
Byteman : Tracing and Testing Made Easy
Andrew Dinn
Tuesday 8th March 2011

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?

• Questions

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?

• Questions

4

Why Trace? Why Test?

• We don't always know what our code is doing
– not even with a debugger

• impractical in many deployments

• impractical with multi-threaded code

• We don't always know what our code might do
– . . . in unusual circumstances

5

Get It Right First Time!

• Proving code is 'correct' is rarely an option

• Defining 'correctness' is tricky
– implicit vs explicit definition

• correctness proofs tend to want very explicit conditions

– emergent understanding

• proof refinement often means back to the drawing board

– incomplete understanding

• reliance on libraries and runtimes snookers us

– and even if we can define it . . .

• Proving 'correctness' is usually intractable
– I have done it twice in 25 years for select fragments of a larger system

6

So What Do We Actually Do?

• We chip away at the problem
– unit test, integration test, system test, pilots, live monitoring

• We write software to help see what our code is doing
– debug/product trace

– execution stats collection

– laborious, heavyweight and usually all or nothing

• We write software to see what our code might do
– . . . in unusual circumstances

– mock code, scaffolding, conditionally compiled builds

– laborious, heavyweight and usually all or nothing

• We test very different code to the released product
– . . . in very unusual circumstances

• different code, different footprint, different timing

– . . . invariably not the circumstances occurring in live install

• We don't have 100% hindsight/foresight

7

What Would We Prefer To Do?

• Something much more flexible

• Highly selective, customisable and ad hoc tracing
– tweak code without needing to prepare source

– at unit test, integration test, system test and in live deployments

– use application and runtime data/functionality

– revert back to original when done

• needed for both live and multiple test deployments

• Highly selective, customisable and ad hoc fault injection
– tweak code without needing to prepare source

– at unit test, integration test and system test

• in live deployments, anyone?

– use application and runtime data/functionality

– revert back to original when done

• needed for multiple test deployments

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?

• Questions

9

Byte (code) Man (ipulation)

• Available in a JVM near you right now
– transform at load can redefine class structure and code

– retransform after load can only redefine code

– java.lang.instrument a pure byte bashing API

• Byteman makes it easy
– inject actual Java code directly into Java code

• direct manipulation

– link to app/runtime code/data

• what you say is what you get

• type checking makes it safe

• type inference keeps it simple

• Byteman makes it cheap
– low transformation cost

– tightly scoped changes

• Byteman makes it reversible
– only ever redefines code

10

Example Byteman Rule

• Scripting Language
– Simple, minimal structure for injected code

– Event Condition Action Rules

– Very Java-oriented

• in fact it is Java, mostly!

RULE trace inactive transaction at commit
CLASS TransactionImple
METHOD commit()
AT ENTRY
BIND status : int = $0.getStatus()
IF status != javax.transaction.Status.STATUS_ACTIVE
DO traceStack("inactive commit " + $this +
 " status=" + status, 15);
ENDRULE

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?
– Byteman Rule Language

• How Do I Drive It?

• Questions

12

E(B)CA Rules

• Event
– CLASS/INTERFACE METHOD AT...

• defines trigger point(s) i.e. location(s) in the code base

• package, signature, return type are optional

• (BINDING)
– introduces and initializes rule variables

• CONDITION
– any Java boolean expression

• ACTION
– any Java expressions

• Dyamically linked and typed
– $0 is the target of the trigger method, commit

– getStatus is a method of TransactionImple

– STATUS_ACTIVE references a static field of type int

13

Example Byteman Rule (2)

RULE simulate exception from Executor
INTERFACE ^java.util.Executor
METHOD execute
AT ENTRY
IF callerEquals("ServiceInstanceImpl.execute", true)
DO traceln("Throwing exception in execute");
 THROW new
 java.util.concurrent.RejectedExecutionException();
ENDRULE

• inject through the interface into implementors

• inject down into overriding implementations
– AbstractExecutor implements Executor

– ThreadPoolExecutor extends AbstractExecutor

• THROW/RETURN from trigger method call
– must conform to method contract

– bypass catch block processing (short-circuit)

14

Location Clauses

AT ENTRY
AT EXIT
AT/AFTER READ [[package.]type.]field | $localvar [count]
AT/AFTER WRITE [[package.]type.]field | $localvar [count]
AT/AFTER CALL [[package.]type.]method [(Types)] [count]
AT THROW [count]
AT LINE number

public check(Sym sym) throws BadSym, BadType
{
 String s = ""; // AFTER WRITE $s
 if (badSym(sym))) {
 // AT READ name 1
 s = munge(sym.name); // AT CALL munge, AT WRITE $s 2
 throw new BadSym(s); // AT THROW ALL
 } else if (badType(sym.type)) {
 // AT READ Type.name 1
 // AT CALL munge 2
 s = munge(sym.type.name); // AT CALL munge(TypeName) 1
 // AFTER WRITE $s 3
 throw new BadType(s); // AT THROW 2
 }

15

Expressions

• Parameter, local and rule variables
– $0, $1 ($this, $sym), $loopvar, status

• Special variables
– $*, $# trigger method parameter array and parameter count

– $! stacked return value in AT EXIT or AFTER CALL rule

– $@ stacked arguments in AT CALL rule

– $^ stacked throwable in AT THROW rule

• The full set of Java operations
– operators +-*/, &|, && ||, == < >, new, =, etc

– instance/static field accesses and method invocations

– built-in methods (any call with no target instance)

– no control structures

• Assigning $ vars changes trigger method state
– $1 = "Andrew"

– $loopvar = $loopvar + 1

– $! = 3

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?
– Byteman Built-In Methods

• How Do I Drive It?

• Questions

17

Built-in Methods

• Tracing
– traceOpen, traceClose, traceln, traceStack, ...

• Managing Shared Rule State
– flag, clear, countDown, incrementCounter, ...

• Timing
– createTimer, getElapsedTime, resetTimer

• Checking Caller Stack
– callerEquals, callerMatches

• Thread Synchronization
– waitFor, signalWake, rendezvous, delay

• Recursive Trigger Management
– setTriggering

18

Example Byteman Rule (3.1)

• XTS Coordinator Service
– negotiates 2 phase commit with remote Web Service Participants

– sends PREPARE waits for PREPARED

– logs participant details

– sends COMMIT expects COMMITTED

• XTS Crash Recovery Test
– kill JVM between logging and sending COMMIT then reboot

– drop COMMITTED messages during first/second roll forward attempt

– allow messages to pass and ensure TX completes at 3rd attempt

RULE drop committed message
CLASS CoordinatorEngine
METHOD committed(Notification, MAP, ArjunaContext)
AT ENTRY
BIND engine:CoordinatorEngine = $0,
 identifier:String = engine.getId()
IF getCountDown(identifier)
DO RETURN
ENDRULE

19

Example Byteman Rule (3.2)

RULE add coordinator engine countdown
CLASS CoordinatorEngine
METHOD <init>(String, boolean, EndpointReference, boolean, State)
AT EXIT
BIND engine:CoordinatorEngine = $0,
 identifier:String = engine.getId()
IF engine.recovered
DO createCountDown(identifier, 2)
ENDRULE

RULE countdown at commit
CLASS CoordinatorEngine
METHOD commit
AFTER WRITE status
BIND engine:CoordinatorEngine = $0
 identifier:String = engine.getId()
IF engine.recovered && countDown(identifier)
DO traceln("countdown completed for " + identifier)
ENDRULE

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?
– Rule Helpers

• How Do I Drive It?

• Questions

21

Helper Classes

• Built-ins are just public methods of a POJO
– take a look

• org.jboss.byteman.rule.Helper

• You can use any POJO as Helper

class DBHelper
{
 public void trace(String msg, Record rec) { . . . }
 . . .

RULE use my own trace method
CLASS org.my.db.DBManager
METHOD update(Record)
AT CALL setName(String)
HELPER org.my.bmutil.DBHelper
IF $@[1] == "Andrew”
DO trace("found interesting record update ", $1)
ENDRULE

22

Helper Classes

• HELPER clause outside rule resets for following rules
HELPER org.my.bmutil.DBHelper
RULE my Helper rule 1
. . .
RULE my Helper rule 2
. . .
HELPER
RULE back to default Helper
. . .

• Byteman type checks and links using named class
– Helper class must be in classpath

• Rules injected into JVM code require helper class in bootstrap path

• Byteman will install a jar into the bootstrap path if you ask

• Often helps to extend Byteman Helper
class DBHelper extends Helper { . . .

– allows you to reuse/redefine existing built-ins in your rules

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?

• Questions

24

Four Different Routes

• Java command line
– most complicated but applies rules from JVM start

• intercept (almost) all JVM activity (e.g inject into app Main())

• Byteman bin shell scripts
– basic script just wraps up command line arguments

– can install rules into an already running program (e.g. live JBoss AS)

– can deinstall rules and reinstall

– can also check status of loaded rules

• Byteman API classes
– install the agent and install/uninstall rules from a Java program

– doesn't have to be into the same JVM

– used by contrib packages to do automatic rule loading/unloading

• BMUnit package
– integration of Byteman into JUnit or TestNG

– easiest way to load and unload Byteman rules

– trivial to run from ant or maven

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?
– Java Command Line

• Questions

26

Java Command Line

• java option installs “Java agent” bytecode transformer
-javaagent:/path/to/agent.jar=agentoptions

• Byteman main jar is a Java agent jar
-javaagent:${BYTEMAN_HOME}/lib/byteman.jar=agentoptions

• BYTEMAN_HOME is where you unzipped the download

• Byteman agent can start a listener on localhost:9090
– allows upload/unload/reload/status of rules while program is running

• agentoptions are comma separated name:value pairs
– e.g. script:./rules.btm,script:./morerules.btm,boot:byteman.jar

script:script.btm install rules from script.btm at agent startup
boot:my.jar add my.jar to bootstrap classpath
sys:my.jar add my.jar to system classpath
listener:true start up agent listener
port:999 use listener port 999
address:192.168.0.1 use listener host 192.168.0.1
prop:name=value configure Byteman System property

• where name is org.jboss.byteman.xxx

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?
– Byteman bin Shell Scripts

• Questions

28

bmjava

bmjava javaargs

– use in place of java command

• bmjava -cp build/classes Register -n Andrew

– installs Byteman agent, starts Byteman listener on localhost:9090

– bmjava options

• these precede javaargs

-p port -h hostname use a different listener port/host
-l /path/to/myscript.btm load rules at agent startup
-b /path/to/helper.jar install jar into bootstrap path
-s /path/to/helper.jar install jar into sys path
-Dorg.jboss.byteman.xxx configure Byteman system properties

• rules injected as matching classes are loaded

• existing classes may need to be retransformed
– e.g. java.lang.Thread.start()

29

bminstall

bminstall procId | mainClass

– installs Byteman agent into already running program

• bminstall -Dorg.jboss.byteman.debug org.jboss.Main

• always starts listener

-p port –h hostname use a different listener port/host
-b install byteman jar in boot path

• should be the default (e.g. bmjava.sh provides -nb)

-Dorg.jboss.byteman.transform.all allow inject into java.lang.*

• should be the default (e.g. bmjava.sh provides -nj)

30

bmsubmit

bmsubmit [-l | -u] [script1 . . . scriptN]

– load or unload rule scripts via Byteman listener

• bmsubmit /path/to/myscript.btm

– applies rules to new classes and retransforms existing classes

• bmsubmit -u

– removes rules and reverts affected classes

• bmsubmit shows status of all loaded rules

-p port -h hostname use a different listener port/host
-o outfile redirect output to outfile

bmsubmit [-b | -s] jar1 [. . . jarN]

– load jars into bootstrap or system classpath

• bminstall -b /path/to/helper.jar

bmsubmit -c

– list all loaded jars

bmsubmit -y

– list current configured Byteman system properties

• org.jboss.byteman.*

31

bmcheck

bmcheck [-cp path|jar]* [-p prefix]* script1 ... scriptN

– parse and type check rules offline

• bmcheck -cp my.jar -cp your.jar \
-p org.my -p org.your myscript.txt

– needs to explicitly load classes mentioned in rules

-cp locates jar containing classes mentioned in rules

-p resolves unspecified packages in CLASS or INTERFACE clause

• CLASS Foo ==> org.my.Foo

• CLASS Bar ==> org.my.Bar, org.your.Bar

• errors messages are now quite good and getting better
– parser errors not always able to provide exact line

• but usually close

– type errors normally very precise

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?
– Byteman API Classes

• Questions

33

Byteman API Classes

• org.jboss.byteman.agent.install.Install
– main(String[]) used by bminstall

– other static methods for programs to use

• install(String pid, boolean addToBoot,
 String host, int port, String[] properties)

• VMInfo[] availableVMs()

• org.jboss.byteman.agent.submit.Submit
– main(String[]) used by bmsubmit

– other instance methods for programs to use

• Submit()

• Submit(String host, int port, PrintStream out)

• addRulesFromFiles(List<String> filePaths)

• addScripts(List<ScriptText> scripts)

• Used by contrib packages
– dtest instruments remote JVM for post-run validation

– BMUnit integrates Byteman into JUnit and TestNG tests

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?
– BMUnit Package

• Questions

35

BMUnit Tests

• Integrates Byteman into JUnit and TestNG
– automatically loads the agent for you

– automatically loads and unloads rules for you

• Simply annotate your test classes and @Test methods
– @BMScript identifies a script file to load

– @BMRule provides rule text in the annotation

– Class level annotation

• load before running test methods, unload once all completed

– Method level annotation

• load before calling test method, unload after call completed

• JUnit: annotate test class with test runner
– @RunWith(BMUnitRunner.class)

class DBTests { . . .

• TestNG: make test class extend runner
– class DBTests extends BMNGRunner { . . .

36

BMUnit Example

• package org.my.dbtests;
@RunWith(BMUnitRunner.class)
@BMScript(value="traceRules", dir=”scripts”)
class DBTest1 {
 @Test
 @BMRule(className="FileOutputStream",
 methodName="<init>(File)",
 condition="$1.getName().contains(\"Andrew\")",
 action="THROW new FileNotFoundException()”)
 public void testDBFileHandler() { . . .

• @BMScript name and/or dir can be defaulted
– script dir dir defaults to test JVM's working directory

• search for script file first in dir/org/my/dbtests then dir

– script file name defaults from test class name and/or method name

• DBTest1.btm class annotation

• DBTest1-testDBFileHandler.btm method annotation

• testDBFileHandler.btm method annotation

37

BMUnit From ant Or maven

• Execution just needs jars to be in the classpath
${BYTEMAN_HOME}/contrib/bmunit/byteman-bmunit.jar
${BYTEMAN_HOME}/lib/byteman-submit.jar
${BYTEMAN_HOME}/lib/byteman-install.jar
${BYTEMAN_HOME}/lib/byteman.jar
${JAVA_HOME}/lib/tools.jar

• For maven declare byteman jars as test dependencies
– you'll find them in the JBoss repo (use 1.5.1+)

– add tools.jar in your surefire configuration

 <configuration>
 <additionalClasspathElements>
 <additionalClasspathElement>
 ${java.home}/../lib/tools.jar
 </additionalClasspathElement>
 </additionalClasspathElements>
 . . .
</configuration>

• note the ../lib! maven points java.home at ${JAVA_HOME}/jre

38

Byteman Configuration Properties

• -Dorg.jboss.byteman.debug

– enables printout from builtin method debug(String)

– useful if you want to check your rules are actually firing

• -Dorg.jboss.byteman.verbose

– enables agent internal tracing (also switches on debug)

– lots of noise but you can see rules being injected and executed

– let's you know when a rule is not being processed

• -Dorg.jboss.byteman.transform.all

– enables injection into java.lang.* packages

– requires boot:/path/to/byteman.jar or bminstall -b pid

• maybe also boot:helper.jar or bmsubmit -b helper.jar

• -Dorg.jboss.byteman.compileToBytecode

– injected code normally executed by interpreting parse tree

– conversion to bytecode allows it to be JIT compiled

– useful when rules are triggered frequently

– currently applies to all rules but should be per-rule

AGENDA

• Why Trace? Why Test?

• How Does Byteman Help?

• How Do I Drive It?

• Questions

40

Questions

• Byteman Project Page at JBoss
– http://www.jboss.org/byteman/

• Downloads
– http://www.jboss.org/byteman/downloads

• latest release 1.5.1.

– also in JBoss maven repo (groupid: org.jboss.byteman)

• Documentation
– http://www.jboss.org/byteman/documentation

Programmers Guide (pdf)

– contrib packages
contrib/xxx/README.txt

• User and Developer Forums
– follow link from project page

• SVN Repository
– http://anonsvn.jboss.org/repos/byteman

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

