
Red Hat Research Away Day

Introduction

• SAVARA has been established to provide methodology
and tool support, for building large scale Enterprise
Architectures, based on a concept called Testable
Architecture

• A Testable Architecture can be defined as:
“... one where artifacts, at any stage within the software
development lifecycle, can be verified against artifacts in preceding
stages. This leads to deployed systems that can be shown to meet
the original business requirements.“

Testable Architecture – why do
we need it?

• Historically business requirements, architectures and designs have
not been documented in a manner that can support verification
across all phases

• Emphasis has been on unit and integration testing to determine if
individual services and complete system meets the original business
requirements

• However – what ensures that these unit and integration tests
correctly encode the business requirements?

• How do we ensure that the architecture and design documents
continue to reflect the implementation as the system evolves?

Testable Architecture – why do
we need it? (2)

• Testable architecture gives:

– Accuracy: Higher level of confidence that business requirements
are implemented by deployed system

– Efficiency: Improves communication between project members,
to increase effectiveness of software development, especially
when geographically distributed

– Quality: Design time process governance enables earliest
possible detection of misalignment to requirements thus
reducing cost of errors

– Fidelity: Runtime process governance support for continuous
validation of production system

Testable Architecture – where
did it come from?

• W3C Choreography Working Group produced WS-CDL

– Goal to have formal underpinnings based on Pi Calculus

– First choreography notation based on the “global model”
approach, inspired by the work of Lucian Wischik on fusions

– First collaboration with Prof. Robin Milner, Dr Kohei Honda and
Dr Nobuko Yoshida

• pi4soa open source project

– Implementation of WS-CDL

– Introduced scenarios for defining interaction based use cases

– Verification of scenarios against CDL was first step towards a
'testable architecture' approach

http://www.wischik.com/lu/research/

Testable Architecture – where
did it come from?

• Red Hat Project Overlord

– Process Governance (design and run-time)

• Scribble 1

– Aim was to provide a simple text based notation for describing
interaction based behaviour that was more natural to users than
pi-calculus notation

– Issue was that theoretical research around the global model was
in its infancy

• SAVARA 1

– Enterprise architecture/solutions tool suite incorporating process
governance

– Mainly based on pi4soa tools, although Scribble 1 used for initial
experimentation with conformance checking

Savara 1 Movies

• Movies of Savara 1 can be found here:

– http://www.jboss.org/savara/documentation/movies

• These show different phases of the Testable Architecture
methodology, including static and dynamic governance.

http://www.jboss.org/savara/documentation/movies

Case Study 1: Global
Insurance Company (1)

• How did Cognizant do it?

– Two streams one with and without testable architecture but the
same problem set.

• Why did Cognizant do it?

– Because they wanted to align requirements from BA’s to
solutions in a testable way prior to coding in order to reduce the
risk of mis-delivery, reduce design-time errors, reduce the cost
and time of delivery and increase the quality of the delivery.

Case Study 1: Global
Insurance Company (2)

• What was achieved?

– They aligned solutions to requirements in a testable way and as
a result:

• Found and removed errors at design time with a saving of
more than 20% over the entire SDLC

• Reduced time to gather requirements and define the
architecture by 80%

– And this was a small project.

Case Study 2: Large Retail
Bank

• One medium defect took 47 hours to determine where the problem
was using 3 teams of 5 people.

• When the same input data (log files) was supplied to Systemic
Defect Profiler (incorporating savara) it took 2 minutes to come to
the same conclusion.

• Net result is an average drop in the cost of quality of 51%.

Step 1: Business Analysis and
Architecture

• Requirements

– Defined as communication based scenarios (or sequence
diagrams) with example messages

• Global Model or Choreography

– Represents service neutral perspective of interactions between
distributed parties

• Information Model

– Schema derived from relevant example messages associated
with scenarios

• Optional Outline Deployment Model

Step 2: Service Analysis

• Identify Service Candidates

• Local Model, representing an abstract behavioural contract for the
service component

– Does not necessarily need to be persisted

– Could be stored in SOA Repository and used for service lookup
based on behavioural compatibility

• Service Level Agreements

– Policies governing contractual obligations in terms of properties
such as availability and performance

– Can be associated with the service contract as defined by the
Local Model

Step 3: Service Development
(1)

• Testable architecture approach facilitates distributed development of
services

– each service is precisely defined by its abstract service contract
and SLAs

– isolated conformance checking and testing against scenarios
reduce issues during integration testing

• Service Design

– Elaborated Local Model, can be conformance checked against
persisted local, or projected global, model

Step 3: Service Development
(2)

• Data Model Design

– Database can be viewed as services, where interactions in a
scenario represent queries to the database

– Enables database to be verified against scenarios

• Service Implementation

– Generation and conformance checking of implementation
against Service Design or Local Model

– Targets include BPEL, executable BPMN2, SCA, Switchyard

Step 3: Service Development
(3)

• Optional Detailed Deployment Model

– Will elaborate the outline deployment model

– Previous service generation to specific implementation
languages can also be used to annotate relevant aspects of the
deployment model (if available)

– Deployment model can provide runtime technology specific
information that could aid deployment of service
implementations to the relevant service containers

Step 4: Testing

• Component Unit Testing

– Enables 'components' within a global model, such as services,
databases, human interfaces, etc. to be tested in the context of
the original requirements (i.e. scenarios)

– Test inputs obtained from scenario example messages

– Test outputs from component under test will be compared
against expected scenario example message

• System Integration Testing

– Using runtime monitoring to check complete system

Step 5: Documentation

• Testable architecture enables system to be defined, from
requirements to implementation, in a verifable manner

• No unstructured documentation of requirements or design is
required, which tend to become out of date very quickly

• However documentation produced from verifiable artifacts will still
be required, to promote understanding of the system, and support
sign-off of relevant phases of the project

Step 6: Deployment

• If a deployment model has been defined, then it can be used to
guide the deployment of service implementations to the relevant
service containers

• Extensibility will be required to support a range of deployment
environments

Step 7: Runtime Monitoring

• Monitor the runtime execution of the
system against the Global or Local Models
– Can be used as continuous verification
– Useful where some service components not

developed using Testable Architecture (i.e. 3rd
party services), or where the implementation
language used could not be checked for
conformance against a suitable model

• Assertions, constraints and SLAs, defined
in the Global or Local Models, can be
monitored with violations being reported

• Monitor the runtime execution of the system against the Global
or Local Models
– Can be used as continuous verification
– Useful where some service components not developed

using Testable Architecture (i.e. 3rd party services), or where
the implementation language used could not be checked for
conformance against a suitable model

• Assertions, constraints and SLAs, defined in the Global or Local
Models, can be monitored with violations being reported

Testable Architecture – where
is it going?

• Scribble 2

– Global model (or session type) research has progressed a lot
since first version of Scribble.

– Global model is lock free by design, as long as linearity is
preserved, and all roles are projectable.

– Scribble related research now being carried out at various
universities including Queen Mary, Imperial and Leicester.

– Guiding principle now is to define scribble constructs that have a
theoretical grounding – almost there.

– Official version 1 of the notation should be available soon.

Testable Architecture – where
is it going?

• SAVARA 2

– No longer WS-CDL and Eclipse centric.

– Modular OSGi core based around Scribble 2 as the canonical
representation

– Enables use with Eclipse, JBoss AS container, embedded, etc

– Focusing more around BPMN2, due to support for choreography
and service/process (endpoint) models

– Activity monitoring framework and web apps being developed

– SCA Java, BPEL and BPMN2 process model generation targets

– Centred around SOA Repository for artifacts, representing the
dependencies that can be used as the basis for validation

Ocean Observatories Initiative

• What is OOI?

– environmental observatory covering a diversity of oceanic
environments, ranging from the coastal to the deep ocean

– a comprehensive cyberinfrastructure whose design is based on
loosely coupled distributed services

– elements are expected to reside throughout the OOI
observatories, from seafloor instruments to deep sea moorings
to shore facilities to computing and archiving infrastructure

– infrastructure expected to have an operating life of 30 years

Ocean Observatories Initiative
(2)

• How is SAVARA involved?

– In such a highly distributed infrastructure, self governance is
important

– Parts of infrastructure will be owned and operated by different
organizations, so internal policies (e.g. usage of components)
need to be managed and policed

– Working with Queen Mary, Imperial and Leicester Universities to
build small lightweight efficient protocol+assertion monitoring
solution

Research – scribble language
(1)

protocol PurchaseGoods (role Buyer) {
Buyer introduces Store;
Store introduces CreditAgency;

buy(BuyRequest) from Buyer to Store;
checkCredit(CreditCheckRequest) from Store to CreditAgency;

choice at CreditAgency {
checkCredit(CreditRating) from CreditAgency to Store;

choice at Store {
Store introduces Logistics;

deliver(DeliveryRequest) from Store to Logistics;
deliver(DeliveryConfirmed) from Logistics to Store;
buy(BuyConfirmed) from Store to Buyer;

} or {
buy(BuyFailed) from Store to Buyer;

}
} or {

checkCredit(CustomerUnknown) from CreditAgency to Store;
buy(AccountNotFound) from Store to Buyer;

}
}

Research – scribble language
(2)

• Concurrency

parallel {
M1 from A to B;

} and {
M2 from A to C;

}

• Repetition

repeat at A {
M1 from A to B;

}

• Recursion

txn:
 choice at A {

M1 from A to B;
txn;

 } or {
M2 from A to B;

 }

Research – scribble language
(3)

• Calling Nested and External Protocols

run OtherProtocol (A, B);

• Global escape – interrupt mechanism

Order from Customer to Supplier;
do {

Confirm from Supplier to Customer;
} interrupt {

Cancel from Customer to Supplier;
}

• Further details can be found in protocol guide:

http://docs.jboss.org/scribble/releases/2.0.x/protocolguide/html/

http://docs.jboss.org/scribble/releases/2.0.x/protocolguide/html/

Research – policies
• Commitments

– Commitments enable an understanding of the obligations
undertaken by different parties in a collaboration, which can be
discharged under certain conditions.

– For example, could be used to understand the net trading
positions between different counterparties within a financial
trading organisation.

– Papers: http://www.csc.ncsu.edu/faculty/mpsingh/papers

http://www.csc.ncsu.edu/faculty/mpsingh/papers/

Research – norms (1)

“Norms as a Basis for Governing Sociotechnical Systems”

Munindar P. Singh and Kartik Tadanki
North Carolina State University

June 16, 2010

http://www.google.co.uk/url?sa=t&source=web&cd=5&ved=0CDcQFjAE&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.3321&rep=rep1&type=pdf&rct=j&q=norms%20munindar%20singh&ei=1QFBTpVW0YGFB73W5c0J&usg=AFQjCNH9p2WYUuLucO3vxvizn_3AjHg3vQ&sig2=wQMeG5CmTtFBqPqP1mWpyw&cad=rja

Research – norms (2)

• Commitment
“An active commitment means the subject (i.e. debtor) is committed to the object (i.e.
creditor) within the scope of the organizational context [Singh et al., 2009]. It means
that if the antecedent holds, the debtor commits to bringing about the consequent.
And when the consequent holds, the commitment is satisfied and deactivated.
Example: A researcher who borrows an instrument for a study commits to returning it
within one hour of being requested to do so.”

• Authorization
“Example: An instrument owner authorizes a colleague to use the instrument between
7:00PM and 9:00PM.”

• Prohibition
“Examples: An instrument owner prohibits a borrower from changing the firmware on
the instrument. A dataset curator prohibits a reader from publishing any of the data on
an external web site.”

Research – norms (3)

• Sanction
“Examples: An instrument owner would sanction a borrower who illicitly changes the
firmware on a borrowed instrument by giving the borrower a poor rating. A dataset
curator would sanction a reader who publishes any of the data externally by
complaining to the Org. The resource sharing Org would sanction a reader who
publishes any of the data externally by ejecting him from the Org.”

• Power

“Examples: The Chesapeake Bay Org is empowered to admit or eject its members by
declaring so. An instrument owner is empowered to contribute her instrument to a
resource sharing Org, also by declaring so. A system administrator is empowered to
admit new people into OOI by creating their accounts, but is—crucially—prohibited
from creating accounts (and admitting members) without approval from the
membership department. However, because the administrator has the power, her
creation of a new account will succeed, though it might later be deemed illicit and
revoked, and the administrator sanctioned for exercising the power illicitly.”

Research – capacity planning

• A choreography gives us a model of interactional behaviour across
distributed services.

• A physical model of the distribution of services and their resources
can offer an understanding of the potential bottlenecks, and
elasticity requirements, of a production environment required to
deliver a certain level of performance.

• Such a model could be used to estimate the cost of running an
architecture under different loads, in various production
environments (public/private/hybrid clouds)

Research – activity monitoring

• Requirement for activity information to capture runtime
behaviour of a system

• Potential uses:

– Defect detection, across and within services

– Performance profiling

– Business activity monitoring/transaction analysis

– Autonomic infrastructure management

– Others

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

