

The Spring Framework introduction

by

Martin Podolinský

(ByteSourceTechnologies Consulting GmbH)

Email: martin.podolinsky@bytesource.net
Twitter: @mpodolinsky

mailto:martin.podolinsky@bytesource.net

Agenda

❏ What is the Spring Framework?
❏ Dependency injection
❏ Spring configuration
❏ Spring AOP
❏ Testing support

What is the Spring Framework?

What is the spring framework?

● Spring is a Lightweight Application Framework
...and is not an application server

● Springs adresses all tiers of an application -
optionally

● Easy integrates 3rd party products and interfaces
(JPA, Hibernate, web frameworks, WS, ...)

The Spring Framework history

● The first version by Rod Johnson as a framework around his book
„Expert One-on-One J2EE Design and Development“ in October 2002

● The Spring 1.0 was released in March 2004 under the Apache 2.0
license

● 2005 become framework very popular and is emerged as a leading
J2EE application framework

● 2006 won a Jolt productivity award and a JAX Innovation Award

● The current version is 3.0.x

Overview of the Spring Framework

diagram from springsource.org

Overview of the Spring Framework

diagram from springsource.org

IoC and DI features based on
the BeanFactory container
concept

Build on the base of Beans and Core. Provide way to
access objects, support for i18n, resource loading,...

Powerful language
for querying and
manipulating an
object graph at
runtime

Overview of the Spring Framework

diagram from springsource.org

AOP support
provided by Spring.
Also possibility to
use AspectJ

Support for testing Spring components using
TestNG or Junit. Provides loading of Spring
ApplicationContexts.

Overview of the Spring Framework

diagram from springsource.org

JDBC – provides
an abstraction layer

ORM – provides
integration layers
for popular ORM
APIs like JPA,
Hibernate or
iBatis. Support of
declarative
transaction
management.

Object/XML
mapping
implementations
like JAXB or
XStream

Programatic or
declarative
transaction
management.

Spring is non-invasive

● Developer is not forced to introduce any
framework-specific code into business/domain
model.

● Beans are JavaBean or POJOs and dependecies
are „injected“ using setters or constructors

● Independence on a concrete framework gives
better possibilities to reuse or test our
components.

Dependency injection

Dependency injection

● Implementation of the Inversion of Control pattern

● BeanFactory responsible for instantiating all components based on a
configuration

CustomerManagementService

Properties:
 AccountManagementService
 AddressManagementService
 SmsGatewayService

AccountManagementService

AddressManagementService

SmsGatewayService

Dependency injection

● No need for a component lookup code in our
services

● Enables good reusability of our code
● Promotes good OOP eg. using interfaces
● Provides an easy way to support different

environments during the project lifecycle (dev,
QA, prod)

● Application will be extremly testable on a unit or
component level (testability is essential!)

So again, what is really Spring?

So far we know,
● A Dependency Injection Container
● An AOP Framework
● A Service Abstraction Layer

● Consistent integration with various standard and
3rd party APIs

Spring is a way how to write powerful, scalable
and testable applications using POJOs

Spring configuration

Spring managed beans configuration

Interfaces

public interface AuthenticationService { ... }

public interface CryptoService { ... }

Implementation

public class AuthenticationServiceImpl implements AuthenticationService {

 private CryptoService cryptoService;

 private String editModeGroupName;

 public void setCryptoService(CryptoService cryptoService) {

 this.cryptoService = cryptoService;

 }

 public void setEditModeGroupName(String editModeGroupName) {

 this.editModeGroupName = editModeGroupName;

 }

...

Spring managed beans configuration

XML Configuration

<bean id="service.AuthenticationService"
class="net.bytesource.rcrsdocreport.infrastructure.service.impl.AuthenticationServic
eImpl">

 <property name="cryptoService" ref="cryptoService"/>

 <property name="editModeGroupName">

 <value>${group.edit}</value>

 </property>

</bean>

<bean id="cryptoService"
class="net.bytesource.corporate.crypto.impl.CryptoServiceSymetricImpl">

 <constructor-arg index="0"><value>${cryptoSecret}</value></constructor-arg>

</bean>

Spring configuration options (I.)

● XML-based configuration

● Annotation-based configuration

● Classpath scanning and autodetecting of @Component
(@Repository, @Service, @Controller)

● Injecting via
● @Autowired – spring annotation
● @Resource(name=“componentName“) - JSR-250

Spring configuration options (II.)

● Writing configurations using Java

● @Configuration - class annotation indicates a source of beans
definitions

● @Bean is a method-level annotation and a direct analog of the
XML <bean/> element. Provides equivalent parameters as
the xml configuration (scope, qualifier, ...)

● Offers a type safety and more flexibiliy than pure xml
configuration

All configuration options can be combined so already existing spring
code can be integrated without refactoring.

Beans wiring methods

● Let Spring decide – autowiring

● byType – there must be only one bean of the type ...
public void setCryptoService(CryptoService cryptoService)

● byName – there must be a bean with exact name ...
public void setCryptoService(CryptoService cryptoService)

● Constructor – analogous to byType, aplies to constructor args.

public AuthenticationServiceImpl(CryptoService cryptoService)

● Wiring by defining bean's names

recommended for larger deployments

@Resource(name=“myCryptoService“)

private CryptoService cryptoService;

Bean scopes

Singleton – a single object instance per Spring IoC container

– Usually stateless beans like DAOs

Prototype – each request creates a new instance

– Statefull beans

Valid in the context of web-aware Spring ApplicationContext

Request - a single HTTP request

Session - HTTP Session

Global session - global HTTP Session

Spring configuration demo ...

Spring AOP

Aspect Oriented Programming

● AOP complements OOP by providing another
way of thinking about program structure

● Decomposes a system into concerns

(TX, logging, audit, caching, security, ...)

● Solves an issue of cross-cutting concerns
which are difficult to modularize

Spring AOP

Bean A Method A

Bean B Method B

AOP proxy of the Bean B

Advice runs

@Before,
@AfterReturning,
@AfterThrowing,
@After (finally)
or
@Around

method executions
matched by the
Pointcut

AOP Terminology

Aspect – a modularization of a concern. In Spring are implemented as
regular classes

Joint point – a point during the execution of a program. In Apring AOP
always represents a method execution

Pointcut – a predicate that matches the point

Advice – action taken by an aspect at a particular join point

Spring TX support via AOP configration
demo ...

Spring AOP demo ...

Testing support in Spring

Introduction to testing

● IoC principle is a benefit and increases productivity

● Unit testing

● JUnit, TestNG support
● Easy to instantiate object simply using the new operator or use

Mock objects
● Spring provides set of utilities, eg ReflectionTestUtils

● Integration testing

● Spring IoC container caching between test execution
● Dependency injection
● Transaction Management
● Support abstract classes providing eg. application context

Test specific annotations

@ContextConfiguration(locations={"example/test-context.xml"})

@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)

@TestExecutionListeners({ TransactionalTestExecutionListener.class})

@TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)

@Rollback(false)

@BeforeTransaction

@AfterTransaction

@Timed(millis=1000)

@Repeat(10)

Non-test-specific annotations

@Autowired

@Qualifier

@Resource (javax.annotation) if JSR-250 is present

@Inject (javax.inject) if JSR-330 is present

@Named (javax.inject) if JSR-330 is present

@Provider (javax.inject) if JSR-330 is present

@PersistenceContext (javax.persistence) if JPA is present

@PersistenceUnit (javax.persistence) if JPA is present

@Required

@Transactional

Test demo ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

