non transacted

Illustration 10: Scenario E

Chart

Illustration 11: Benchmark E, Non persistent 1kiB messages, 1 producer, 15 consumers

Observations

• The network was being saturated on this test for HornetQ, ActiveMQ and SwiftMQ, so we
have similar figures around the 100 k messages / sec figure for these systems. It would be
interesting to see how the systems compared with a faster network, e.g. 10 Gib/s in a future
version of this benchmarking.

E

0

20000

40000

60000

80000

100000

120000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer
Topic

Server

Consumer
Consumer

Subscriber

15 subscribers

1kib msgs

Scenario F

Same as Scenario C, with 1kiB message

• Number of publishers = 15

• Number of subscribers = 15

• Size of the message = 1kiB bytes

• Topic

• Non persistent messages

• Non transacted

 Illustration 12: Scenario F

Chart

Illustration 13: Benchmark F, Non persistent 1kiB messages, 15 producers, 15 consumers

Observations

• The network was being saturated on this test for HornetQ, ActiveMQ and SwiftMQ, so we
have similar figures around the 100 k messages / sec figure for these systems. It would be
interesting to see how the systems compared with a faster network, e.g. 10 Gib/s in a future
version of this benchmarking.

F

0

20000

40000

60000

80000

100000

120000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer
Topic

Server

Consumer
Consumer

Subscriber

15 subscribers

Producer
ProducerProducer

15 producers

Persistent Scenarios

Scenario G

40 producers and 40 consumers over 40 different queues sending persistent messages non
transactionally. This should generate enough load to stress the server up to its limits including the
persistent storage. Each producer / consumer pair are using a different queue. This tests the systems
ability to scale horizontally with multiple concurrent writes.

To be JMS specification compliant each JMS persistent message send should not return until the
message has been sent to the server and physically persisted to storage. On a pure Java server for
example this will require a sync to be performed (e.g. Channel.force())

In their default configurations some providers are known to relax JMS specification compliance,
and message durability in order to benefit performance. For the benchmarks we made sure these
systems were configured to be specification compliant.

Unfortunately some systems, to the best of our knowledge, do not allow themselves to be
configured to always sync to disk or send persistent messages synchronously. So any results
obtained with them have been disallowed as their behaviour could be considered “cheating”.

 Illustration 14: Syncs on persistence

For well behaved systems, that means an individual producer shouldn't ever exceed the capacity of
physical writes of the disk (the slowest part of the equation on the hardware on syncs). However the
system can be well optimized to scale up or batch multiple writes in a single sync.

The system we used is capable of doing 250 physical writes / second.

• Number of producers = 40

• Number of consumers = 40

• Size of the message = 1kiB bytes

• 40 different queues

• Persistent messages

• Non transacted

Producer Consumer

store

Sync
on send

Sync
on acks

Sync on writes

Server

Illustration Scenario G

Chart

Illustration 15: Benchmark G, Persistent 1kiB messages, non transacted, 40 producers, 40
consumers, 40 queues

G

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Producer 1
Queue1

Server

Consumer 1

Queue2

Producer 2 Consumer 2

...

Queue40

Producer 40 Consumer 40

... ...

Scenario H

Same as scenario G, but using transacted sessions while sending & acknowledging 10 messages per
transaction.

• Number of producers = 40

• Number of consumers = 40

• Size of the message = 1kiB bytes

• 40 different queues

• Persistent messages

• Transacted (10 messages / acknowledgements per transaction)

Illustration 16: Scenario H

Producer 1
Queue1

Server

Consumer 1

Queue2

Producer 2 Consumer 2

...

Queue40

Producer 40 Consumer 40

... ...

Chart

Illustration 17: Benchmark H, Persistent 1kiB messages, transacted, 10 messages per transaction,
40 producers, 40 consumers, 40 queues

H

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

HornetQ
ActiveMQ
SwiftMQ
OpenMQ

Conclusions
For lightweight publish / subscribe messaging with 12 byte messages, there was a very wide range
of results with HornetQ as the clear leader.

The network appeared to be saturated for publish / subscribe messaging with larger 1 kiB
messages, what gave us similar results around the 100 k messages/sec mark. It would be interesting
to see how much higher results would go with a faster 10 Gib/s network in a future work.

For persistent messaging, there was also a wide range of results again with HornetQ as the
performance leader.

The results clearly demonstrate that HornetQ is the most performant enterprise messaging solution
among the systems tested.

Appendix 1: Configuration changes
Default configuration for each system was used unless the vendor specifically recommended
particularly tunings for performance in their documentation, or the vendor's default configuration
settings did not provide JMS specification compliance.

ActiveMQ

• Renamed activemq-throughput.xml as activemq.xml

• set enableJournalDiskSyncs="true" on KahaDB

HornetQ

• Set journal-min-files = 100, Used ThroughputConnectionFactory for the publish/subscribe
tests

OpenMQ

• Flow control and maxSize = 5000 on queues and topics

• sync on store

◦ by adding imq.persist.file.sync.enabled=true at /open-
mq/var/instances/imqbroker/props/config.properties

SwiftMQ

• Sync set to true on the storage Swiftlet

• Group commit delays = 1 ms

◦ We tried several different values until we could achieve best performance possible on
the persistence cases.

◦ We tried for instance 10 ms and 100 ms on the group commit delay but that actually
made the results worse even though we expected a better throughput.

• Increased number of available threads in thread pools to give better throughput

Appendix 2: Raw data
All the data is represented in messages / second. Throughput calculated at the consumers.

System A B C D E F G H

HornetQ

2.1.1

263454 704642 654395 58849 105650 102436 9067 16523

ActiveMQ

5.3.2

34240 206714 204599 30845 102918 103336 107 317

SwiftMQ
7.6

60843 128806 182785 47309 89389 93104 301 529

OpenMQ
4.4

4915 39160 38764 4782 37092 39003 268 147

Appendix 3: Scenario Summary

Metric Destination
Type

Durability Msg Size Producers Consumers ACK Mode

A Topic NP 12 bytes 1 1 Auto

B Topic NP 12 bytes 1 15 Auto

C Topic NP 12 bytes 15 15 Auto

D Topic NP 1 kiB 1 1 Auto

E Topic NP 1 kiB 1 15 Auto

F Topic NP 1 kiB 15 15 Auto

G 40 Queues P 1 kiB 40 40 Auto

H 40 Queues P 1 kiB 40 40 TX (10 msgs)
P = Persistent

NP = Non Persistent

	Benchmark Comparison of Messaging Throughput in Enterprise Messaging Systems using the Java Message Service API
	Abstract
	Introduction
	Enterprise Messaging Systems

	Experimental set-up
	Physical set-up
	Messaging System Versions
	Operating System and JVM

	Experimental Method
	The benchmark
	The Test Harness
	Messaging Throughput
	Duration of run

	Benchmark Scenarios
	Publish / Subscribe – Small messages (12 bytes)
	Scenario A
	Chart

	Scenario B
	Chart

	Scenario C
	Chart

	Publish / Subscribe – 1kiB messages
	Scenario D
	Chart

	Scenario E
	Chart
	Observations

	Scenario F
	Chart
	Observations

	Persistent Scenarios
	Scenario G
	Chart

	Scenario H
	Chart

	Conclusions
	Appendix 1: Configuration changes
	ActiveMQ
	HornetQ
	OpenMQ
	SwiftMQ

	Appendix 2: Raw data
	Appendix 3: Scenario Summary

