Scalability with a bit of uncertainty

Paul Ezhilchelvan Newcastle University

Talk Structure

Theme:

Building large-scale applications in Clusters
 Premise:

- Worth looking into some 'simple' techniques
- Investigation by Example
 - What property (ies) can be lost?
 - How to restore? How costly?
- Proposed: Design Variants and Trade-offs
- What we envisage

An Example

- Say, a sends m to b by TCP/IP
 - Assume no failures
 - When a completes its send operation
 - it knows that *m* reaches its destination
- Say, a needs to send m to b1, b2, ..., b20
 20 TCP Connections give a the same knowledge
- What if a has to send to b1, b2, ..., b10⁴
 - Should a make 10000 TCP connections?
 - Need a scalable dissemination protocol

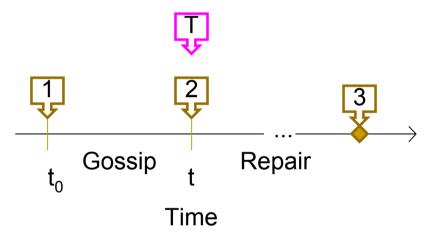
Gossip

- a sends m to a small, randomly-selected subset of b's
- So does every *b* that receives *m*
- For all 10⁴ to receive m, expected number of connections needed:

□ 10001 × 20

- \square *n* × 2[(ln(*n*) + 0.5772)] (Ezhilchelvan, Mitrani 2006)
- 10001 × 20 shared among 10001 processes
- Incorporates growing parallelisation

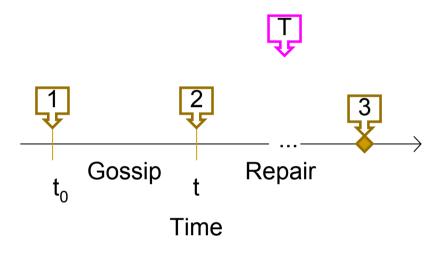
Near Certainty to Certainty


- What is lost through gossiping?
 - certainty on the outcome when gossip terminates
 - 2 is the expected number of coin tosses for a desirable outcome (e.g., head)
 - □ A process that gossiped *m* knows:
 - all b processes receive m with a high probability
- Say, future gossips carry *m* in their history
- At some time in future (eventually, \$\langle)
 - □ all *b* processes receive *m* with probability = 1
 - Certainty is feasible albeit at a cost

Certainty, Cost and Termination

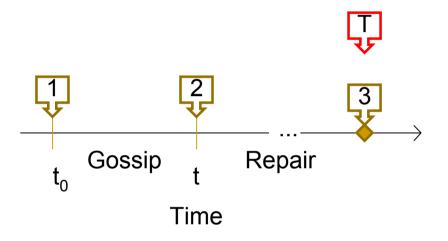
- Gossip of *m* Starts (1)
- Gossip of *m* terminates (2)
- All omissions of *m* repaired
 (3)
- A dissemination protocol can be designed to have:

Just gossip and no repair


Events in Probabilistic Approach

Certainty, Cost and Termination

- Gossip Starts (1)
- Gossip terminates (2)
- All omissions repaired (3)
- A dissemination protocol can be designed to have:
 - Just gossip and no repair, or
 - □ Gossip + 'some' repair
- as (T-t) increases
 - Outcome is more certain
 - Cost also increases


Events in Probabilistic Approach

Certainty, Cost and Termination

- Gossip Starts (1)
- Gossip terminates (2)
- All omissions repaired (3)
- A dissemination protocol can be designed to have:
 - Just gossip and no repair, or
 - Gossip + 'some' repair, or
 - Gossip + full repair
- as T becomes
 - Outcome is certain
 - Cost Maximum
 - Harder to estimate T

Events in Probabilistic Approach

Probabilistic vs. Randomized

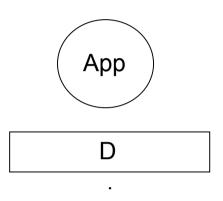
- Protocol is randomized (R-type) if T is
- It is probabilistic (P-Type), otherwise
- When gossip is effective, say, coverage = 90%
 - Median or upper quartile latency is identical for all P and R
 - □ Average latency among those received *m*
 - increases as T is delayed in P
 - the largest in R
 - During Repair
 - 90% observation, 10% work
 - □ Like the Security in Superstores
 - Computational complexity is not much
 - Ensuring full repair in R is the hard part
 - P and R offer
 - Low average cost, low average latency, high throughput for large *n*

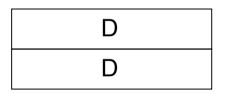
Deconstructing an Application

- Technology use
- Optimisation
- Interfacing
- Crash-tolerant distributed Computing Problems
 - With well-known solutions/impossibilities

Deconstructing Solutions

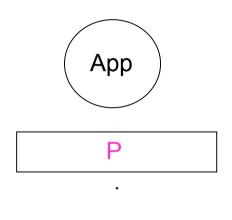
- They all build Common Knowledge CK on termination
 - Say, φ is a fact
 - $\Box \quad \mathsf{CK}(\phi): (knows) \times (knows \phi)$
 - $\hfill\square$ everyone knows that everyone knows φ
- Examples
 - Multicasting: $CK(\phi)$, ϕ = contents of *m*
 - □ Clock Synchronisation: CK(ϕ), ϕ : Current Time = $T \pm \varepsilon$
 - □ Transaction Commit: CK(ϕ), ϕ = decision \in {abort, commit}
 - □ Consensus: CK(ϕ), ϕ = decision \in { v_1 , v_2 , ..., v_n }
 - □ Atomic Multicast: CK(ϕ), ϕ = *m* is 10th in order
 - **Group membership**: CK(ϕ), ϕ = *decision*: p_i is crashed
- P offers probabilistic CK and R CK with full certainty

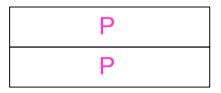

Computer Clusters


Almost all known solutions appropriate to clusters:

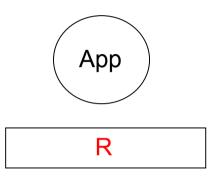
- Deterministic (D-type)
- Offer CK with full certainty
- Can only have $T = \Diamond$
- Complex
- Scalable??
- D-Type dissemination:
 - □ Form a tree for 10001 nodes rooted at a
 - Parent transmits *m* to its children
 - Crashes likely as *n* increases and warrant tree re-formation
- Examples: JGroups, Chubby, Paxos, Isis, Horus, ...

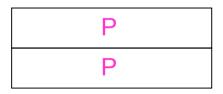
Current Design, D*


- Each layer is a solution to a problem
 - Multicast supports atomic multicast
- Claim: D* cannot scale
- Reason:
 - Multicast is the simplest of all
 - Complex solutions
 - In each step, a quorum of n act in synchrony
 - Several such steps before eventual termination (T is ◊)



Design Option P*


- Each layer is a P-solution
- Feasible
 - For every D-solution, there is a Psolution
- CK on offer is probabilistic
- So, applications either
 - Live with low-probability events
 - Roll-back and recover
- P* highly scalable
 - □ No quorum, decentralised, ..



Design Option P*R

- Top layer is an R-solution
- Rest is P
- Feasible
 - Consensus is the hardest
 - Randomized solutions exist
 - Ezhilchelvan, Raynal (2002)
 - Ezhilchelvan, Alakeish (2011) for Manets
- Applications
 - Have certainty of outcome
 - □ ◊Termination
- P*R is also scalable at a moderate cost
 - No quorum, decentralised, repair not computationally expensive
 - Ensuring full repair is the main cost element

Atomic Mcast (D)	Atomic Mcast (R)
Multicast (D)	Multicast (P)
Chubby	Ours

Current work

Comparative Evaluation is a 3-year project
 Evidence to our belief that P* and P*R are better suited

Conclusions

• P*

- A shop with security guards and no CCTV installation
- Scalable
- P*R
 - A shop with security guards and CCTV cameras
 - CCTV images processed off-line
 - Processing takes time
 - Often reveals no prosecutable offence
- D*
 - CCTV images processed on-line
 - Coordinated with security guards on the floor
 - Every customer is under suspicion
 - Ideal for a small shop dealing with high-valued items like diamonds

Computer Clusters

- Message delay from a to b at any time, d
- A constant bound on *d* not possible
- Almost all known solutions:
 - Deterministic (D-type)
 - Offer CK with full certainty
 - Can only have $T = \Diamond$
 - Complex
 - Scalable??
- D-Type dissemination:
 - □ Form a tree for 10001 nodes rooted at a
 - Parent transmits *m* to its children
 - Crashes likely as *n* increases and warrant tree re-formation
- Examples: JGroups, Chubby, Paxos, Isis, Horus, ...