
Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard1

Intro to Infinispan

Michal Linhard
Quality Assurance Engineer, JBoss / Red Hat

Advanced Java EE Lab @ FI MUNI
April 26th 2012



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard2

About me

● Quality Assurance Engineer at JBoss / Red Hat

● Formerly played with JBoss AS / EAP

● Now having fun with Infinispan / JBoss Data Grid

● Performance / system resilience tests in clustered 
environment

● mlinhard@redhat.com

● twitter: michallinhard

mailto:mlinhard@redhat.com


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard3

Agenda

● What's Infinispan

● Why / When to use it

● High level features

● How to plug it into your architecture

● Clustering modes

● Client / server access modes



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard4

What's Infinispan ?

● Open-source datagrid patform

● Distributed cache (offers massive heap)

● Scalable (goal: hundreds of nodes)

● Higly available, resilient to node failures

● Concurrent

● Transactional

● Queryable

Red Hat Productized version: JBoss Data Grid (Beta released Apr. 2012)

http://www.redhat.com/promo/dg6beta/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard5

For Java users: it's a Map

org.infinispan.Cache extends java.util.Map

DefaultCacheManager cacheManager = new DefaultCacheManager("infinispan.xml");
   
Cache<String, Object> cache = cacheManager.getCache("namedCache");
   
cache.put("key", "value");
   
Object value = cache.get("key");



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard6

Configuration in XML

<?xml version="1.0" encoding="UTF-8"?>
<infinispan/>

Read more: 
https://docs.jboss.org/author/display/ISPN/Configuring+Cache+declaratively

https://docs.jboss.org/author/display/ISPN/Configuring+Cache+declaratively


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard7

Programmatic Configuration

Read more:
https://docs.jboss.org/author/display/ISPN/Configuring+cache+programmatically

Configuration c =
     new ConfigurationBuilder()

.clustering().cacheMode(CacheMode.REPL_SYNC)

.build();

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.transport()

.clusterName("qa-cluster")

.addProperty("configurationFile", "jgroups-tcp.xml")

.machineId("qa-machine").rackId("qa-rack")
.build();

https://docs.jboss.org/author/display/ISPN/Configuring+cache+programmatically


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard8

Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard9

Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard10

Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard11

Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard12

Why Datagrid ?

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard13

Features - Querying 

Read more: https://docs.jboss.org/author/display/ISPN/Querying+Infinispan

// example values stored in the cache and indexed:
import org.hibernate.search.annotations.*;
  
//to be indexed the object needs both @Indexed and @ProvidedId annotations:
@Indexed @ProvidedId
public class Book {
      @Field String title;
      @Field String description;
      @Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
      @IndexedEmbedded Set<Author> authors = new HashSet<Author>();
}
  
public class Author {
      @Field String name;
      @Field String surname;
      // hashCode() and equals() omitted
}

https://docs.jboss.org/author/display/ISPN/Querying+Infinispan


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard14

Features - Querying 

Read more: https://docs.jboss.org/author/display/ISPN/Querying+Infinispan

SearchManager searchManager = org.infinispan.query.Search.getSearchManager( cache );
  
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass( Book.class ).get();
  
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
                                    .onField( "description" )
                                    .andField( "title" )
                                    .sentence( "a book on highly scalable query engines" )
                                    .createQuery();
  
CacheQuery query = searchManager.getQuery( luceneQuery, Book.class );
  
List<Book> objectList = query.list();
  
for ( Book book : objectList ) {
            System.out.println( book.getTitle() );
}

https://docs.jboss.org/author/display/ISPN/Querying+Infinispan


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard15

Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● Each cache is either

● TRANSACTIONAL

● or NON_TRANSACTIONAL

● Transactional cache has two possible locking modes

● OPTIMISTIC

● PESSIMISTIC

● Two isolation modes available

● REPEATABLE_READ

● READ_COMMITTED

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard16

Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● JTA Transactions – to configure specify TransactionManagerLookup 

● In JavaSE apps: JBossStandaloneJTAManagerLookup – uses 
JBoss Transactions

● In JEE apps: GenericTransactionManagerLookup – works with 
most popular containers

● In JBoss AS: JBossTransactionManagerLookup

<transaction
transactionManagerLookupClass=

"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"
transactionMode="TRANSACTIONAL"
lockingMode="OPTIMISTIC" />

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions
http://www.jboss.org/jbosstm


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard17

Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

Cache cache = cacheManager.getCache();
  
TransactionManager tm =
     cache.getAdvancedCache().getTransactionManager();

transactionManager.begin();
cache.put(k1,v1);
cache.remove(k2);
transactionManager.commit();

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard18

Features - Transactions 

Read more: https://docs.jboss.org/author/display/ISPN/Infinispan+transactions

● Explicit locking

● Deadlock detection

● Transaction recovery

● Distributed transactions

● Elisting through javax.transaction.Synchronisation

https://docs.jboss.org/author/display/ISPN/Infinispan+transactions


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard19

Features – Eviction

● Specify maximal number of entries to keep in cache

● Heap-load based eviction (being worked on)

● Eviction strategies
● UNORDERED
● FIFO
● LRU – Least recently used
● LIRS - Low Inter-reference Recency Set

S.Jiang and X.Zhang’s 2002 paper: LIRS: An efficient 
low inter-reference recency set replacement policy to 
improve buffer cache performance

Read more: https://docs.jboss.org/author/display/ISPN/Eviction

https://docs.jboss.org/author/display/ISPN/Eviction


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard20

Features – Expiration

● Specify maximal time entries are allowed
● stay in cache (lifespan)
● stay in cache untouched (maxIdle)

● Default expiration – specify in cache config

● Explicitly set lifespan or maxIdle with every PUT

Read more: https://docs.jboss.org/author/display/ISPN/Eviction

cache.put("Grandma", "I'll stay only a minute", 1, TimeUnit.MINUTES);
cache.put("Tamagochi", "Watch me or I'll die", -1, TimeUnit.SECONDS, 

1, TimeUnit.SECONDS);

https://docs.jboss.org/author/display/ISPN/Eviction


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard21

Features – Cache stores

● Store data from memory to other kind of storage

● File System
● FileCacheStore – basic FS store implementation
● BerkeleyDB JavaEdition
● JBDM

● Relational Database
● JdbcBinaryCacheStore – PK – hash of whatever
● JdbcStringBasedCacheStore – PK – String (needs mapping)

● Other NoSQL stores
● Cassandra
● JClouds BlobStore
● RemoteCacheStore – store to another Infinispan grid

http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
https://github.com/jankotek/JDBM3
http://cassandra.apache.org/
http://www.jclouds.org/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard22

Features – Cache stores

Passivation Eviction Behaviour

OFF OFF P = M (Write through)
whenever an element is modified, added or removed, then that 
modification is persisted in the backend store

OFF ON P ⊇  M (Write through)
P includes all entries while M may contain fewer entries (some of 
them might have been evicted)

ON OFF This is an invalid configuration and Infinispan logs a 
warning

ON ON P ∩ M = ∅
Writes to the persistent store via the cache store only occur as 
part of the eviction process. Data is deleted from the persistent 
store when read back into memory.

P = set of keys kept in persisted storage
M = set of keys kept in memory



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard23

Features – Others

● Management via RHQ (http://rhq-project.org)

● CDI, injection of Cache, RemoteCache

● partial support for JCache (JSR-107) caching annotations

● Distributed execution model

● MapReduce model

● JMX Statistics

● Tree API

● ... and more on next slides

http://rhq-project.org/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard24

How to plug it into your architecture ?



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard25

Modes of access / usage

● Embedded (In-VM)

● Remote (Client/Server)
● REST (HTTP)
● Memcached
● Hot Rod



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard26

Embedded (In-VM) mode



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard27

Embedded (In-VM) mode - clustered



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard28

Embedded (In-VM) mode - clustered

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard29

Client / Server mode

Protocols
● REST
● Memcached
● Hot Rod



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard30

Client / Server mode - clustered



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard31

Client / Server mode - clustered

From http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/

http://fhornain.wordpress.com/2012/04/21/jboss-data-grid-when-database-is-very-expensive/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard32

Client / Server mode - clustered

● Independent tier 
management

● Independently deploy 
new app version

● Security

● Incompatible JVM tuning 
requirements



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard33

Client / Server mode - clustered

Big deal



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard34

What clustering / resilience / elasticity means



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard35

Clustering modes

● Local - no clustering
● unaware of other instances on network

● Replication – each node contains all the entries

● Distribution – each entry is on x nodes 
● 1 <= x <= Number of nodes

● Invalidation – for use with shared cache store
● explained later



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard36

Replication mode



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard37

Replication mode

● Advantages

● N node cluster tolerates N-1 failures
● Read friendly – we don't need to fetch data from owner node
● Instant scale-in, no state transfer on leave

● Disadvantages

● Write unfriendly, put broadcast to every node
● Doesn't scale well
● Upon join all state has to be transfered to new node
● Heap size stays the same when we add nodes



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard38

Invalidation mode



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard39

Invalidation mode

● Suitable for RDBMS off-loading, used with shared cache store

● Entry exists in node's local cache => it's valid and can be 
returned to requestor

● Entry doesn't exist in node's local cache => it's retrieved from 
the persistent store

● If a node modifies/removes entry it's invalidated in other nodes

● Low internode msg traffic, PUT sends only invalidation 
messages and they are are small.



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard40

Distribution mode



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard41

Distribution mode

● Advantages

● Scalability – number of replication RPCs independent of cluster size – depends 
only on numOwners

● set numOwners to compromise between failure tolerance and performance

● Virtual heap size = numNodes * heapSize / numOwners

● Disadvantages

● Not every node is an owner of the key, GET may require network hops

● Hash function is not perfect (in 5.1+ virtual nodes improved this greatly)

● Node join/leave => State transfer (rehash)



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard42

Distribution mode – L1 Cache



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard43

Distribution mode – L1 Cache

● Advantages
● subsequent GETs don't fetch remote data

● Disadvantages
● L1 cache needs to be invalidated – number of 

invalidation messages can be > numOwners (anyone 
can have a cached copy)

● L1 cache takes up more memory



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard44

Why good Consistent Hash function matters

● Even distribution of entries – balanced load

● Less expected rehash on node leave / join

Virtual nodesHash wheel



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard45

Sync vs Async mode

● Sync
● All operations get confirmation that the other relevant 

cluster nodes reached the desired state
● Async

● All operations block only until they perform local 
changes, we don't wait for JGroups responses.

● Better throughput but no guarantees on data integrity in 
cluster.



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard46

REST Server

http://<hostname>[:<port>]/infinispan-server-rest/rest/<cache_name>/<key>

e.g.

http://localhost:8080/infinispan-server-rest/rest/___defaultcache/abcd

HTTP Methods supported:

HEAD, GET, PUT, POST, DELETE

Standard headers supported:

Content-Type
ETag
Last-Modified



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard47

REST Server access via Python



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard48

REST Server access via Ruby



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard49

REST Server access via command line (curl)

PUT

curl -X PUT -d "aaa" http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa

GET

curl -X GET http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa

DELETE

curl -X DELETE http://localhost:8080/infinispan-server-rest/rest/___defaultcache/aaa



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard50

Memcached

● Open protocol for popular memcached server: 
http://memcached.org/

● Python
● Python-memcached client library

● Java
● Spymemcached client

● There is Binary and Text protocol version

● Infinispan supports text protocol only

http://memcached.org/


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard51

Memcached server (original version)



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard52

Memcached server (Infinispan implementation)



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard53

Routing not so smart



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard54

Hot Rod

● Infinispan's own binary 
wire protocol

● Open and language 
independent

● Built-in dynamic failover 
and load balancing

● Smart routing



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard55

Smart routing with Hot Rod



INTERNAL ONLY | Michal Linhard56

Dynamic routing with Hot Rod



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard57

// DefaultCacheManager cacheManager = new DefaultCacheManager("infinispan.xml");

RemoteCacheManager cacheManager = new RemoteCacheManager("localhost:11222");
cacheManager.start();
   
Cache<String, Object> cache = cacheManager.getCache("namedCache");
   
cache.put("key", "value");
   
Object value = cache.get("key");

For Java users: it's a Map (again)



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard58

ispncon – comand line console

Read more: 
https://docs.jboss.org/author/display/ISPN/Infinispan+Command-line+Console

● python based

● allows simple shell scripts

● abstracts over REST/Memcached/HotRod

$ ispncon put “key” “value”
$ ispncon get “key”
value
$ echo “hello” > /tmp/datafile
$ ispncon put -i /tmp/datafile “datafileKey”
$ ispncon get “datafileKey”
hello

https://docs.jboss.org/author/display/ISPN/Infinispan+Command-line+Console


Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard59

Protocol
Client 

libraries
Clustered ?

Smart 
routing

Load 
balancing / 

Failover

REST Text standard 
HTTP 
clients

Yes No Any HTTP 
load 

balancer

Memcached Text Plenty Yes No Only with 
predefined 
server list

Hot Rod Binary Java, 
python, C++ 
on the way

Yes Yes
Dynamic

Clients - comparison



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard60

Stuff being worked on

● Eventual consistency
● Dealing with cluster partitions

● Non-blocking state transfer
● Allowing writes during state transfer



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard61

Peek into the QA world:
Testing elasticity / resilience

● start node1 (DIST/REPL) clustering mode

● load with data, using Hot Rod clients

● apply a steady load (e.g. 500 clients, each 10 req/sec)

● start node2, start node3, start node4

● kill node1, kill node2, kill node3

● all data is preserved in node4



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard62

Peek into the QA world:
Testing elasticity / resilience



Advanced Java EE Lab 2012 @ FI MUNI | Michal Linhard63

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

