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Why Trace? Why Test?

• We don't always know what our code is doing
–   not even with a debugger

• impractical in many deployments

• impractical with multi-threaded code

• We don't always know what our code might do
–   . . . in unusual circumstances
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Get It Right First Time!

• Proving code is 'correct' is rarely an option

• Defining 'correctness' is tricky
– implicit vs explicit definition

• correctness proofs tend to want very explicit conditions

– emergent understanding

• proof refinement often means back to the drawing board

– incomplete understanding

• reliance on libraries and runtimes snookers us

– and even if we can define it . . .

• Proving 'correctness' is usually intractable
– I have done it twice in 25 years for select fragments of a larger system
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So What Do We Actually Do?

• We chip away at the problem
– unit test, integration test, system test, pilots, live monitoring

• We write software to help see what our code is doing
– debug/product trace

– execution stats collection

–  laborious, heavyweight and usually all or nothing

• We write software to see what our code might do
–   . . . in unusual circumstances

–   mock code, scaffolding, conditionally compiled builds

– laborious, heavyweight and usually all or nothing

• We test very different code to the released product
– . . . in very unusual circumstances

• different code, different footprint, different timing

–  . . . invariably not the circumstances occurring in live install

• We don't have 100% hindsight/foresight
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What Would We Prefer To Do?

• Something much more flexible

• Highly selective, customisable and ad hoc tracing
– tweak code without needing to prepare source

– at unit test, integration test, system test and in live deployments

– use application and runtime data/functionality

– revert back to original when done

• needed for both live and multiple test deployments

• Highly selective, customisable and ad hoc fault injection
– tweak code without needing to prepare source

– at unit test, integration test and system test

• in live deployments, anyone?

– use application and runtime data/functionality

– revert back to original when done

• needed for multiple test deployments
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Byte (code) Man (ipulation)

• Available in a JVM near you  right now
– transform at load can redefine class structure and code

– retransform after load can only redefine code

– java.lang.instrument a pure byte bashing API

• Byteman makes it easy
– inject actual Java code directly into Java code

• direct manipulation

– link to app/runtime code/data

• what you say is what you get

• type checking makes  it safe

• type inference keeps it simple

• Byteman makes it cheap
– low transformation cost

– tightly scoped changes

• Byteman makes it reversible
– only ever redefines code
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Example Byteman Rule

• Scripting Language
– Simple, minimal structure for injected code

– Event Condition Action Rules

– Very Java-oriented

• in fact it is Java, mostly!

RULE trace inactive transaction at commit
CLASS TransactionImple
METHOD commit()
AT ENTRY
BIND status : int = $0.getStatus()
IF status != javax.transaction.Status.STATUS_ACTIVE
DO traceStack("inactive commit " + $this +
              " status=" + status, 15);
ENDRULE
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E(B)CA Rules

• Event
– CLASS/INTERFACE METHOD AT...

• defines trigger point(s) i.e. location(s) in the code base

• package, signature, return type are optional

• (BINDING)
– introduces and initializes rule variables

• CONDITION
– any Java boolean expression

• ACTION
– any Java expressions

• Dyamically linked and typed
– $0 is the target of the trigger method, commit

– getStatus is a method of TransactionImple

– STATUS_ACTIVE references a static field of type int
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Example Byteman Rule (2)

RULE simulate exception from Executor
INTERFACE ^java.util.Executor
METHOD execute
AT ENTRY
IF callerEquals("ServiceInstanceImpl.execute", true)
DO traceln("Throwing exception in execute");
 THROW new
   java.util.concurrent.RejectedExecutionException();
ENDRULE

• inject through the interface into implementors

• inject down into overriding implementations
– AbstractExecutor implements Executor

– ThreadPoolExecutor extends AbstractExecutor

• THROW/RETURN from trigger method call
– must conform to method contract

– bypass catch block processing (short-circuit)
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Location Clauses

AT ENTRY
AT EXIT
AT/AFTER READ [[package.]type.]field | $localvar [count]
AT/AFTER WRITE [[package.]type.]field | $localvar [count]
AT/AFTER CALL [[package.]type.]method [(Types)] [count]
AT THROW [count]
AT LINE number

public check(Sym sym) throws BadSym, BadType
{
  String s = "";              // AFTER WRITE $s
  if (badSym(sym))) {
                              // AT READ name 1
    s = munge(sym.name);      // AT CALL munge, AT WRITE $s 2
    throw new BadSym(s);      // AT THROW ALL
  } else if (badType(sym.type)) {
                              // AT READ Type.name 1
                              // AT CALL munge 2
    s = munge(sym.type.name); // AT CALL munge(TypeName) 1
                              // AFTER WRITE $s 3
    throw new BadType(s);     // AT THROW 2
  }
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Expressions

• Parameter, local and rule variables
– $0, $1 ($this, $sym), $loopvar, status

• Special variables
– $*, $# trigger method parameter array and parameter count

– $! stacked return value in AT EXIT or AFTER CALL rule

– $@ stacked arguments in AT CALL  rule

– $^ stacked throwable in AT THROW rule

• The full set of Java operations
– operators +-*/, &|, && ||, == < >, new, =, etc

– instance/static field accesses and method invocations

– built-in methods (any call with no target instance)

– no control structures

• Assigning $ vars changes trigger method state
– $1 = "Andrew"

– $loopvar = $loopvar + 1

– $! = 3
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Built-in Methods

• Tracing
– traceOpen, traceClose, traceln, traceStack, ...

• Managing Shared Rule State
– flag, clear, countDown, incrementCounter, ...

• Timing
– createTimer, getElapsedTime, resetTimer

• Checking Caller Stack
– callerEquals, callerMatches

• Thread Synchronization
– waitFor, signalWake, rendezvous, delay

• Recursive Trigger Management
– setTriggering
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Example Byteman Rule (3.1)

• XTS Coordinator Service
– negotiates 2 phase commit with remote Web Service Participants

– sends PREPARE waits for PREPARED

– logs participant  details

– sends COMMIT expects COMMITTED

• XTS Crash Recovery Test
– kill JVM between logging and sending  COMMIT then reboot

– drop COMMITTED messages during first/second roll forward attempt

– allow messages to pass and ensure TX completes at 3rd attempt

RULE drop committed message
CLASS CoordinatorEngine
METHOD committed(Notification, MAP, ArjunaContext)
AT ENTRY
BIND engine:CoordinatorEngine = $0,
     identifier:String = engine.getId()
IF getCountDown(identifier)
DO RETURN
ENDRULE
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Example Byteman Rule (3.2)

RULE add coordinator engine countdown
CLASS CoordinatorEngine
METHOD <init>(String, boolean, EndpointReference, boolean, State)
AT EXIT
BIND engine:CoordinatorEngine = $0,
     identifier:String = engine.getId()
IF engine.recovered
DO createCountDown(identifier, 2)
ENDRULE

RULE countdown at commit
CLASS CoordinatorEngine
METHOD commit
AFTER WRITE status
BIND engine:CoordinatorEngine = $0
     identifier:String = engine.getId()
IF engine.recovered && countDown(identifier)
DO traceln("countdown completed for " + identifier)
ENDRULE
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Helper Classes

• Built-ins are just public methods of a POJO
– take a look

• org.jboss.byteman.rule.Helper

• You can use any POJO as Helper

class DBHelper
{
  public void trace(String msg, Record rec) { . . . }
  . . .

RULE use my own trace method
CLASS org.my.db.DBManager
METHOD update(Record)
AT CALL setName(String)
HELPER org.my.bmutil.DBHelper
IF $@[1] == "Andrew”
DO trace("found interesting record update ", $1)
ENDRULE
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Helper Classes

• HELPER clause outside rule resets for following rules
HELPER org.my.bmutil.DBHelper
RULE my Helper rule 1
. . .
RULE my Helper rule 2
. . .
HELPER
RULE back to default Helper
. . .

• Byteman type checks and links using named class
– Helper class must be in classpath

• Rules injected into JVM code require helper class in bootstrap path

• Byteman will install a jar into the bootstrap path if you ask

• Often helps to extend Byteman Helper
class DBHelper extends Helper { . . .

– allows you to reuse/redefine existing built-ins in your rules
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Four Different Routes

• Java command line
– most complicated but applies rules from JVM start

• intercept (almost) all JVM activity (e.g inject into app Main())

• Byteman bin shell scripts
– basic script just wraps up command line arguments

– can install rules into an already running program (e.g. live JBoss AS)

– can deinstall rules and reinstall

– can also check status of loaded rules

• Byteman API classes
– install the agent and install/uninstall rules from a Java program

– doesn't have to be into the same JVM

– used by contrib packages to do automatic rule loading/unloading

• BMUnit package
– integration of Byteman into JUnit or TestNG

– easiest way to load and unload Byteman rules

– trivial to run from ant or maven
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Java Command Line

• java option installs “Java agent” bytecode transformer
-javaagent:/path/to/agent.jar=agentoptions

• Byteman main jar is a Java agent jar
-javaagent:${BYTEMAN_HOME}/lib/byteman.jar=agentoptions

• BYTEMAN_HOME is where you unzipped the download

• Byteman agent can start a listener on localhost:9090
– allows upload/unload/reload/status of rules while program is running

• agentoptions are comma separated name:value pairs
– e.g. script:./rules.btm,script:./morerules.btm,boot:byteman.jar

script:script.btm   install rules from script.btm at agent startup
boot:my.jar         add my.jar to bootstrap classpath
sys:my.jar          add my.jar to system classpath
listener:true       start up agent listener
port:999            use listener port 999
address:192.168.0.1 use listener host 192.168.0.1
prop:name=value     configure Byteman System property

• where name is org.jboss.byteman.xxx
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bmjava

bmjava javaargs

– use in place of java command

• bmjava -cp build/classes Register -n Andrew

– installs Byteman agent, starts Byteman listener on localhost:9090

– bmjava options

• these precede javaargs

-p port -h hostname       use a different listener port/host
-l /path/to/myscript.btm  load rules at agent startup
-b /path/to/helper.jar    install jar into bootstrap path
-s /path/to/helper.jar    install jar into sys path
-Dorg.jboss.byteman.xxx   configure Byteman system properties

• rules injected as matching classes are loaded

• existing classes may need to be retransformed
– e.g. java.lang.Thread.start()
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bminstall

bminstall procId | mainClass

– installs Byteman agent into already running program

• bminstall -Dorg.jboss.byteman.debug org.jboss.Main

• always starts listener

-p port –h hostname  use a different listener port/host
-b                   install byteman jar in boot path

• should be the default (e.g. bmjava.sh provides -nb)

-Dorg.jboss.byteman.transform.all  allow inject into java.lang.*

• should be the default (e.g. bmjava.sh provides -nj)
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bmsubmit

bmsubmit [-l | -u] [script1 . . . scriptN]

– load or unload rule scripts via Byteman listener

• bmsubmit /path/to/myscript.btm

– applies rules to new classes and retransforms existing classes

• bmsubmit -u

– removes rules and reverts affected classes

• bmsubmit shows status of all loaded rules

-p port -h hostname  use a different listener port/host
-o outfile           redirect output to outfile

bmsubmit [-b | -s] jar1 [. . . jarN]

– load jars into bootstrap or system classpath

• bminstall -b /path/to/helper.jar

bmsubmit -c

– list all loaded jars

bmsubmit -y

– list current configured Byteman system properties

• org.jboss.byteman.*
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bmcheck

bmcheck [-cp path|jar]* [-p prefix]* script1 ... scriptN

– parse and type check rules offline

• bmcheck -cp my.jar -cp your.jar \
-p org.my -p org.your myscript.txt

– needs to explicitly load classes mentioned in rules

-cp  locates jar containing classes mentioned in rules

-p   resolves unspecified packages in CLASS or INTERFACE clause

• CLASS Foo ==> org.my.Foo

• CLASS Bar ==> org.my.Bar, org.your.Bar

• errors messages are now quite good and getting better
–  parser errors not always able to provide exact line

• but usually close

– type errors normally very precise
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Byteman API Classes

• org.jboss.byteman.agent.install.Install
– main(String[]) used by bminstall

– other static methods for programs to use

• install(String pid, boolean addToBoot,
      String host, int  port, String[] properties)

• VMInfo[] availableVMs()

• org.jboss.byteman.agent.submit.Submit
– main(String[]) used by bmsubmit

– other instance methods for programs to use

• Submit()

• Submit(String host, int  port, PrintStream out)

• addRulesFromFiles(List<String> filePaths)

• addScripts(List<ScriptText> scripts)

• Used by contrib packages
– dtest  instruments remote JVM for post-run validation

– BMUnit integrates Byteman into JUnit and TestNG tests
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BMUnit Tests

• Integrates Byteman into JUnit and TestNG
– automatically loads the agent for you

– automatically loads and unloads rules for you

• Simply annotate your test classes and @Test methods
– @BMScript identifies a script file to load

– @BMRule provides rule text in the annotation

– Class level annotation

• load before running test methods, unload once all completed

– Method level annotation

• load before calling test method, unload after call completed

• JUnit: annotate test class with test runner
– @RunWith(BMUnitRunner.class)

class DBTests { . . .

• TestNG: make test class extend runner
– class DBTests extends BMNGRunner { . . .
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BMUnit Example

• package org.my.dbtests;
@RunWith(BMUnitRunner.class)
@BMScript(value="traceRules", dir=”scripts”)
class DBTest1 {
  @Test
  @BMRule(className="FileOutputStream",
          methodName="<init>(File)",
                      condition="$1.getName().contains(\"Andrew\")",
                      action="THROW new FileNotFoundException()”)
  public void testDBFileHandler() { . . .

• @BMScript name and/or dir can be defaulted
– script dir dir defaults to test JVM's working directory

• search for script file first in dir/org/my/dbtests then dir

– script file name defaults from test class name and/or method name

• DBTest1.btm class annotation

• DBTest1-testDBFileHandler.btm  method annotation

• testDBFileHandler.btm          method annotation
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BMUnit From ant Or maven

• Execution just needs jars to be in the classpath
${BYTEMAN_HOME}/contrib/bmunit/byteman-bmunit.jar
${BYTEMAN_HOME}/lib/byteman-submit.jar
${BYTEMAN_HOME}/lib/byteman-install.jar
${BYTEMAN_HOME}/lib/byteman.jar
${JAVA_HOME}/lib/tools.jar

• For maven declare byteman jars as test dependencies
– you'll find them in the JBoss repo (use 1.5.1+)

– add tools.jar in your surefire configuration

  <configuration>  
  <additionalClasspathElements>
    <additionalClasspathElement>
       ${java.home}/../lib/tools.jar
    </additionalClasspathElement>
  </additionalClasspathElements>
  . . .
</configuration>

• note the ../lib! maven points java.home at ${JAVA_HOME}/jre
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Byteman Configuration Properties

• -Dorg.jboss.byteman.debug

– enables printout from builtin method debug(String)

– useful if you want to check your rules are actually firing

• -Dorg.jboss.byteman.verbose

– enables agent internal tracing (also switches on debug)

– lots of noise but you can see rules being injected and executed

– let's you know when a rule is not being processed

• -Dorg.jboss.byteman.transform.all

– enables injection into java.lang.* packages

– requires boot:/path/to/byteman.jar or bminstall -b pid

• maybe also boot:helper.jar or  bmsubmit -b helper.jar

• -Dorg.jboss.byteman.compileToBytecode

– injected code  normally executed by interpreting parse tree

– conversion to bytecode allows it to be JIT compiled

– useful when rules are triggered frequently

– currently applies to all rules but should be per-rule
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Questions

• Byteman Project Page at JBoss
– http://www.jboss.org/byteman/

• Downloads
– http://www.jboss.org/byteman/downloads

• latest release 1.5.1.

– also in JBoss maven repo (groupid: org.jboss.byteman)

• Documentation
– http://www.jboss.org/byteman/documentation

Programmers Guide (pdf)

– contrib packages
contrib/xxx/README.txt

• User and Developer Forums
– follow link from project page

• SVN Repository
– http://anonsvn.jboss.org/repos/byteman
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