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About me

● Quality Assurance Engineer at JBoss / Red Hat

● Formerly played with JBoss AS / EAP

● Now having fun with Infinispan / JBoss Data Grid

● Performance / system resilience tests in clustered 
environment

● mlinhard@redhat.com

● twitter: michallinhard

mailto:mlinhard@redhat.com
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Agenda

● What's Infinispan

● Why / When to use it

● High level features

● How to plug it into your architecture

● Clustering modes

● Client / server access modes
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What's Infinispan ?

● Open-source datagrid patform

● Distributed cache (offers massive heap)

● Scalable (goal: hundreds of nodes)

● Higly available, resilient to node failures

● Concurrent

● Transactional

● Queryable

Red Hat Productized version: JBoss Data Grid (Beta released Apr. 2012)

http://www.redhat.com/promo/dg6beta/
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For Java users: it's a Map

org.infinispan.Cache extends java.util.Map

DefaultCacheManager cacheManager = new DefaultCacheManager("infinispan.xml");
   
Cache<String, Object> cache = cacheManager.getCache("namedCache");
   
cache.put("key", "value");
   
Object value = cache.get("key");
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Configuration in XML

<?xml version="1.0" encoding="UTF-8"?>
<infinispan/>

Read more: 
https://docs.jboss.org/author/display/ISPN/Configuring+Cache+declaratively

https://docs.jboss.org/author/display/ISPN/Configuring+Cache+declaratively
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Programmatic Configuration

Read more:
https://docs.jboss.org/author/display/ISPN/Configuring+cache+programmatically

Configuration c =
     new ConfigurationBuilder()

.clustering().cacheMode(CacheMode.REPL_SYNC)

.build();

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.transport()

.clusterName("qa-cluster")

.addProperty("configurationFile", "jgroups-tcp.xml")

.machineId("qa-machine").rackId("qa-rack")
.build();

https://docs.jboss.org/author/display/ISPN/Configuring+cache+programmatically
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Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/
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Features - Querying 

Read more: https://docs.jboss.org/author/display/ISPN/Querying+Infinispan

// example values stored in the cache and indexed:
import org.hibernate.search.annotations.*;
  
//to be indexed the object needs both @Indexed and @ProvidedId annotations:
@Indexed @ProvidedId
public class Book {
      @Field String title;
      @Field String description;
      @Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
      @IndexedEmbedded Set<Author> authors = new HashSet<Author>();
}
  
public class Author {
      @Field String name;
      @Field String surname;
      // hashCode() and equals() omitted
}

https://docs.jboss.org/author/display/ISPN/Querying+Infinispan
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Features - Querying 

Read more: https://docs.jboss.org/author/display/ISPN/Querying+Infinispan

SearchManager searchManager = org.infinispan.query.Search.getSearchManager( cache );
  
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass( Book.class ).get();
  
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
                                    .onField( "description" )
                                    .andField( "title" )
                                    .sentence( "a book on highly scalable query engines" )
                                    .createQuery();
  
CacheQuery query = searchManager.getQuery( luceneQuery, Book.class );
  
List<Book> objectList = query.list();
  
for ( Book book : objectList ) {
            System.out.println( book.getTitle() );
}

https://docs.jboss.org/author/display/ISPN/Querying+Infinispan
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Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● Each cache is either

● TRANSACTIONAL

● or NON_TRANSACTIONAL

● Transactional cache has two possible locking modes

● OPTIMISTIC

● PESSIMISTIC

● Two isolation modes available

● REPEATABLE_READ

● READ_COMMITTED

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions
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Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● JTA Transactions – to configure specify TransactionManagerLookup 

● In JavaSE apps: JBossStandaloneJTAManagerLookup – uses 
JBoss Transactions

● In JEE apps: GenericTransactionManagerLookup – works with 
most popular containers

● In JBoss AS: JBossTransactionManagerLookup

<transaction
transactionManagerLookupClass=

"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"
transactionMode="TRANSACTIONAL"
lockingMode="OPTIMISTIC" />

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions
http://www.jboss.org/jbosstm
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Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

Cache cache = cacheManager.getCache();
  
TransactionManager tm =
     cache.getAdvancedCache().getTransactionManager();

transactionManager.begin();
cache.put(k1,v1);
cache.remove(k2);
transactionManager.commit();

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard18

Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● Explicit locking

● Deadlock detection

● Transaction recovery

● Distributed transactions

● Elisting through javax.transaction.Synchronisation

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions
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Features – Eviction

● Specify maximal number of entries to keep in cache

● Heap-load based eviction (being worked on)

● Eviction strategies
● UNORDERED
● FIFO
● LRU – Least recently used
● LIRS - Low Inter-reference Recency Set

S.Jiang and X.Zhang’s 2002 paper: LIRS: An efficient 
low inter-reference recency set replacement policy to 
improve buffer cache performance

Read more: https://docs.jboss.org/author/display/ISPN/Eviction

https://docs.jboss.org/author/display/ISPN/Eviction
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Features – Expiration

● Specify maximal time entries are allowed
● stay in cache (lifespan)
● stay in cache untouched (maxIdle)

● Default expiration – specify in cache config

● Explicitly set lifespan or maxIdle with every PUT

Read more: https://docs.jboss.org/author/display/ISPN/Eviction

cache.put("Grandma", "I'll stay only a minute", 1, TimeUnit.MINUTES);
cache.put("Tamagochi", "Watch me or I'll die", -1, TimeUnit.SECONDS, 

1, TimeUnit.SECONDS);

https://docs.jboss.org/author/display/ISPN/Eviction
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Features – Cache stores

● Store data from memory to other kind of storage

● File System
● FileCacheStore – basic FS store implementation
● BerkeleyDB JavaEdition
● JBDM

● Relational Database
● JdbcBinaryCacheStore – PK – hash of whatever
● JdbcStringBasedCacheStore – PK – String (needs mapping)

● Other NoSQL stores
● Cassandra
● JClouds BlobStore
● RemoteCacheStore – store to another Infinispan grid

http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
https://github.com/jankotek/JDBM3
http://cassandra.apache.org/
http://www.jclouds.org/
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Features – Cache stores

Passivation Eviction Behaviour

OFF OFF P = M (Write through)
whenever an element is modified, added or removed, then that 
modification is persisted in the backend store

OFF ON P ⊇  M (Write through)
P includes all entries while M may contain fewer entries (some of 
them might have been evicted)

ON OFF This is an invalid configuration and Infinispan logs a 
warning

ON ON P ∩ M = ∅
Writes to the persistent store via the cache store only occur as 
part of the eviction process. Data is deleted from the persistent 
store when read back into memory.

P = set of keys kept in persisted storage
M = set of keys kept in memory
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Features – Others

● Management via RHQ (http://rhq-project.org)

● CDI, injection of Cache, RemoteCache

● partial support for JCache (JSR-107) caching annotations

● Distributed execution model

● MapReduce model

● JMX Statistics

● Tree API

● ... and more on next slides

http://rhq-project.org/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard24

How to plug it into your architecture ?
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Modes of access / usage

● Embedded (In-VM)

● Remote (Client/Server)
● REST (HTTP)
● Memcached
● Hot Rod
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Embedded (In-VM) mode
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Embedded (In-VM) mode - clustered
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Embedded (In-VM) mode - clustered

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/
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Client / Server mode

Protocols
● REST
● Memcached
● Hot Rod
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Client / Server mode - clustered
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Client / Server mode - clustered

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/
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Client / Server mode - clustered

● Independent tier 
management

● Independently deploy 
new app version

● Security

● Incompatible JVM tuning 
requirements
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Client / Server mode - clustered

Big deal
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What clustering / resilience / elasticity means
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Clustering modes

● Local - no clustering
● unaware of other instances on network

● Replication – each node contains all the entries

● Distribution – each entry is on x nodes 
● 1 <= x <= Number of nodes

● Invalidation – for use with shared cache store
● explained later
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Replication mode



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard37

Replication mode

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put broadcast to every node
● Doesn't scale well
● Upon join all state has to be transfered to new node
● Heap size stays the same when we add nodes
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Invalidation mode
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Invalidation mode

● Suitable for RDBMS off-loading, used with shared cache store

● Entry exists in node's local cache => it's valid and can be 
returned to requestor

● Entry doesn't exist in node's local cache => it's retrieved from 
the persistent store

● If a node modifies/removes entry it's invalidated in other nodes

● Low internode msg traffic, PUT sends only invalidation 
messages and they are are small.
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Distribution mode
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Distribution mode

● Advantages

● Scalability – number of replication RPCs independent of cluster size – depends 
only on numOwners

● set numOwners to compromise between failure tolerance and performance

● Virtual heap size = numNodes * heapSize / numOwners

● Disadvantages

● Not every node is an owner of the key, GET may require network hops

● Hash function is not perfect (in 5.1+ virtual nodes improved this greatly)

● Node join/leave => State transfer (rehash)
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Distribution mode – L1 Cache
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Distribution mode – L1 Cache

● Advantages
● subsequent GETs don't fetch remote data

● Disadvantages
● L1 cache needs to be invalidated – number of 

invalidation messages can be > numOwners (anyone 
can have a cached copy)

● L1 cache takes up more memory
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Why good Consistent Hash function matters

● Even distribution of entries – balanced load

● Less expected rehash on node leave / join

Virtual nodesHash wheel
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Sync vs Async mode

● Sync
● All operations get confirmation that the other relevant 

cluster nodes reached the desired state
● Async

● All operations block only until they perform local 
changes, we don't wait for JGroups responses.

● Better throughput but no guarantees on data integrity in 
cluster.
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REST Server

http://<hostname>[:<port>]/infinispan-server-rest/rest/<cache_name>/<key>

e.g.

http://localhost:8080/infinispan-server-rest/rest/___defaultcache/abcd

HTTP Methods supported:

HEAD, GET, PUT, POST, DELETE

Standard headers supported:

Content-Type
ETag
Last-Modified
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REST Server access via Python
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REST Server access via Ruby
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REST Server access via command line (curl)

PUT

curl -X PUT -d "aaa" http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa

GET

curl -X GET http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa

DELETE

curl -X DELETE http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa
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Memcached

● Open protocol for popular memcached server: 
http://memcached.org/

● Python
● Python-memcached client library

● Java
● Spymemcached client

● There is Binary and Text protocol version

● Infinispan supports text protocol only

http://memcached.org/
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Memcached server (original version)
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Memcached server (Infinispan implementation)
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Routing not so smart
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Hot Rod

● Infinispan's own binary 
wire protocol

● Open and language 
independent

● Built-in dynamic failover 
and load balancing

● Smart routing
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Smart routing with Hot Rod



INTERNAL ONLY | Michal Linhard56

Dynamic routing with Hot Rod
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// DefaultCacheManager cacheManager = new DefaultCacheManager("infinispan.xml");

RemoteCacheManager cacheManager = new RemoteCacheManager("localhost:11222");
cacheManager.start();
   
Cache<String, Object> cache = cacheManager.getCache("namedCache");
   
cache.put("key", "value");
   
Object value = cache.get("key");

For Java users: it's a Map (again)
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ispncon – comand line console

Read more: 
https://docs.jboss.org/author/display/ISPN/Infinispan+Command-line+Console

● python based

● allows simple shell scripts

● abstracts over REST/Memcached/HotRod

$ ispncon put “key” “value”
$ ispncon get “key”
value
$ echo “hello” > /tmp/datafile
$ ispncon put -i /tmp/datafile “datafileKey”
$ ispncon get “datafileKey”
hello

https://docs.jboss.org/author/display/ISPN/Infinispan+Command-line+Console
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Protocol
Client 

libraries
Clustered ?

Smart 
routing

Load 
balancing / 

Failover

REST Text standard 
HTTP 
clients

Yes No Any HTTP 
load 

balancer

Memcached Text Plenty Yes No Only with 
predefined 
server list

Hot Rod Binary Java, 
python, C++ 
on the way

Yes Yes
Dynamic

Clients - comparison
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Stuff being worked on

● Eventual consistency
● Dealing with cluster partitions

● Non-blocking state transfer
● Allowing writes during state transfer
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Peek into the QA world:
Testing elasticity / resilience

● start node1 (DIST/REPL) clustering mode

● load with data, using Hot Rod clients

● apply a steady load (e.g. 500 clients, each 10 req/sec)

● start node2, start node3, start node4

● kill node1, kill node2, kill node3

● all data is preserved in node4
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Peek into the QA world:
Testing elasticity / resilience
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Thank you!
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