

JavaTM Portlet Specification

 Version 2.0

Send comments about this document to: jsr-286-comments@jcp.org

 5

 10

January 25, 2008

Stefan Hepper (sthepper@de.ibm.com) 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 2

Java(TM) Portlet Specification ("Specification") Version: 2.0
Status: Final, Specification Lead: IBM Corp.

Copyright 2008 IBM Corp. All rights reserved.

IBM Corporation (the “Spec Lead”), for the JSR 286 specification (the “Specification”),
hereby grants permission to copy and display the Specification, in any medium without 5
fee or royalty, provided that you include the following on ALL copies, or portions
thereof, that you make:

1. A link or URL to the Specification at this location:

 http://www.jcp.org/en/jsr/detail?id=286 10

2. The copyright notice as shown herein.

The Spec Lead commits to grant a perpetual, non-exclusive, worldwide, non sub-
licensable, non-transferable, fully paid up license, under royalty-free and other reasonable 15
and non-discriminatory terms and conditions, to certain of their respective patent claims
that the Spec Lead deems necessary to implement required portions of the Specification,
provided a reciprocal license is granted.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE SPEC LEAD AND ANY 20
OTHER AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF 25
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THE SPEC LEAD AND ANY
OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY USE OF THE SPECIFICATION OR THE PERFORMANCE OR 30
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the Spec Lead or any other Authors may NOT be used in
any manner, including advertising or publicity pertaining to the Specification or its

JavaTM Portlet Specification, version 2.0 (2008-01-11) 3

contents without specific, written prior permission. Title to copyright in the Specification
will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

 5

JavaTM Portlet Specification, version 2.0 (2008-01-11) 5

Contents

JavaTM Portlet Specification.. 1
PLT.1 Preface .. 13

PLT.1.1 Additional Sources.. 13 5
PLT.1.2 Who Should Read This Specification... 13
PLT.1.3 API Reference... 14
PLT.1.4 Other Java™ Platform Specifications... 14
PLT.1.5 Other Important References.. 14
PLT.1.6 Terminology ... 15 10
PLT.1.7 Providing Feedback .. 15
PLT.1.8 Acknowledgements V 2.0... 15
PLT.1.9 Acknowledgements V 1.0... 16

PLT.2 Overview... 17
PLT.2.1 What is a Portal? ... 17 15
PLT.2.2 What is a Portlet?.. 17
PLT.2.3 What is a Portlet Container? ... 17
PLT.2.4 An Example .. 18
PLT.2.5 Compatibility .. 18
PLT.2.6 Major changes introduced with V 2.0... 18 20

PLT.2.6.1 Clarifications that may make V1.0 Portlets Non-compliant.................... 19
PLT.2.6.2 Changes to the Programming Model ... 19
PLT.2.6.3 List of all Changes in the Specification ... 20
PLT.2.6.4 List of all API changes... 24

PLT.2.7 Relationship with Java 2 Platform, Standard and Enterprise Edition............. 27 25
PLT.3 Relationship with the Servlet Specification.. 29

PLT.3.1 Bridging from Portlets to Servlets/JSPs ... 31
PLT.3.2 Using Servlet Application Lifecycle Events... 31
PLT.3.3 Relationship Between the Servlet Container and the Portlet Container 32

PLT.4 Portlet Concepts.. 33 30
PLT.4.1 Portlets .. 33
PLT.4.2 Embedding Portlets as Elements of a Portal Page .. 33

PLT.4.2.1 Portal Page Creation .. 34
PLT.4.2.2 Portal Page Request Sequence... 35

PLT.4.3 Portlets and Web Frameworks.. 35 35
PLT.5 The Portlet Interface and Additional Life Cycle Interfaces.................................. 37

PLT.5.1 Number of Portlet Instances ... 37
PLT.5.2 Portlet Life Cycle.. 37

PLT.5.2.1 Loading and Instantiation .. 38

JavaTM Portlet Specification, version 2.0 (2008-01-11) 6

PLT.5.2.2 Initialization ... 38
PLT.5.2.3 End of Service.. 39

PLT.5.3 Portlet Customization Levels.. 39
PLT.5.3.1 Portlet Definition and Portlet Entity .. 40
PLT.5.3.2 Portlet Window .. 40 5

PLT.5.4 Request Handling.. 41
PLT.5.4.1 Action Request... 43
PLT.5.4.2 Event Request .. 44
PLT.5.4.3 Render Request .. 45
PLT.5.4.4 Resource Request... 45 10
PLT.5.4.5 GenericPortlet .. 45
PLT.5.4.6 Multithreading Issues During Request Handling..................................... 47
PLT.5.4.7 Exceptions During Request Handling.. 47
PLT.5.4.8 Thread Safety... 48

PLT.6 Portlet Config.. 51 15
PLT.6.1 Initialization Parameters ... 51
PLT.6.2 Portlet Resource Bundle ... 51
PLT.6.3 Default Event Namespace... 52
PLT.6.4 Public Render Parameter Names .. 52
PLT.6.5 Publishing Event QNames.. 52 20
PLT.6.6 Processing Event QNames.. 53
PLT.6.7 Supported Locales .. 53
PLT.6.8 Supported Container Runtime Options... 53

PLT.7 Portlet URLs ... 54
PLT.7.1 Portlet URLs ... 54 25

PLT.7.1.1 BaseURL interface... 55
PLT.7.1.2 Including a Portlet Mode or a Window State .. 56
PLT.7.1.3 Portlet URL security .. 57

PLT.7.2 Portlet URL listeners .. 57
PLT.7.2.1 PortletURLGenerationListener Interface... 57 30
PLT.7.2.2 Registering Portlet URL Listeners... 58

PLT.8 Portlet Modes.. 59
PLT.8.1 VIEW Portlet Mode ... 59
PLT.8.2 EDIT Portlet Mode ... 59
PLT.8.3 HELP Portlet Mode ... 60 35
PLT.8.4 Custom Portlet Modes .. 60
PLT.8.5 GenericPortlet Render Handling... 61
PLT.8.6 Defining Portlet Modes Support ... 61
PLT.8.7 Setting next possible Portlet Modes ... 62

PLT.9 Window States .. 63 40
PLT.9.1 NORMAL Window State... 63
PLT.9.2 MAXIMIZED Window State.. 63
PLT.9.3 MINIMIZED Window State.. 63
PLT.9.4 Custom Window States... 63
PLT.9.5 Defining Window State Support... 64 45

PLT.10 Portlet Context .. 67

JavaTM Portlet Specification, version 2.0 (2008-01-11) 7

PLT.10.1 Scope of the Portlet Context ... 67
PLT.10.2 Portlet Context functionality... 67
PLT.10.3 Relationship with the Servlet Context .. 67

PLT.10.3.1 Correspondence between ServletContext and PortletContext methods. 68
PLT.10.4 Portlet Container Runtime Options .. 68 5

PLT.10.4.1 Runtime Option javax.portlet.escapeXml.. 68
PLT.10.4.2 Runtime Option javax.portlet.renderHeaders .. 69
PLT.10.4.3 Runtime Option javax.portlet.servletDefaultSessionScope................... 70
PLT.10.4.4 Runtime Option javax.portlet.actionScopedRequestAttributes 70

PLT.11 Portlet Requests .. 75 10
PLT.11.1 PortletRequest Interface.. 75

PLT.11.1.1 Request Parameters.. 75
PLT.11.1.2 Public Render Parameters .. 77
PLT.11.1.3 Extra Request Parameters .. 80
PLT.11.1.4 Request Attributes.. 80 15
PLT.11.1.5 Request Properties ... 84
PLT.11.1.6 Request Context Path... 84
PLT.11.1.7 Security Attributes ... 84
PLT.11.1.8 Response Content Types.. 85
PLT.11.1.9 Internationalization .. 86 20
PLT.11.1.10 Portlet Mode .. 86
PLT.11.1.11 Window State... 86
PLT.11.1.12 Access to the Portlet Window ID .. 86

PLT.11.2 ClientDataRequest Interface... 86
PLT.11.2.1 Retrieving Uploaded Data ... 87 25

PLT.11.3 ActionRequest Interface ... 87
PLT.11.4 ResourceRequest Interface ... 87
PLT.11.5 EventRequest Interface... 88
PLT.11.6 RenderRequest Interface... 88
PLT.11.7 Lifetime of the Request Objects ... 88 30

PLT.12 Portlet Responses... 89
PLT.12.1 PortletResponse Interface ... 89

PLT.12.1.1 Response Properties ... 89
PLT.12.1.2 Encoding of URLs ... 90
PLT.12.1.3 Namespacing.. 90 35
PLT.12.1.4 Setting Cookies .. 90

PLT.12.2 StateAwareResponse Interface ... 91
PLT.12.2.1 Render Parameters ... 91
PLT.12.2.2 Portlet Modes and Window State Changes.. 92
PLT.12.2.3 Publishing Events .. 92 40

PLT.12.3 ActionResponse Interface... 92
PLT.12.3.1 Redirections ... 92

PLT.12.4 EventResponse Interface .. 93
PLT.12.5 MimeResponse Interface .. 93

PLT.12.5.1 Content Type.. 93 45
PLT.12.5.2 Output Stream and Writer Objects... 94

JavaTM Portlet Specification, version 2.0 (2008-01-11) 8

PLT.12.5.3 Access to Response Headers.. 94
PLT.12.5.4 Setting Markup Head Elements ... 95
PLT.12.5.5 Buffering.. 95
PLT.12.5.6 Predefined MimeResponse Properties ... 96

PLT.12.6 RenderResponse Interface .. 97 5
PLT.12.6.1 Portlet Title .. 97
PLT.12.6.2 Next possible portlet modes... 97

PLT.12.7 ResourceResponse Interface... 98
PLT.12.7.1 Setting the Response Character Set ... 98

PLT.12.8 Lifetime of Response Objects... 98 10
PLT.13 Resource Serving .. 100

PLT.13.1 ResourceServingPortlet Interface ... 100
PLT.13.2 Access to Render Parameters, Portlet Mode, and Window State 101
PLT.13.3 Access to Request and Response Headers.. 101
PLT.13.4 Getting the HTTP Method .. 102 15
PLT.13.5 Access to the Resource ID.. 102
PLT.13.6 Resource URLs... 102
PLT.13.7 Caching of Resources ... 103
PLT.13.8 Generic Portlet Support .. 104

PLT.14 Serving Fragments through Portlets .. 105 20
PLT.14.1 Serving Fragments via serveResource Method .. 105

PLT.15 Coordination between portlets .. 108
PLT.15.1 Public Render Parameters... 108
PLT.15.2 Portlet Events.. 109

PLT.15.2.1 EventPortlet Interface .. 109 25
PLT.15.2.2 Receiving Events ... 109
PLT.15.2.3 Sending Events .. 110
PLT.15.2.4 Event declaration ... 112
PLT.15.2.5 Event processing .. 113
PLT.15.2.6 Exceptions during event processing .. 114 30
PLT.15.2.7 GenericPortlet support ... 115

PLT.15.3 Predefined Container Events .. 116
PLT.16 Portal Context ... 119

PLT.16.1 Support for Markup Head Elements ... 119
PLT.17 Portlet Preferences .. 121 35

PLT.17.1 PortletPreferences Interface.. 121
PLT.17.2 Preference Attributes Scopes.. 122
PLT.17.3 Preference Attributes definition.. 123

PLT.17.3.1 Localizing Preference Attributes ... 123
PLT.17.4 Validating Preference values .. 124 40

PLT.18 Sessions... 125
PLT.18.1 Creating a Session... 125
PLT.18.2 Session Scope ... 125
PLT.18.3 Binding Attributes into a Session ... 126
PLT.18.4 Relationship with the Web Application HttpSession 127 45

PLT.18.4.1 HttpSession Method Mapping ... 127

JavaTM Portlet Specification, version 2.0 (2008-01-11) 9

PLT.18.5 Writing to the Portlet Session ... 128
PLT.18.5.1 Process action and process event phase... 128
PLT.18.5.2 Rendering phase... 128

PLT.18.6 Reserved HttpSession Attribute Names.. 128
PLT.18.7 Session Timeouts .. 129 5
PLT.18.8 Last Accessed Times .. 129
PLT.18.9 Important Session Semantics.. 129

PLT.19 Dispatching Requests to Servlets and JSPs .. 131
PLT.19.1 Obtaining a PortletRequestDispatcher.. 131

PLT.19.1.1 Query Strings in Request Dispatcher Paths ... 131 10
PLT.19.2 Using a Request Dispatcher.. 132
PLT.19.3 The Include Method.. 132

PLT.19.3.1 Included Request Parameters... 133
PLT.19.3.2 Included Request Attributes... 133
PLT.19.3.3 Request and Response Objects for Included Servlets/JSPs from within 15
the Action and Event processing Methods.. 134
PLT.19.3.4 Request and Response Objects for Included Servlets/JSPs from within
the Render Method.. 136
PLT.19.3.5 Request and Response Objects for Included Servlets/JSPs from within
the ServeResource Method ... 137 20
PLT.19.3.6 Comparison of the different Request Dispatcher Includes 139
PLT.19.3.7 Error Handling ... 142
PLT.19.3.8 Path and Query Information in Included / Forwarded Servlets 142

PLT.19.4 The forward Method ... 142
PLT.19.4.1 Query String... 143 25
PLT.19.4.2 Forwarded Request Parameters ... 143
PLT.19.4.3 Request and Response Objects for Forwarded Servlets/JSPs from within
the Action and Event processing Methods.. 144
PLT.19.4.4 Request and Response Objects for Forwarded Servlets/JSPs from within
the Render Method.. 146 30
PLT.19.4.5 Request and Response Objects for Forwarded Servlets/JSPs from within
the ServeResource Method ... 147
PLT.19.4.6 Comparison of the different Request Dispatcher Forwards................. 149

PLT.19.5 Servlet filters and Request Dispatching.. 152
PLT.19.6 Changing the Default Behavior for Included / Forwarded Session Scope . 152 35

PLT.20 Portlet Filter .. 154
PLT.20.1 What is a portlet filter? ... 154
PLT.20.2 Main Concepts .. 154

PLT.20.2.1 Filter Lifecycle... 155
PLT.20.2.2 Wrapping Requests and Responses ... 156 40
PLT.20.2.3 Filter Environment ... 156
PLT.20.2.4 Configuration of Filters in a Portlet Application 157
PLT.20.2.5 Defining the Target Lifecycle Method for a Portlet Filter................... 158

PLT.21 User Information... 160
PLT.21.1 Defining User Attributes... 160 45
PLT.21.2 Accessing User Attributes .. 161

JavaTM Portlet Specification, version 2.0 (2008-01-11) 10

PLT.21.3 Important Note on User Information .. 161
PLT.22 Caching ... 163

PLT.22.1 Expiration Cache .. 163
PLT.22.2 Validation Cache .. 164

PLT.23 Portlet Applications .. 167 5
PLT.23.1 Relationship with Web Applications .. 167
PLT.23.2 Relationship to PortletContext.. 167
PLT.23.3 Elements of a Portlet Application... 167
PLT.23.4 Directory Structure ... 167
PLT.23.5 Portlet Application Classloader .. 168 10
PLT.23.6 Portlet Application Archive File... 168
PLT.23.7 Portlet Application Deployment Descriptor ... 168
PLT.23.8 Replacing a Portlet Application.. 168
PLT.23.9 Error Handling .. 168
PLT.23.10 Portlet Application Environment .. 168 15

PLT.24 Security ... 169
PLT.24.1 Introduction... 169
PLT.24.2 Roles ... 169
PLT.24.3 Programmatic Security ... 169
PLT.24.4 Specifying Security Constraints ... 170 20
PLT.24.5 Propagation of Security Identity in EJBTM Calls .. 171

PLT.25 Packaging and Deployment Descriptor .. 175
PLT.25.1 Portlet and Web Application Deployment Descriptor................................ 175
PLT.25.2 Packaging.. 176

PLT.25.2.1 Example Directory Structure ... 176 25
PLT.25.2.2 Version Information... 176

PLT.25.3 Portlet Deployment Descriptor Elements ... 176
PLT.25.4 Rules for processing the Portlet Deployment Descriptor 177
PLT.25.5 Portlet Deployment Descriptor ... 177
PLT.25.6 Pictures of the structure of a Deployment Descriptor 212 30
PLT.25.7 Uniqueness of Deployment Descriptor Values... 216
PLT.25.8 Localization .. 216

PLT.25.8.1 Localization of Deployment Descriptor Values 216
PLT.25.8.2 Locales Supported by the Portlet ... 217

PLT.25.9 Deployment Descriptor Example ... 217 35
PLT.25.10 Resource Bundles ... 218
PLT.25.11 Resource Bundle Example.. 220

PLT.26 Portlet Tag Library.. 221
PLT.26.1 defineObjects Tag... 221
PLT.26.2 actionURL Tag ... 223 40
PLT.26.3 renderURL Tag... 224
PLT.26.4 resourceURL Tag.. 226
PLT.26.5 namespace Tag.. 228
PLT.26.6 param Tag ... 228
PLT.26.7 property Tag.. 229 45
PLT.26.8 Changing the Default Behavior for escapeXml.. 229

JavaTM Portlet Specification, version 2.0 (2008-01-11) 11

PLT.27 Leveraging JAXB for Event payloads ... 231
PLT.28 Technology Compatibility Kit Requirements... 232

PLT.28.1 TCK Test Components ... 232
PLT.28.2 TCK Requirements ... 233

PLT.28.2.1 Declarative configuration of the portal page for a TCK test 233 5
PLT.28.2.2 Programmatic configuration of the portal page for a test 235
PLT.28.2.3 Test Portlets Content.. 236
PLT.28.2.4 Test Cases that Require User Identity.. 236

PLT.A Custom Portlet Modes.. 237
PLT.B Markup Fragments ... 241 10
PLT.C CSS Style Definitions .. 243
PLT.D User Information Attribute Names .. 249
PLT.E Deployment Descriptor Version 1.0.. 252
PLT.F TCK Assertions .. 262
 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 13

PLT.1

Preface

This document is the JavaTM Portlet Specification, v2.0. The standard for the JavaTM
Portlet API is described here.

PLT.1.1 Additional Sources 5

The specification is intended to be a complete and clear explanation of Java portlets, but
if questions remain the following may be consulted:

• A reference implementation (RI) has been made available which provides a
behavioral benchmark for this specification. Where the specification leaves
implementation of a particular feature open to interpretation, implementators may 10
use the reference implementation as a model of how to carry out the intention of
the specification

• A Technology Compatibility Kit (TCK) has been provided for assessing whether
implementations meet the compatibility requirements of the JavaTM Portlet API
standard. The test results have normative value for resolving questions about 15
whether an implementation is standard

• If further clarification is required, the working group for the JavaTM Portlet API
under the Java Community Process should be consulted, and is the final arbiter of
such issues

Comments and feedback are welcomed, and will be used to improve future versions. 20

PLT.1.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:

• Portal server vendors that want to provide portlet containers that conform to this
standard

• Authoring tool developers that want to support web applications that conform to 25
this specification

• Experienced portlet authors who want to understand the underlying mechanisms
of portlet technology

We emphasize that this specification is not a user’s guide for portlet developers and is not
intended to be used as such. 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 14

PLT.1.3 API Reference

An accompanying javadoc™, includes the full specifications of classes, interfaces, and
method signatures.

PLT.1.4 Other Java™ Platform Specifications

The following Java API specifications are referenced throughout this specification: 5

• Java 2 Platform, Enterprise Edition, v1.4 (J2EE™)
• Java Servlet™, v2.4
• JavaServer Pages™, v2.0 (JSP™)
• The Java™ Architecture for XML Binding (JAXB) 2.0

These specifications may be found at the Java 2 Platform Enterprise Edition website: 10
http://java.sun.com/j2ee/.

PLT.1.5 Other Important References

The following Internet specifications provide information relevant to the development
and implementation of the Portlet API and standard portlet engines:

• RFC 1630 Uniform Resource Identifiers (URI) 15
• RFC 1766 Tags for the Identification of Languages
• RFC 1738 Uniform Resource Locators (URL)
• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
• RFC 1808 Relative Uniform Resource Locators
• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0) 20
• RFC 2045 MIME Part One: Format of Internet Message Bodies
• RFC 2046 MIME Part Two: Media Types
• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
• RFC 2048 MIME Part Four: Registration Procedures
• RFC 2049 MIME Part Five: Conformance Criteria and Examples 25
• RFC 2109 HTTP State Management Mechanism
• RFC 2145 Use and Interpretation of HTTP Version Numbers
• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)
• RFC 2617 HTTP Authentication: Basic and Digest Authentication
• ISO 639 Code for the representation of names of languages 30
• ISO 3166 Code (Country) list
• OASIS Web Services for Remote Portlets (WSRP)
• CC/PP Processing, JSR 188
• W3C: Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 15

Online versions of these RFC and ISO documents are at:

• http://www.rfc-editor.org/
• http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

• l 5

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information affecting this specification and its implementations.

The WSRP Specification can be found in the OASIS web site
(http://www.oasis-open.org/).

The Extensible Markup Language (XML) is used for the specification of the Deployment 10
Descriptors described in Chapter 13 of this specification. More information about XML
can be found at the following websites:

http://java.sun.com/xml
http://www.xml.org/

PLT.1.6 Terminology 15

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in [RFC2119].

PLT.1.7 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your comments 20
to jsr-286-comments@jcp.org.

Please note that due to the volume of feedback that we receive, you will not normally
receive a reply from an engineer. However, each and every comment is read, evaluated,
and archived by the specification team.

PLT.1.8 Acknowledgements V 2.0 25

The Portlet Specification V2.0 was the result of the work of JSR286 Expert Group,

Subbu Allamaraju, Wesley Budziwojski, Bob Butler, Siddharth Chaudhary(Vignette),
Padmanabh Dabke,

David H. DeWolf, Torsten Dettborn, Craig Doremus, Ate Douma, Jorge Ferrer (Liferay,
LLC), Michael Freedman (Oracle), Kevin Frender (BEA Systems), Slava Frid, Deepak 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 16

Gothe(Sun Microsystems, Inc.), Vishal Goenka (SunGard Higher Education), Stefan
Hepper (IBM Corp.), Martin Holzner (Novell, Inc.), Danny Machak (TIBCO Software
Inc.), Kito D. Mann, Benjamin Mestrallet (eXo Platform SARL), Stephen Millidge, Jason
Novotny, Punit Pandey, Ilya Rybak (SAP AG), Charles Severance, Hani Suleiman, David
Sean Taylor (Apache Software Foundation), Julien Viet(JBoss, Inc.), James Ward 5
(Adobe Systems Inc.), Carsten Ziegeler (Day).

We want to give special thanks to (as members of the Expert Group) Subbu Allamaraju,
Wesley Budziwojski, Craig Doremus, Ate Douma, Michael Freedman, Kevin Frender for
their major contributions to this specification.

Finally we would like to thank Torsten Dettborn (University of Jena) who led the TCK 10
and RI efforts

PLT.1.9 Acknowledgements V 1.0

The Portlet Specification V1.0 was the result of the work of JSR168 Expert Group,
Subbu Allamaraju (BEA), Chris Braun (Novell), Don Chapman (SAS), Michael
Freedman (Oracle), Laurent Guiraud (SAP), Randal Hanford (Boeing), Andre Kramer 15
(Citrix), Axel Kratel (Borland), Danny Machak (TIBCO), Kris Meukens (EDS), Wes
Mitchell (Broadvision), Takao Mohri (Fujitsu), Dean Moses (Vignette), Andrew Rickard
(ATG), William Seiger (Sybase), David Sean Taylor (Apache), Stefan Hepper (IBM) and
Alejandro Abdelnur (Sun).

We want to give special thanks to (as members of the Expert Group) Subbu Allamaraju, 20
Henning Blohm, Chris Braun, Don Chapman, Adrian Fletcher, Michael Freedman,
Laurent Guiraud, Andre Kramer, Danny Machak, Wes Mitchell, Takao Mohri, Dean
Moses, Peter Petersen, Andrew Rickard and David Sean Taylor for their contributions.

We would like to thank OASIS WSRP Technical Committee, JSR127 Java Server Faces
Expert Group and JSR154 Servlet Specification Expert Group for their cooperation. 25

We would also like to thank all the people who have sent us feedback during the
Community Review and Public Review stages.

Finally we would like to thank Maneesha Jain (Sun) and Stephan Hesmer (IBM) who led
the TCK and RI efforts.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 17

PLT.2

Overview

PLT.2.1 What is a Portal?

A portal is a web based application that –commonly- provides personalization,
authentication, content aggregation from different sources and hosts the presentation 5
layer of information systems. Aggregation is the action of integrating content from
different sources within a web page. A portal may have sophisticated personalization
features to provide customized content to users. Portal pages may have different set of
portlets creating content for different users.

PLT.2.2 What is a Portlet? 10

A portlet is an application that provides a specific piece of content (information or
service) to be included as part of a portal page. It is managed by a portlet container, that
processes requests and generates dynamic content. Portlets are used by portals as
pluggable user interface components that provide a presentation layer to information
systems. 15

The content generated by a portlet is also called a fragment. A fragment is a piece of
markup (e.g. HTML, XHTML, WML) adhering to certain rules and can be aggregated
with other fragments to form a complete document. The content of a portlet is normally
aggregated with the content of other portlets to form the portal page. The lifecycle of a
portlet is managed by the portlet container. 20

Web clients interact with portlets via a request/response paradigm implemented by the
portal. Normally, users interact with content produced by portlets, for example by
following links or submitting forms, resulting in portlet actions being received by the
portal, which are forwarded by it to the portlets targeted by the user's interactions.

The content generated by a portlet may vary from one user to another depending on the 25
user configuration for the portlet.

This specification will deal with Portlets as Java technology based web components.

PLT.2.3 What is a Portlet Container?

A portlet container runs portlets and provides them with the required runtime
environment. A portlet container contains portlets and manages their lifecycle. It also 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 18

provides persistent storage for portlet preferences. A portlet container receives requests
from the portal to execute requests on the portlets hosted by it.

A portlet container is not responsible for aggregating the content produced by the
portlets. It is the responsibility of the portal to handle the aggregation.

A portal and a portlet container can be built together as a single component of an 5
application suite or as two separate components of a portal application.

PLT.2.4 An Example

The following is a typical sequence of events, initiated when users access their portal
page:

• A client (e.g., a web browser) after being authenticated makes an HTTP request to 10
the portal

• The request is received by the portal
• The portal determines if the request contains an action targeted to any of the

portlets associated with the portal page
• If there is an action targeted to a portlet, the portal requests the portlet container to 15

invoke the portlet to process the action
• A portal invokes portlets, through the portlet container, to obtain content

fragments that can be included in the resulting portal page
• The portal aggregates the output of the portlets in the portal page and sends the

portal page back to the client 20

PLT.2.5 Compatibility

The Java Portlet Specification V 2.0 does not break binary compatibility with V 1.0. This
means that all portlets written against the V 1.0 specification can run unchanged. Portlet
V2.0 containers must support deploying JSR 168 portlets and the JSR 168 deployment
descriptor. i 25

The only exceptions to this rule are:

• RenderResponse.setContentType is no longer required before calling getWriter
or getOutputstream. Calling getWriter or getOutputstream without previously
setting the content type results no longer in an IllegalStateException in V 2.0.

• getProtocol for included servlets / JSPs no longer returns null, but 30
‘HTTP/1.1’ in V2.0.

PLT.2.6 Major changes introduced with V 2.0

The major new features of version 2.0 include:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 19

• Events – enabling a portlet to send and receive events and perform state changes
or send further events as a result of processing an event.

• Public render parameters – allowing portlets to share parameters with other
portlets.

• Resource serving – provides the ability for a portlet to serve a resource. 5
• Portlet filter – allowing on-the-fly transformations of information in both the

request to and the response from a portlet.

PLT.2.6.1 Clarifications that may make V1.0 Portlets Non-
compliant

Depending on the implementation of the portlet of a specific runtime behavior of a portlet 10
container the following clarifications may lead to different results when executing a
portlet in either a JSR 168 or a JSR 286 container:

• XML escaping of portlet URLs produced via the portlet tag library.
V 2.0 clarifies that the default is all portlet URLs are XML escaped. The default
can be changed with the new attribute escapeXML. JSR 168 portlets depending on 15
the fact that portlet URLs created via the tag library are not XML escaped can
change the default to non-escaped via the portlet container runtime option
javax.portlet.escapeXml (see PLT.26.7)

• Defining multiple values for the same parameter name in the Portlet param tag.
V 2.0 clarifies that if the same name of a parameter occurs more than once within 20
an actionURL, renderURL or resourceURL the values must be delivered as
parameter value array with the values in the order of the declaration within the
URL tag. Portlets assuming that the last occurrence wins and replaces the
previous set values will behave differently in V2.0 containers.

• getProtocol for included servlets / JSPs no longer returns null. 25
V 2.0 defines that getProtocol now returns ‘HTTP/1.1’ and thus is better aligned
with the servlet model that expects the getProtocol to return this value in the
GenericServlet.

• Parameters set on the portlet URL and the post body are aggregated into the
request parameter set. Portlet URL parameters are presented before post body 30
data. JSR 168 did not define if and how post body and portlet URL parameters are
being merged. The added clarification mirrors the behavior defined in the servlet
specification for servlets.

• RenderResponse.setContentType is no longer required before calling getWriter
or getOutputstream. Calling getWriter or getOutputstream without previously 35
setting the content type will no longer result in an IllegalStateException.

PLT.2.6.2 Changes to the Programming Model

The following additions were made to the V1.0 programming model:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 20

• Use application level resource bundles instead of inline localization in the
portlet.xml.
In V1.0 the only ability to localize values on the portlet application level was
inside the portlet.xml using the xml:lang attribute. With V2.0 portlet
application developers can now provide the localized values in a resource bundle 5
and thus have the localized values in separate files instead of cluttering the
deployment descriptor.

PLT.2.6.3 List of all Changes in the Specification

This section list all changes that are not editorial in nature:

• PLT.1.4: added JAXB 2.0 reference 10
• PLT 1.8: added V2.0 Acknowledgments
• PLT 2.5: added compatibility section
• PLT 2.6: added complete section with major changes introduced with V2.0
• PLT 2.7: added JavaSE and JavaEE requirements for V2.0, now based on servlet

2.4, J2EE 1.4 and Java 5.0 and a special Java 1.4 compiled version. 15
• PLT 3.0: updated to reflect new portlet capabilities
• PLT 3.2: added section on using servlet application lifecycle listeners for portlet

applications
• PLT 4.1: added portlet section
• PLT 4.3: added section about portlets and web frameworks 20
• PLT 5.0, 5.2: added references to new lifecycle interfaces EventPortlet and

ResourceServingPortlet
• PLT 5.2.3: moved the End of Service section from end of this chapter to this place
• PLT 5.3: grouped the existing sections Portlet Definition and Portlet Entity and

Portlet Window to a new section Portlet Customization Levels 25
• PLT 5.4: added new event and resource lifecycle methods
• PLT 5.4.2: added Event Request section
• PLT 5.4.3: added reference to HTTP spec that render should be a safe operation
• PLT 5.4.4: added Resource Request section
• PLT 5.4.5.1: added Action Dispatching section 30
• PLT 5.4.5.2: added Event Dispatching section
• PLT 5.4.5.3: added Resource Serving Dispatching section
• PLT 5.4.5.4: added render mode annotation description
• PLT 6.3: added Default Event Namespace section
• PLT 6.4: added Public Render Parameter Names section 35
• PLT 6.5: added Processing Event QNames section
• PLT 6.6: added Publishing Event QNames section
• PLT 6.7: added Supported Locales section
• PLT 6.8: added Supported Container Runtime Options section
• PLT 7.1: added resource URLs and clarification that portlet URLs are only valid 40

within the current request and may not be real URLs.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 21

• PLT 7.1.1: added new BaseURL section with content of the old Portlet URL
section in order to reflect the new BaseURL interface

• PLT 7.1.1.1: added new URL properties section
• PLT 7.1.2: clarified that if a portlet mode or window state is not set on a URL that

the current portlet mode and window state is chosen as default 5
• PLT 7.1.3: clarified setSecure semantics
• PLT 7.2: added Portlet URL listeners section
• PLT 8.4: added portlet managed modes
• PLT 8.5: added renderMode annotation description
• PLT 8.7: added Setting next possible Portlet Modes section 10
• PLT 9.5: added Defining Window State Support section
• PLT 10.4: added Container Runtime Options section
• PLT 11.1.1: listed and described all methods to access request parameters
• PLT 11.1.1.1: added Form and Query Parameters section
• PLT 11.1.1.2: added clarification that request parameters are not propagated 15

between different lifecycle requests
• PLT 11.1.1.3: added events to the description; clarified that the portlet receives

always the render parameters explicitly set on a render URL; clarified that render
parameters are cleared with each processAction and processEvent invocation

• PLT 11.1.1.4: added Resource Request Parameter section 20
• PLT 11.1.2: added Public Render Parameter section
• PLT 11.1.4.1: added User Information Request Attribute section
• PLT 11.1.4.2 : added CC/PP Request Attribute section
• PLT 11.1.4.3: added Render Part Request Attribute for Setting Headers in the

Render Phase section 25
• PLT 11.1.4.4: added Lifecycle Phase Request Attribute section
• PLT 11.1.4.5: added Action-scoped Request Attributes section
• PLT 11.1.5.1: added Cookies section
• PLT 11.1.8: clarify that the getResponseContentType and

getResponseContentType methods return the same value within a client request 30
and added that these methods provide the information based on the HTTP Accept
headers for serveResource calls.

• PLT 11.1.12: added Access to the Portlet Window ID section
• PLT 11.3: added ActionRequest Interface section
• PLT 11.4: added ResourceRequest Interface section 35
• PLT 11.5: added EventRequest Interface section
• PLT 12.1.1: clarify that response properties map to header values and introduce

the new GenericPortlet.doHeaders method
• PLT 12.1.2: added resource URLs; clarified that returned URLs may not be real

URLs 40
• PLT 12.1.3: added Namespacing section
• PLT 12.1.4: added Setting Cookies section
• PLT 12.2: added StateAwareResponse Interface section

JavaTM Portlet Specification, version 2.0 (2008-01-11) 22

• PLT 12.3: removed the parts of the ActionResponse that are now in
StateAwareResponse

• PLT 12.3.1: added description for the new sendRedirect(String location, String
renderUrlParamName) method

• PLT 12.4: added EventResponse Interface section 5
• PLT 12.5: added MimeResponse Interface section
• PLT 12.5.1: reduced the must requirement to set a content type to can and define

the fallback of using the first entry in the getResponseContentTypes list
• PLT 12.5.2: added distinction between render and serveResource calls; clearified

that for render the portlet should only use the raw OutputStream for binary 10
content

• PLT 12.5.3: added Access to Response Headers section
• PLT 12.5.4: added Setting Markup Head Elements section
• PLT 12.5.6: added Predefined MimeResponse Properties section
• PLT 12.6 added RenderResponse Interface section and moved all parts that only 15

apply to the render response to this new section
• PLT 12.6.1: added that portlets should set the new javax.portlet.renderHeaders

container runtime option when using dynamic titles
• PLT 12.6.2: added Next possible portlet modes section
• PLT 12.7: added ResourceResponse Interface section 20
• PLT 12.8: added processEvent and serveResource references
• PLT 13: added chapter Resource Serving
• PLT 14: added chapter Serving Fragments through Portlets
• PLT 15: added chapter Coordination between portlets
• PLT 16.1: added Support for Markup Head Elements section 25
• PLT 17.1: added processEvent and serveResource references; clarified that

setValue overrides previous values set with setValues
• PLT 17.4: removed the restriction that you need to have one instance of a

validator per VM; added that portlet preferences should not be modified in the
validator 30

• PLT 18.2: clarified that a portlet session object is only valid within the current
client request

• PLT 18.3: added clarification that portlet session objects may be accessed in
parallel; added reference to the new getWindowID method

• PLT 18.5: added Writing to the Portlet Session section 35
• PLT 19.1: removed the restriction of only having include in render
• PLT 19.2: added include and forward for all lifecycle methods; add restriction

that the passed request / response pair must be either the original ones or wrappers
using the new wrapper classes

• PLT 19.3: added that the servlet path lookup is based on the rules defined in 40
SVR.11

• PLT 19.3.2: added attributes for all lifecycle phases
• PLT 19.3.3: added Request and Response Objects for Included Servlets/JSPs

from within the Action and Event processing Methods section

JavaTM Portlet Specification, version 2.0 (2008-01-11) 23

• PLT 19.3.4: getRemotePort and getLocalPort now return ‘0’ instead of null;
clarified that HttpUtils.getRequestURL is undefined; getProtocol now returns
‘HTTP/1.1’ instead of null

• PLT 19.3.5: added Request and Response Objects for Included Servlets/JSPs from
within the ServeResource Method section 5

• PLT 19.3.6: added Comparison of the different Request Dispatcher Includes
section

• PLT 19.3.8: added Path and Query Information in Included / Forwarded Servlets
section

• PLT 19.4: added The forward Method section 10
• PLT 19.5: added Servlet filters and Request Dispatching section
• PLT 19.6: added Changing the Default Behavior for Included / Forwarded

Session Scope section
• PLT 20: added Portlet Filter chapter
• PLT 21.1: changed that non-mapped user attributes must not be present in the 15

map to a should
• PLT 21.2: changed the sample to use the new enumeration for P3P UserInfo
• PLT 22.1: changed must requirement of defining expiration based caching

support in the deployment descriptor to should; added private and public cache
scopes; added reference to new CacheControl interface; added clarification that 20
cache settings should be set before writing to the output stream; included new
lifecycle method processEvent and serveResource

• PLT 22.2: added Validation Cache section
• PLT 25: added reference to V1.0 deployment descriptor in the appendix
• PLT 25.1: added locale character set mapping 25
• PLT 25.2.2: added reference to the Java Product Versioning specification
• PLT 25.5: update to new V2.0 deployment descriptor; additions in V2.0 are:

o in custom-portlet-mode section: added portal-managed element
o added resource-bundle element on application level
o added filter element on application level 30
o added filter-mapping element on application level
o added default-namespace element on application level
o added event-definition element on application level
o added public-render-parameter on application level
o added listener element on application level 35
o added container-runtime-option on application level
o added cache-scope on portlet level
o in supports section: added window-state element
o added supported-processing-event element on portlet level
o added supported-publishing-event element on portlet level 40
o added supported-public-render-parameter element on portlet level
o added container-runtime-option element on portlet level

• PLT 25.6: added Pictures of the structure of a Deployment Descriptor section
• PLT 25.7: added uniqueness requirements for new elements event-definition,

public-render-parameters and filter 45

JavaTM Portlet Specification, version 2.0 (2008-01-11) 24

• PLT 25.8.1: added reference to new application level resource bundle
• PLT 25.8.2: added reference to RFC 1766; clarified that the supported locale

information should be leveraged by the portal application
• PLT 25.10: added application level resource bundle description and pre-defined

keys; in the portlet resource bundle table added keys for description and display-5
name

• PLT 26: added new V2.0 namespace; added reference to JSP 2.0 EL
• PLT 26.1: added new request/response variables; added portletSession variable;

added portletSessionScope variable; added portletPreferences variable; added
portlet PreferencesValues variable; changed sample to use new cache control API 10

• PLT 26.2: added attributes copyCurrentRenderParameters, escapeXml, name;
added IllegalStateException; updated sample with new attributes

• PLT 26.3: added attributes copyCurrentRenderParameters, escapeXml; added
IllegalStateException

• PLT 26.4: added resourceURL Tag section 15
• PLT 26.5: added the restriction that the namespace tag must match

PortletResponse.getNamespace
• PLT 26.6: added new resourceURL tag; added description for empty values;

added description for having multiple param tags with the same name
• PLT 26.7: added propertyTag section 20
• PLT 26.8: added Changing the Default Behavior for escapeXml section
• PLT 27: added Leveraging JAXB for Event payloads chapter
• PLT A: added new RenderMode annotation to samples
• PLT B: lessen restriction on iFrames from forbidden to not recommended
• PLT C.5: added Tables section 25
• PLT C.6: added rows portlet-form-field-label, portlet-form-field
• PLT C.7: added rows portlet-menu-cascade, portlet-menu-cascade-item, portlet-

menu-cascade-item-selected, portlet-menu-cascade-item-hover, portlet-menu-
cascade-item-hoverselected, portlet-menu-separator, portlet-menu-cascade-
separator, portlet-menu-content, portlet-menu-content-selected, portlet-menu-30
content-hover, portlet-menu-content-hover-selected, portlet-menu-indicator,
portlet-menu-indicator-selected, portlet-menu-indicator-hover,portlet-menu-
indicator-hover-selected

• PLT D: split out bdate into year, month, day, hour, minute, second,
fractionssecond, timezone; added user.login.id 35

• PLT E: added Deployment Descriptor Version 1.0 chapter
• PLT.F: updated list with new TCK assertions

PLT.2.6.4 List of all API changes

This section list all non-editorial API changes:

• ActionRequest: 40
o extends ClientDataRequest
o added ACTION_NAME constant

JavaTM Portlet Specification, version 2.0 (2008-01-11) 25

o added getMethod
• ActionResponse:

o extends StateAwareResponse
o added sendRedirect(String location, String renderUrlParamName)

• added new BaseURL interface 5
• added new CacheControl interface
• added new Event interface
• added new EventInterface interface
• added new Event
• GenericPortlet 10

o implements ResourceServingPortlet, EventPortlet
o added new PortletConfig methods
o added doHeaders method
o added getNextPossiblePortletModes method

• added new MimeResponse interface 15
• PortalContext

o added constant MARKUP_HEAD_ELEMENT_SUPPORT
• PortletConfig

o added getPublicRenderParameterNames method
o added getDefaultNamespace method 20
o added getPublishingEventQNames method
o added getProcessingEventQNames method
o added getSupportedLocales method
o added getContainerRuntimeOptions method

• PortletContext 25
o added getContainerRuntimeOptions method

• PortletRequest
o added constants CCPP_PROFILE, ACTION_PHASE, EVENT_PHASE,

RENDER_PHASE, RESOURCE_PHASE, LIFECYCLE_PHASE,
RENDER_PART, RENDER_HEADERS, RENDER_MARKUP, 30
ACTION_SCOPE_ID

o added enum P3PUserInfos
o added getWindowID method
o added getCookies method
o added getPrivateParameterMap method 35
o added getPublicParameterMap method

• PortletRequestDispatcher
o added include(PortletRequest request, PortletResponse response) method
o added forward method

• PortletResponse 40
o changed getNamespace: lifetime is now for the portlet window instead just

request
o added addProperty(javax.servlet.http.Cookie cookie) method
o added addProperty(String key, org.w3c.dom.Element element) method
o added createElement method 45

• PortletSession

JavaTM Portlet Specification, version 2.0 (2008-01-11) 26

o added getAttributeMap() method
o added getAttributeMap(int scope) method

• PortletURL
o extends BaseURL
o added add/setProperty methods 5
o added getParameterMap
o added writer methods
o added getPortletMode method
o added getWindowState
o added removePublicRenderParameter method 10

• added PortletURLGenerationListener interface
• added ProcessAction annotation
• added ProcessEvent annotation
• added RenderMode annotation
• RenderRequest 15

o added constant ETAG
o added getETag method

• RenderResponse
o extends MimeResponse
o added constants CACHE_SCOPE, PUBLIC_SCOPE, PRIVATE_SCOPE, 20

ETAG, USE_CACHED_CONTENT, NAMESPACED_RESPONSE,
MARKUP_HEAD_ELEMENT,

o added createResourceURL method
o added getCacheControl method
o added setNextPossiblePortletModes method 25

• added ResourceRequest interface
• added ResourceResponse interface
• added ResourceServingPortlet interface
• added ResourceURL interface
• added StateAwareResponse interface 30
• added javax.portlet.filter package

o added ActionFilter interface
o added ActionRequestWrapper class
o added ActionResponseWrapper class
o added EventFilter interface 35
o added EventRequestWrapper class
o added EventResponseWrapper class
o added FilterConfig interface
o added FilterChain interface
o added PortletFilter interface 40
o added PortletRequestWrapper class
o added PortletResponseWrapper class
o added RenderFilter interface
o added RenderRequestWrapper class
o added RenderResponseWrapper class 45
o added ResourceFilter interface

JavaTM Portlet Specification, version 2.0 (2008-01-11) 27

o added ResourceRequestWrapper class
o added ResourceResponseWrapper class

PLT.2.7 Relationship with Java 2 Platform, Standard and
Enterprise Edition

The Portlet API v2.0 is based on the Java Platform, Standard Edition 5.0 and Enterprise 5
Edition v1.4. Portlet containers should at least meet the requirements, described in v 1.4
of the J2EE Specification, for executing in a J2EE environment.

As Portlet API v2.0 is intended to enable a common, composable programming model for
web development with broad applicability, it is being defined to run across a variety of
runtime environments including JavaME (CDC/Foundation) and JavaSE 1.4.2. 10
Additionally, the Portlet API can be exploited in OSGi based Execution Environments
that run on top of JavaME and Java SE. These are defined in the JCP via JSR 232 and
JSR 291 respectively. The Java Portlet API jar files comply with the OSGi specification
and thus can be deployed as OSGi bundles on servers supporting OSGi.

The following Java SE 5.0 features will not be available in the Portlet API V2.0 compiled 15
for Java SE 1.4:

• enum P3PUserInfos
• annotations ProcessAction, ProcessEvent, RenderMode
• generics for collections

Due to the analogous functionality of servlets, concepts, names and behavior of the 20
portlet will be similar to the ones defined in the Servlet Specification 2.4 whenever
applicable.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 29

PLT.3

Relationship with the Servlet Specification

The Servlet Specification defines servlets as follows:

“A servlet is a Java technology based web component, managed by a container, that
generates dynamic content. Like other Java-based components, servlets are platform 5
independent Java classes that are compiled to platform neutral bytecode that can be
loaded dynamically into and run by a Java enabled web server. Containers, sometimes
called servlet engines, are web server extensions that provide servlet functionality.
Servlets interact with web clients via a request/response paradigm implemented by the
servlet container.” 10

Portlets share many similarities with servlets:

• Portlets are Java technology based web components
• Portlets are managed by a specialized container
• Portlets generate dynamic content 15
• Portlets lifecycle is managed by a container
• Portlets interact with web client via a request/response paradigm

Portlets differ in the following aspects from servlets:

• Portlets only generate markup fragments in the render method, not complete 20
documents. The Portal aggregates portlet markup fragments into a complete portal
page

• Portlets can only be invoked through URLs constructed via the portlet API.
• Web clients interact with portlets through a portal system
• Portlets have more refined request handling, i.e. action requests, event request, 25

render request and resource requests
• Portlets have predefined portlet modes and window states that indicate the

function the portlet is performing and the amount of real estate in the portal page
• Portlets can exist many times in a portal page

JavaTM Portlet Specification, version 2.0 (2008-01-11) 30

Portlets have access to the following extra functionality not provided by servlets:

• Portlets have a means of accessing and storing persistent configuration and
customization data

• Portlets have access to user profile information 5
• Portlets have URL rewriting functions for creating hyperlinks within their

content, which allow portal server agnostic creation of links and actions in page
fragments

• Portlets can store transient data in the portlet session in two different scopes: the
application-wide scope and the portlet private scope. 10

• Portlets can send and receive events from other portlets or can receive container
defined events.

Portlets do not have access to the following functionality provided by servlets:

• Setting the character set encoding of the render response 15
• The URL of the client request to the portal

The portlet has full control over the response when rendering resources via the
serveResource call.

 20

Because of these differences, the Expert Group has decided that portlets need to be a new
component. Therefore, a portlet is not a servlet. This allows defining a clear interface and
behavior for portlets.

In order to reuse as much as possible of the existing servlet infrastructure, the Portlet
Specification leverages functionality provided by the Servlet Specification wherever 25
possible. This includes deployment, classloading, web applications, web application
lifecycle management, session management and request dispatching. Many concepts and
parts of the Portlet API have been modeled after the Servlet API.

Portlets, servlets and JSPs are bundled in an extended web application called a portlet
application. Portlets, servlets and JSPs within the same portlet application share the 30
classloader, application context and session.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 31

PLT.3.1 Bridging from Portlets to Servlets/JSPs

Portlets can leverage servlets, JSPs and JSP tag-libraries for generating content.

A portlet can call servlets and JSPs just like a servlet can invoke other servlets and JSPs
using a request dispatcher (see PLT.16 Dispatching Requests to Servlets and JSPs
Chapter). To enable a seamless integration between portlets and servlets the Portlet 5
Specification leverages many of the servlet objects.

When a servlet or JSP is called from within a portlet, the servlet request given to the
servlet or JSP is based on the portlet request and the servlet response given to the servlet
or JSP is based on the portlet response. For example, by default:

• Attributes set in the portlet request are available in the included servlet request 10
(see PLT.19 Dispatching Requests to Servlets and JSPs Chapter),

• The portlet and the included servlet or JSP share the same output stream (see
PLT.19 Dispatching Requests to Servlets and JSPs Chapter).

• Attributes set in the portlet session are accessible from the servlet session and vice
versa (see PLT.18 Portlet Session Chapter). 15

PLT.3.2 Using Servlet Application Lifecycle Events

In chapter SRV.10 the Java Servlet Specification describes a variety of application
lifecycle events that the servlet can register for. The following portlet objects defined by
this specification mirror its servlet counterparts: PortletContext and PortletSession.
The lifecycle of the PortletContext is tied to the SevletContext of this web 20
application and the attributes set in the PortletContext are mirrored in the
ServletContext. The lifecycle of the PortletSession is tied to the HttpSession of
this web application and the attributes set in the PortletSession are mirrored in the
HttpSession. Due to this fact the servlet lifecycle listeners for ServletContext and
HttpSession can also be used for notifications on the PortletContext and 25
PortletSession operations.

Given that the portlet request is independent of the servlet request the servlet request
lifecycle listeners do not have a simple mapping to portlet requests. In order to allow
portlets to leverage the servlet request listeners for portlets the portlet container needs to
create a servlet request mirroring the portlet request. In order to allow the servlet request 30
listeners to distinguish between the case of a plain servlet request and a servlet request
targeted towards a portlet the portlet container needs to set the attribute
javax.portlet.lifecycle_phase in order to mark this request as a request targeted to
a portlet.

The following is the list of servlet listeners that also apply to portlets: 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 32

• javax.servlet.ServletContextListener – for notifications about the servlet
context and the corresponding portlet context

• javax.servlet.ServletContextAttributeListener – for notifications on
attributes in the servlet context or the corresponding portlet context.

• javax.servlet.http.HttpSessionActivationListener – for notifications on 5
the activation or passivation of the HTTPSession or the corresponding
PortletSession.

• javax.servlet.http.HttpSessionAttributeListener – for notifications on
attibutes of the HTTPSession or the corresponding PortletSession.

• javax.servlet.http.HttpSessionBindingListener - for notifications on 10
binding of object to the HTTPSession or the corresponding PortletSession.

• javax.servlet.ServletRequestListener – for notifications about changes to
the HTTPServletRequest or the mirrored portlet request of the current web
application.javax.servlet.ServletRequestAttributeEvent - for notifications
about changes to the attributes of the HTTPServletRequest or the mirrored 15
portlet request of the current web application.

PLT.3.3 Relationship Between the Servlet Container and the
Portlet Container

The portlet container is an extension of the servlet container. As such, a portlet container
can be built on top of an existing servlet container or it may implement all the 20
functionality of a servlet container. Regardless of how a portlet container is implemented,
its runtime environment is assumed to support at least Servlet Specification 2.4.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 33

PLT.4

Portlet Concepts

PLT.4.1 Portlets

Portlets provide a componentized user interface (UI) for services. In a Service Oriented
Architecture (SOA) one does not write monolithic applications, but separate services that 5
can be orchestrated together into applications. This service orchestration requires
componentized UIs for the services, monolithic web UIs based on servlets are no longer
sufficient.

Portlets provide such a component UI model that is intended to aggregate the component
UIs into a larger UI with consistent look and feel (see Appendix PLT.C Style Sheet 10
Definitions). The Java Portlet Specification allows coordination on the UI layer with
different means, such as events, application sessions, and public render parameters, in
order to provide a deep and seamless integration between the different services.

The predominant applications using portlets today are portals aggregating the portlet
markup into portal pages, but the Java Portlet Specification and portlets itself are not 15
restricted to portals.

PLT.4.2 Embedding Portlets as Elements of a Portal Page

A portlet generates markup fragments. A portal may add a title, control buttons and other
decorations to the markup fragment generated by the portlet, this new fragment is called a
portlet window. Then the portal may aggregate portlet windows into a complete 20
document, the portal page.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 34

Figure 4-1 Elements of a Portal Page

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ Portal page

Portlet fragment

Portlet window

Decorations and controls

Note that this is only one example on how a portal could make use of the portlet markup
fragment. There may exist other portal implementations with a different rendering 5
approach. The important part of the portal page concept in regards to this specification is
that the markup fragment of the portlet may be not the only markup returned in the
document to the client. Thus the portlet markup needs to co-exist with whatever other
markup the portal produces.

PLT.4.2.1 Portal Page Creation 10

Portlets run within a portlet container. The portlet container receives the content
generated by the portlets. Typically, the portlet container hands the portlet content to a
portal. The portal server creates the portal page with the content generated by the portlets
and sends it to the client device (i.e. a browser) where it is displayed to the user.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 35

A

B C

D

Portal Page

Portlet Windows

Portal
Server

Portlet A

Portlet B

Portlet C

Portlet D

Client Device

Portlet
Container

FIGURE 4-2 Portal Page Creation

 5

 10

PLT.4.2.2 Portal Page Request Sequence

Users access a portal by using a client device such as an HTML browser or a web-
enabled phone. Upon receiving the request, the portal determines the list of portlets that 15
need to be executed to satisfy the request. The portal, through the portlet container,
invokes the portlets. The portal creates the portal page with the fragments generated by
the portlets and the page is returned to the client where it is presented to the user.

PLT.4.3 Portlets and Web Frameworks

The portlet model provides a clear separation of the state changing logic that is embedded 20
in the processAction and processEvent methods and the rendering of markup which
is performed via the render and serveResource methods. The portlet model thus
follows the popular Model-View-Controller pattern which separates the controller logic
from the part that generates the view.

The default technology that the Java Portlet Specification provides for rendering views is 25
JSPs. However, once one starts creating advanced portlets, existing web frameworks, like
Java Server Faces (JSF), Struts, WebWork, Spring MVC framework, Wicket, or others
may be used. When using such a web framework the portlet acts as a bridge between the
portlet environment and the web framework.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 36

Version 2.0 of this specification provides additional means of making the implementation
of such bridges simpler.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 37

PLT.5

The Portlet Interface and Additional Life

Cycle Interfaces

The Portlet interface is the main abstraction of the Portlet API. All portlets implement 5
this interface either directly or, more commonly, by extending a class that implements the
interface.

The portlet can optionally implement the additional life cycle interfaces EventPortlet
and ResourceServingPortlet in order to leverage additional functionality for receiving
/ sending events or serving resources, respectively. 10

The Portlet API includes a GenericPortlet class that implements the Portlet,
EventPortlet and ResourceServingPortlet interface and provides default
functionality. Developers should typically extend, directly or indirectly, the
GenericPortlet class to implement their portlets.

PLT.5.1 Number of Portlet Instances 15

The portlet definition sections in the deployment descriptor of a portlet application
control how the portlet container creates portlet instances.

For a portlet, not hosted in a distributed environment (the default), the portlet container
mustii instantiate and use only one portlet object per portlet definition.

In the case where a portlet is deployed as part of a portlet application marked as 20
distributable, in the web.xml deployment descriptor, a portlet container may instantiate
only one portlet object per portlet definition -in the deployment descriptor- per virtual
machine (VM). iii

PLT.5.2 Portlet Life Cycle

A portlet is managed through a well defined life cycle that defines how it is loaded, 25
instantiated and initialized, how it handles requests from clients, and how it is taken out
of service. This life cycle of a portlet is expressed through the init, processAction,
render and destroy methods of the Portlet interface.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 38

The Java Portlet Specification V2.0 provides the additional optional lifecycle interfaces
EventPortlet and ResourceServingPortlet that the portlet can implement.

PLT.5.2.1 Loading and Instantiation

The portlet container is responsible for loading and instantiating portlets. The loading and
instantiation can occur when the portlet container starts the portlet application, or delayed 5
until the portlet container determines the portlet is needed to service a request.

The portlet container must load the portlet class using the same ClassLoader the servlet
container uses for the web application part of the portlet application.iv After loading the
portlet classes, the portlet container instantiates them for use.

PLT.5.2.2 Initialization 10

After the portlet object is instantiated, the portlet container must initialize the portlet
before invoking it to handle requests.v Initialization is provided so that portlets can
initialize costly resources (such as backend connections), and perform other one-time
activities. The portlet container must initialize the portlet object by calling the init method
of the Portlet interface with a unique (per portlet definition) object implementing the 15
PortletConfig interface. This configuration object provides access to the initialization
parameters and the ResourceBundle defined in the portlet definition in the deployment
descriptor. Refer to PLT.6 Portlet Config Chapter for information about the
PortletConfig interface. The configuration object also gives the portlet access to a
context object that describes the portlet’s runtime environment. Refer to PLT.10 Portlet 20
Context Chapter for information about the PortletContext interface.

PLT.5.2.2.1 Error Conditions on Initialization

During initialization, the portlet object may throw an UnavailableException or a
PortletException. In this case, the portlet container must not place the portlet object
into active service and it must release the portlet object.vi The destroy method must not 25
be called because the initialization is considered unsuccessful.vii

The portlet container may reattempt to instantiate and initialize the portlets at any time
after a failure. The exception to this rule is when an UnavailableException indicates a
minimum time of unavailability. When this happens the portlet container must wait for
the specified time to pass before creating and initializing a new portlet object.viii 30

A RuntimeException thrown during initialization must be handled as a
PortletException.ix

JavaTM Portlet Specification, version 2.0 (2008-01-11) 39

PLT.5.2.2.2 Tools Considerations

The triggering of static initialization methods when a tool loads and introspects a portlet
application is to be distinguished from the calling of the init method. Developers should
not assume that a portlet is in an active portlet container runtime until the init method of
the Portlet interface is called. For example, a portlet should not try to establish 5
connections to databases or Enterprise JavaBeans™ containers when static (class)
initialization happens.

PLT.5.2.3 End of Service

The portlet container is not required to keep a portlet loaded for any particular period of
time. A portlet object may be kept active in a portlet container for a period of 10
milliseconds, for the lifetime of the portlet container (which could be a number of days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service, it
calls the destroy method of the Portlet interface to allow the portlet to release any
resources it is using and save any persistent state. For example, the portlet container may 15
do this when it wants to conserve memory resources, or when it is being shut down.

Before the portlet container calls the destroy method, it should allow any threads that
are currently processing requests within the portlet object to complete execution. To
avoid waiting forever, the portlet container can optionally wait for a container-defined
time period before destroying the portlet object. 20

Once the destroy method is called on a portlet object, the portlet container must not
route any requests to that portlet object.x If the portlet container needs to enable the
portlet again, it must do so with a new portlet object, which is a new instance of the
portlet’s class.xi

If the portlet object throws a RuntimeException within the execution of the destroy 25
method the portlet container must consider the portlet object successfully destroyed.xii

After the destroy method completes, the portlet container must release the portlet object
so that it is eligible for garbage collection.xiii Portlet implementations should not use
finalizers.

 30

PLT.5.3 Portlet Customization Levels

The portlet model leverages the flyweight pattern and provides the Java instance of the
portlet class with all needed data in each request. This keeps the number of Java instances
small and thus allows better scalability for large user numbers. In order to distinguish

JavaTM Portlet Specification, version 2.0 (2008-01-11) 40

between the different levels of customization the terms portlet definition, portlet entity
and portlet window are introduced in this section.

PLT.5.3.1 Portlet Definition and Portlet Entity

The portlet definition may include a set of preference attributes with their default values. 5
They are used to create preferences objects (see PLT.17 Portlet Preferences Chapter).

At runtime, when serving requests, one or more preference objects are associated with a
portlet. The resulting association of a specific preference object with a portlet is called
the portlet entity. This concept is abstract. There is not a concrete object that represents
the portlet entity. The portal / portlet container merely associates the proper preference 10
object with the context that is passed to the executing portlet.

Normally, a portlet customizes its behavior and the content it produces based on the
attributes of the associated preference object. The portlet may read, modify and add
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the 15
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative means to create new preferences objects based on existing ones.
Portal/portlet-container created preferences objects may have their attributes further
customized.

Administration, management and configuration of preferences objects are left to the 20
portal/portlet-container implementation. It is also left to the implementation to provide
advanced features, such as hierarchical management of preferences objects or cascading
changes on preference attributes.

PLT.5.3.2 Portlet Window

Consuming applications, like portals, typically have a more concrete concept of portlets 25
than the model of this specification. In a consuming application portlets are
customizable, visual components used within portal pages. Such a usage within a portal
page is termed a portlet window. Because of the customizable aspects of portlets, each
portlet window can have many preference objects associated with it; i.e. there is a N:M
relationship between portlet windows and portlet entities. For example some portal 30
implementations may group the read-only preferences that are managed by the
administrator to a portlet entity and the read-write preferences that are managed by the
portlet user to a different portlet entity.

However, at runtime the portlet will not be able to distinguish these different preference
objects as the portlet container will provide always one aggregated set of preferences to 35
the portlet. Though typically portlet windows maintain distinct sets of portlet entities

JavaTM Portlet Specification, version 2.0 (2008-01-11) 41

from other portlet windows (based on the same portlet), this need not be the case. Two
(or more) portlet windows can share the same portlet entity set and thus provide distinct
views onto the same thing. From a developer's perspective, portlet windows are important
because they define distinct runtime views. Hence runtime state (transient state) such as
render parameters, portlet mode, window state, and the portlet-scoped session state are 5
maintained based on a portlet window. For example the user may want to reference the
same portlet entity from different pages, but does not want to have the runtime state
shared between these two.

Each portlet window gets a unique ID assigned by the portal / portlet container that is
constant and valid for the lifetime of this portlet window. The portlet window ID can be 10
accessed by the portlet via the PortletRequest.getWindowID() call and is used by the
portlet container for keying the portlet-scoped session data. The portlet window ID
returned by PortletRequest.getWindowID()must not contain a ‘?’ character in order to
comply with the requirement for the portlet scope session ID (see PLT.18.3)

PLT.5.4 Request Handling 15

After a portlet object is properly initialized, the portlet container may invoke the portlet
to handle client requests.

The Portlet interface defines two methods for handling requests, the processAction
method and the render method. In addition the portlet may implement any of the
optional interfaces EventPortlet and ResourceServingPortlet that define the 20
additional lifecycle methods processEvent and serveResource.

When a portal/portlet-container invokes the processAction method of a portlet, the
portlet request is referred to as an action request. As a result of an action, the portlet may
publish one or more events, which result in one or more invocations of the
processEvent method of this or another portlet with the portlet request referred to as an 25
event request. In addition to these portlet initiated events the portal/portlet container may
issue portal/portlet container specific events. When a portal/portlet-container invokes the
render method of a portlet, the portlet request is referred to as a render request. When a
portal/portlet-container invokes the serveResource method of a portlet, the portlet
request is referred to as a resource request. 30

Commonly, client requests are triggered by URLs created by portlets. These URLs are
called portlet URLs. A portlet URL is targeted to a particular portlet. Portlet URLs may
be of three types, action URLs, render URLs, or resource URLs. Refer to PLT.7 Portlet
URLs Chapter for details on portlet URLs.

Normally, a client request triggered by an action URL translates into one action request, 35
zero or more event requests and many render requests, one per portlet in the portal page.
These render requests may be followed by zero or more resource requests for this client.
A client request triggered by a render URL translates into many render requests, one per
portlet in the portal page. In addition a render URL may result in processEvent calls for

JavaTM Portlet Specification, version 2.0 (2008-01-11) 42

container-defined events. A client request trigged by a resource URL translates into a
serve resource request.

If the client request is triggered by an action URL, the portal/portlet-container must first
trigger the action request by invoking the processAction method of the targeted
portlet.xiv The portal/portlet-container must wait until the action request finishes. Then, 5
the portal/portlet-container should call the processEvent methods of the event receiving
portlets and after the event processing is finished must trigger the render request by
invoking the render method for all the portlets in the portal page with the possible
exception of portlets for which their content is being cached.xv The render requests may
be executed sequentially or in parallel without any guaranteed order. 10

If the client request is triggered by a render URL, the portal/portlet-container must invoke
the render method for all the portlets in the portal page with the possible exception of
portlets for which their content is being cached.xvi The portal/portlet-container must not
invoke the processAction method of any of the portlets in the portal page for that client
request. 15

If the client request is triggered by a resource URL, the portal/portlet-container must
invoke the serveResource method of the target portlet with the possible exception of
content that has a valid cache entry.xvii The portal/portlet-container must not invoke the
processAction of any of the portlets in the portal page for that client request.

If a portlet has caching enabled, the portlet-container may choose not to invoke the 20
render or serveResource method. The portal/portlet-container may instead use the
portlet’s cached content. Refer to PLT.22 Caching Chapter for details on caching.

A portlet object placed into service by a portlet container may end up handling no request
during its lifetime.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 43

Figure 5-1 Request Handling Sequence

Client Portal
Portlet

container
Portlets

A B C

render

processAction
A

B C

A’

B’ C

Action on B

Resp(event(X))

processEvent(X)
Wire
between B
and A
exists

The Action
Phase must
be finished
before the
render phase
starts

Render
requests are
fired in no
specific order.
They may be
fired one after
the other or in
parallel.

Not defined by the Java Portlet Specification

New Page

PLT.5.4.1 Action Request

Typically, in response to an action request, a portlet updates state based on the
information sent in the action request parameters. 5

The processAction method of the Portlet interface receives two parameters,
ActionRequest and ActionResponse.

The ActionRequest object provides access to information such as the parameters of the
action request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data. 10

While processing an action request, the portlet may instruct the portal/portlet-container to
redirect the user to a specific URL. If the portlet issues a redirection, when the
processAction method concludes, the portal/portlet-container must send the redirection
back to the user agentxviii and it must finalize the processing of the client request.

A portlet may change its portlet mode and its window state during an action request. This 15
is done using the ActionResponse object. The change of portlet mode must be effective
for the following requests the portlet receives. There are some exceptional circumstances,
such as changes of access control privileges that could prevent the portlet mode change
from happening. The change of window state should be effective for the following
requests the portlet receives. The portlet should not assume that the subsequent request 20

JavaTM Portlet Specification, version 2.0 (2008-01-11) 44

will be in the window state set as the portal/portlet-container could override the window
state because of implementation dependencies between portlet modes and window states.

The portlet may also set, in the ActionResponse object, render parameters during the
processing of an action request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters. 5

The portlet may delegate the action processing to a servlet via a request dispatcher call
(see PLT.19 Dispatching Requests to Servlets and JSPs).

The portlet may publish events via the ActionResponse setEvent method and thus
publish state changes or other notifications to other portlets. See PLT.15 for more details
on sending and receiving events. 10

PLT.5.4.2 Event Request

Events can be used to coordinate state between different portlets. The processEvent
method of the EventPortlet interface receives two parameters, EventRequest and
EventResponse.

The EventRequest object provides access to information such as the event payload, the 15
window state, the portlet mode, the current render parameters, the portal context, the
portlet session and the portlet preferences data.

A portlet may change its portlet mode and its window state during an event request. This
is done using the EventResponse object. The change of portlet mode must be effective
for the following requests the portlet receives. There are some exceptional circumstances, 20
such as changes of access control privileges that could prevent the portlet mode change
from happening. The change of window state should be effective for the following
requests the portlet receives. The portlet should not assume that the subsequent request
will be in the window state set as the portal/portlet-container could override the window
state because of implementation dependencies between portlet modes and window states. 25

The portlet may also set, in the EventResponse object, new render parameters during the
processing of an event request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters.

The portlet may delegate the event processing to a servlet via a request dispatcher call
(see PLT.19 Dispatching Requests to Servlets and JSPs). 30

The portlet may publish events via the EventResponse setEvent method and thus
publish state changes and other notifications to other portlets. See PLT.15 for more
details on sending and receiving events.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 45

PLT.5.4.3 Render Request

Commonly, during a render request, portlets generate content based on their current state.

The render method of the Portlet interface receives two parameters, RenderRequest
and RenderResponse.

The RenderRequest object provides access to information such as the parameters of the 5
render request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data.

The portlet can produce content using the RenderResponse writer or it may delegate the
generation of content to a servlet or a JSP. Refer to PLT.19 Dispatching Requests to
Servlets and JSPs Chapter for details on this. 10

The portlet should not trigger any state changes in a render request and be a safe
operation as defined by the HTTP specification (see RFC 2616,
http://www.w3.org/Protocols/rfc2616/rfc2616.html).

PLT.5.4.4 Resource Request

In order to serve resources or render content fragments via the portlet the portlet can 15
implement the ResourceServingPortlet interface and create resource URLs that
will trigger the serveResource method on this interface. The serveResource method
of the ResourceServingPortlet interface receives two parameters, ResourceRequest
and ResourceResponse.

The ResourceRequest object provides access to information such as the parameters of 20
the resource request, the input stream, the window state, the portlet mode, the portal
context, the portlet session and the portlet preferences data.

The portlet can produce content using the ResourceResponse writer or output stream, or
it may delegate the generation of content to a servlet or a JSP. Refer to PLT.19
Dispatching Requests to Servlets and JSPs Chapter for details on this. 25

More details on serving resources can be found in PLT.13.

PLT.5.4.5 GenericPortlet

The GenericPortlet abstract class provides default functionality and convenience
methods for handling events, resource and render requests. By extending
GenericPortlet portlets also get robust against future changes in the Java Portlet 30
Specification as they can be mitigated in the implementation of GenericPortlet.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 46

PLT.5.4.5.1 Action Dispatching

For a received action the processAction method in the GenericPortlet class tries to
dispatch to methods annotated with the tag @ProcessAction(name=<action name>),
where the action name must be set on the ActionURL as value of the parameter
javax.portlet.action (or via the constant ActionRequest.ACTION_NAME), and 5
following signature:

void <methodname> (ActionRequest, ActionResponse) throws
 PortletException, java.io.IOException;

A portlet that wants to leverage this action dispatching needs to set the parameter
ActionRequest.ACTION_NAME on the action URL. 10

PLT.5.4.5.2 Event Dispatching

For a received event the processEvent method in the GenericPortlet class tries to
dispatch to methods annotated with the tag @ProcessEvent(qname=<event name>),
where the event name must be in the format "{" + Namespace URI + "}" + local part (like
used by javax.xml.namespace.QName.toString() method). For using only the local 15
part of the event name and leverage the default namespace defined in the portlet
deployment descriptor with the default-namespace element the following alternative is
provided: @ProcessEvent (name=<event name_local_part>), where the event name
is only the local part. If the Namespace URI
.equals(javax.xml.XMLConstants.NULL_NS_URI), only the local part is used. The 20
method annotated with the @ProcessEvent annotation must have the following signature:

void <methodname> (EventRequest, EventResponse) throws
 PortletException, java.io.IOException;

If no such method can be found the GenericPortlet just sets the received render
parameters as new render parameters. 25

Typically, portlets will extend the GenericPortlet class directly or indirectly and they
will provide one method per consuming event that complies with the above definition in
order to have the events dispatched to different methods.

PLT.5.4.5.3 Resource Serving Dispatching

The serveResource method in the GenericPortlet class tries to forward the resource 30
serving to the resource ID set on the URL triggering the request for serving the resource.
If no resource ID is set, the serveResource method does nothing.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 47

PLT.5.4.5.4 Rendering Dispatching

The render method in the GenericPortlet class sets the title specified in the portlet
definition in the deployment descriptor and invokes the doDispatch method.

The doDispatch method in the GenericPortlet class implements functionality to aid in
the processing of requests based on the portlet mode the portlet is currently in (see PLT.8 5
Portlet Modes Chapter).

First it tries to dispatch to methods annotated with the tag @RenderMode(name=<portlet
mode name>). The method must have the following signature:

void <methodname> (RenderRequest, RenderResponse) throws
 PortletException, java.io.IOException; 10

If no matching annotated method is found GenericPortlet will dispatch to the
following methods:

• doView for handling VIEW requestsxix
• doEdit for handling EDIT requestsxx
• doHelp for handling HELP requestsxxi 15

For any other portlet mode the GenericPortlet will throw a PortletException per
default.

If the window state of the portlet (see PLT.9 Window States Chapter) is MINIMIZED, the
render method of the GenericPortlet does not invoke any of the portlet mode
rendering methods.xxii 20

Typically, portlets will extend the GenericPortlet class directly or indirectly and they
will either use the @RenderMode annotation or override the doView, doEdit, doHelp and
getTitle methods instead of the render and doDispatch methods.

PLT.5.4.6 Multithreading Issues During Request Handling

The portlet container handles concurrent requests to the same portlet by concurrent 25
execution of the request handling methods on different threads. Portlet developers must
design their portlets to handle concurrent execution from multiple threads from within the
processAction and render methods, or any of the optional lifecycle methods, like
processEvent, or serveResource, at any particular time.

PLT.5.4.7 Exceptions During Request Handling 30

A portlet may throw either a PortletException, a PortletSecurityException or an
UnavailableException during the processing of a request.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 48

A PortletException signals that an error has occurred during the processing of the
request and that the portlet container should take appropriate measures to clean up the
request. If a portlet throws an exception in the processAction or processEvent method,
all operations on the ActionResponse must be ignored including set events.xxiii The
portal/portlet-container should continue processing the other portlets visible in the portal 5
page.

A PortletSecurityException indicates that the request has been aborted because the user
does not have sufficient rights. Upon receiving a PortletSecurityException, the portlet-
container should handle this exception in an appropriate manner.

An UnavailableException signals that the portlet is unable to handle requests either 10
temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object.xxiv A portlet that throws a permanent
UnavailableException must be considered unavailable until the portlet application 15
containing the portlet is restarted.

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and 20
temporary unavailability and treat all UnavailableExceptions as permanent, thereby
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the request handling must be handled as a
PortletException.xxv

When a portlet throws an exception, or when a portlet becomes unavailable, the 25
portal/portlet-container may include a proper error message in the portal page returned to
the user.

PLT.5.4.8 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread safe.
This means that they must only be used within the scope of the thread invoking the 30
processAction, processEvent, serveResource and render methods.

To remain portable, portlet applications should not give references of the request and
response objects to objects executing in other threads as the resulting behavior may be
non-deterministic.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 49

JavaTM Portlet Specification, version 2.0 (2008-01-11) 51

PLT.6

Portlet Config

The PortletConfig object provides the portlet object with information to be used during
initialization. It also provides access to the portlet context, default event namespace,
public render parameter names, and the resource bundle that provides title-bar resources. 5

PLT.6.1 Initialization Parameters

The getInitParameterNames and getInitParameter methods of the PortletConfig
interface return the initialization parameter names and values found in the portlet
definition in the deployment descriptor.

PLT.6.2 Portlet Resource Bundle 10

Portlets may specify, in their deployment descriptor definition, some basic information
that can be used for the portlet title-bar and for the portal’s categorization of the portlet.
The specification defines a few resource elements for these purposes, title, short-title and
keywords (see the PLT.25.10 Resource Bundles Section).

These resource elements can be directly included in the portlet definition in the 15
deployment descriptor, or they can be placed in a resource bundle.

An example of a deployment descriptor defining portlet information inline could be:

<portlet>
 ...
 <portlet-info> 20
 <title>Stock Quote Portlet</title>
 <short-title>Stock</short-title>
 <keywords>finance,stock market</keywords>
 </portlet-info>
 ... 25
</portlet>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 52

If the resources are defined in a resource bundle, the portlet must provide the name of the
resource bundle. An example of a deployment descriptor defining portlet information in
resource bundles could be:

<portlet>
 ... 5
 <resource-bundle>com.foo.myApp.QuotePortlet</resource-bundle>
 ...
</portlet>

If the portlet definition defines a resource bundle, the portlet-container must look up these
values in the ResourceBundle. If the root resource bundle does not contain the resources 10
for these values and the values are defined inline, the portlet container must add the inline
values as resources of the root resource bundle.xxvi

If the portlet definition does not define a resource bundle and the information is defined
inline in the deployment descriptor, the portlet container must create a ResourceBundle
and populate it, with the inline values, using the keys defined in the PLT.25.10 Resource 15
Bundles Section.xxvii

The render method of the GenericPortlet uses the ResourceBundle object of the
PortletConfig to retrieve the title of the portlet from the associated ResourceBundle or
the inline information in the portlet definition.

PLT.6.3 Default Event Namespace 20

The getDefaultNamespace method of the PortletConfig interface returns the default
namespace for events and public render parameters set in the portlet deployment
descriptor with the default-namespace element, or the XML default namespace
XMLConstants.NULL_NS_URI if no default namespace is provided in the portlet
deployment descriptor. xxviii 25

PLT.6.4 Public Render Parameter Names

The getPublicRenderParameterNames method of the PortletConfig interface returns
the public render parameter names found in the portlet definition in the deployment
descriptor with the supported-public-render-parameter element or an empty
enumeration if no public render parameters are defined for the current portlet definition. 30
xxix

PLT.6.5 Publishing Event QNames

The getPublishingEventQNames method of the PortletConfig interface returns the
publishing event QNames found in the portlet definition in the deployment descriptor
with the supported-publishing-event element or an empty enumeration if no 35
publishing events are defined for the current portlet definition. xxx

JavaTM Portlet Specification, version 2.0 (2008-01-11) 53

If the event was defined using the name element instead of the qname element the defined
default namespace must be added as namespace for the returned QName. xxxi

PLT.6.6 Processing Event QNames

The getProcessingEventQNames method of the PortletConfig interface returns the
processing event QNames found in the portlet definition in the deployment descriptor 5
with the supported-processing-event element or an empty enumeration if no
processing events are defined for the current portlet definition. xxxii

If the event was defined using the name element instead of the qname element the defined
default namespace must be added as namespace for the returned QName. xxxiii

PLT.6.7 Supported Locales 10

The getSupportedLocales method of the PortletConfig interface returns the
supported locales found in the portlet definition in the deployment descriptor with the
supported-locale element or an empty enumeration if no supported locales are defined
for the current portlet definition. xxxiv

PLT.6.8 Supported Container Runtime Options 15

The getContainerRuntimeOptions method returns an immutable Map containing
portlet application level container runtime options merged with the portlet level container
runtime options, containing the names as keys and the container runtime values as map
values, or an empty Map if no portlet application level or portlet level container runtime
options are set in the portlet.xml or supported by this portlet container. The map 20
returned from getContainerRuntimeOptions will provide the subset the portlet
container supports of the options the portlet has specified in the portlet deployment
descriptor. The keys in the map are of type String. The values in the map are of type
String array. If a container runtime option is set on the portlet application level and on the
portlet level with the same name the setting on the portlet level takes precedence and 25
overwrites the one set on the portal application level.

See section PLT 10.4 for a list of all predefined container runtime options.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 54

PLT.7

Portlet URLs

As part of its content, a portlet may need to create URLs that reference the portlet itself.
For example, when a user acts on a URL that references a portlet (i.e., by clicking a link
or submitting a form) the result is a new client request to the portal targeted to the portlet. 5
Those URLs are called portlet URLs.

PLT.7.1 Portlet URLs

The Portlet API defines the PortletURL and ResourceURL interface. Portlets must create
portlet URLs either using PortletURL or the ResourceURL objects. A portlet creates
PortletURL/ResourceURL objects invoking the createActionURL, createRenderURL 10
or the createResourceURL methods of the PortletResponse interface. The
createActionURL method creates action URLs. The createRenderURL method creates
render URLs. The createResourceURL method creates resource URLs. A render URL is
an optimization for a special type of action URLs. The portal/portlet-container must not
invoke the processAction method of the targeted portlet of a render URL.xxxv The 15
portal/portlet-container must ensure that all the parameters set when constructing the
render URL become render parameters of the subsequent render requests for the
portlet.xxxvi

Render URLs should not be used for tasks that are not idempotent, i.e. that change state,
from the portlet perspective. Error conditions, cache expirations and changes of external 20
data may affect the content generated by a portlet as result of a request triggered by a
render URL. Render URLs should be accessed via HTTP method GET as they should not
change any state on the server. As a consequence, render URLs may become
bookmarkable.

Note that Render URLs used within forms may not work on all portal/portlet-containers 25
as the portal/portlet-container may ignore form parameters.

A resource URL allows the portlet serving resources with access to information of the
portlet request. When rendering resources the portlet has full control over the output
stream and can render binary markup.

Note that portlet URLs are only valid within the current request and need to be either 30
written to the output stream in order to allow re-writing the portlet URL token into a real
URL.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 55

PLT.7.1.1 BaseURL interface

The BaseURL interface provides the basic methods that are common for all URLs
pointing back to the portlet, like ResourceURLs, ActionURLs, and RenderURLs.
BaseURLs are always created either as a resource URL, action URL, or render URL.

Portlets can add application specific parameters to the BaseURL objects using the 5
setParameter and setParameters methods. A call to any of the setParameter
methods must replace any parameter with the same name previously set.xxxvii All the
parameters a portlet adds to a BaseURL object must be made available to the portlet as
request parameters.xxxviii Portlet developers should note that the parameters of the current
render request are not carried over when creating an ActionURL or RenderURL. When 10
creating a ResourceURL the current render parameters are automatically added to that
URL by the portlet container, but are hidden to the getParameter calls of the portlet
URL object. Setting parameters on an ActionURL will result in action parameters, not
render parameters or public render parameters.

The portlet-container must “x-www-form-urlencoded” encode parameter names and 15
values added to a BaseURL object.xxxix

If portlet developers namespace parameter names or values before adding them to a
BaseURL object they are also responsible for removing the namespace. The portlet
container will not remove any namespacing the portlet has done on these parameters..

If a portal/portlet-container encodes additional information as parameters, it must 20
namespace them properly to avoid collisions with the parameters set and used by the
portlet.xl

Using the toString method, a portlet can obtain the string representation of the
BaseURL. If the portlet wants to include a portlet URL in the portlet content it should use
the write method and avoid the string object creation of the toString method. 25

An example of creating a portlet URI would be:

...
PortletURL url = response.createRenderURL();
url.setParameter(“customer”,”foo.com”);
url.setParameter(“show”,”summary”); 30
writer.print(“<A HREF=\””);
url.write(writer);
writer.print(”\”>Summary”);
...

Portlet developers should be aware that the string representation of a PortletURL or 35
ResourceURL may not be a well formed URL but a special token at the time the portlet is
generating its content. Portal servers often use a technique called URL rewriting that
post-processes the content resolving tokens into real URLs. It may even be an ECMA
script method that may generate the URL at the time the user clicks on the link.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 56

PLT.7.1.1.1 URL Properties

Properties can be used by portlets to set vendor specific information on the PortletURL
object and thus use extended URL capabilities.

A portlet can set properties using the following methods of the BaseURL interface:

• setProperty 5
• addProperty

The setProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addProperty method
adds a property value to the set with a given name. If there are no property values already 10
associated with the name, a new set is created.

PLT.7.1.2 Including a Portlet Mode or a Window State

A portlet URL can include a specific portlet mode (see PLT.8 Portlet Modes Chapter) or
window state (see PLT.9 Window States Chapter). The PortletURL interface has the
setWindowState and setPortletMode methods for setting the portlet mode and window 15
state in the portlet URL. For example:

...
PortletURL url = response.createActionURL();
url.setParameter(“paymentMethod”,”creditCardInProfile”);
url.setWindowState(WindowState.MAXIMIZED); 20
writer.print(“<FORM METHOD=\”POST\” ACTION=\””);
url.write(writer);
writer.print(”\”>”);
...

A portlet cannot create a portlet URL using a portlet mode that is not defined as 25
supported by the portlet or that the user it is not allowed to use. The setPortletMode
methods must throw a PortletModeException in that situation.xli. The change of portlet
mode must be effective for the request triggered by the portlet URL.xlii There are some
exceptional circumstances, such as changes in access control privileges that could prevent
the portlet mode change from happening. If the portlet mode is not set for a URL, it must 30
have the portlet mode of the current request as defaultxliii.

A portlet cannot create a portlet URL using a window state that is not supported by the
portlet container. The setWindowState method must throw a WindowStateException if
that is the case.xliv The change of window state should be effective for the request
triggered by the portlet URL. The portlet should not assume that the request triggered by 35
the portlet URL will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet
modes and window states. If the window state is not set for a URL, it must have the
window state of the current request as defaultxlv.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 57

PLT.7.1.3 Portlet URL security

The setSecure method of the PortletURL interface allows a portlet to indicate if the
portlet URL has to be a secure URL or not (i.e. HTTPS or HTTP). If the setSecure
method is not used, the portlet URL should be of the same security level of the current
request. If setSecure is called with true, the transport for the request triggered with this 5
URL must be secure (i.e. HTTPS). xlvi If set to false the portlet indicates that it does not
require a secure connection for the request triggered with such a URL.

PLT.7.2 Portlet URL listeners

Portlets can register portlet URL listeners in order to filter URLs before they get
generated either as a string via the toString method or written to the output stream via 10
the write method of the BaseURL interface. The portlet URL listener is also called for a
render URL that is added to a redirect URL via the method sendRedirect(location,
renderUrlParamName).

For example the portlet could use URL listeners to set the caching level of resource
URLs in one central piece of code (see PLT13.7). 15

In order to receive a callback from the portlet container before a portlet URL is generated
the listener class needs to implement the PortletURLGenerationListener interface
and register it in the deployment descriptor.

PLT.7.2.1 PortletURLGenerationListener Interface 20

The PortletURLGenerationListener interface provides callbacks for each portlet URL
type. If the portlet application has specified one or more
PortletURLGenerationListener

classes in the portlet deployment descriptor the portlet container must call

• the method filterActionURL method for all action URLs before executing the 25
write or toString method of these action URLsxlvii

• the method filterRenderURL method for all render URLs before executing the
write or toString method of these render URLsxlviii

• the method filterResourceURL method for all resource URLs before executing
the write or toString method of these resource URLsxlix 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 58

The portlet container must provide the PortletURL or ResourceURL to generate to the
filter methods and execute the write or toString method on the updated PortletURL
or ResourceURL that is the outcome of the filter method call. l

PLT.7.2.2 Registering Portlet URL Listeners

Portlet applications must register Portlet URL listeners in the portlet deployment 5
descriptor under the application section with the listener element and provide the class
name that implements the PortletURLGenerationListener as value in the listener-
class element.

If more than one listener is registered the portlet container must chain the listeners in the
order of how they appear in the deployment descriptor. li 10

JavaTM Portlet Specification, version 2.0 (2008-01-11) 59

PLT.8

Portlet Modes

A portlet mode indicates the function a portlet is performing in the render method.
Normally, portlets perform different tasks and create different content depending on the
function they are currently performing. A portlet mode advises the portlet what task it 5
should perform and what content it should generate. When invoking a portlet, the portlet
container provides the current portlet mode to the portlet. Portlets can programmatically
change their portlet mode when processing an action request.

The Portlet Specification defines three portlet modes, VIEW, EDIT, and HELP. The
PortletMode class defines constants for these portlet modes. 10

The availability of the portlet modes, for a portlet, may be restricted to specific user roles
by the portal. For example, anonymous users could be allowed to use the VIEW and HELP
portlet modes but only authenticated users could use the EDIT portlet mode.

PLT.8.1 VIEW Portlet Mode

The expected functionality for a portlet in VIEW portlet mode is to generate markup 15
reflecting the current state of the portlet. For example, the VIEW portlet mode of a portlet
may include one or more screens that the user can navigate and interact with, or it may
consist of static content that does not require any user interaction.

Portlet developers should implement the VIEW portlet mode functionality by overriding
the doView method of the GenericPortlet class. 20

Portlets must support the VIEW portlet mode.

PLT.8.2 EDIT Portlet Mode

Within the EDIT portlet mode, a portlet should provide content and logic that lets a user
customize the behavior of the portlet. The EDIT portlet mode may include one or more
screens among which users can navigate to enter their customization data. 25

Typically, portlets in EDIT portlet mode will set or update portlet preferences. Refer to
PLT.17 Portlet Preferences Chapter for details on portlet preferences.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 60

Portlet developers should implement the EDIT portlet mode functionality by overriding
the doEdit method of the GenericPortlet class.

Portlets are not required to support the EDIT portlet mode.

PLT.8.3 HELP Portlet Mode

When in HELP portlet mode, a portlet should provide help information about the portlet. 5
This help information could be a simple help screen explaining the entire portlet in
coherent text or it could be context-sensitive help.

Portlet developers should implement the HELP portlet mode functionality by overriding
the doHelp method of the GenericPortlet class.

Portlets are not required to support the HELP portlet mode. 10

PLT.8.4 Custom Portlet Modes

Portal vendors may define custom portlet modes for vendor specific functionality for
modes that need to be managed by the portal. Portlets may define additional modes that
don’t need to be managed by the portal and correspond to the VIEW mode from a portal
point of view. The portlet must declare portlet modes that are not managed by the portal 15
via the <portal-managed>false</portal-managed> tag. Portlet modes are considered
portal managed by default.

Portlets must define the custom portlet modes they intend to use in the deployment
descriptor using the custom-portlet-mode element. At deployment time, the portal
managed custom portlet modes defined in the deployment descriptors should be mapped 20
to custom portlet modes supported by the portal implementation. Portlets that list custom
portlet modes that are not managed by the portal may provide a localized decoration
name as resource bundle entry with the key javax.portlet.app.custom-portlet-
mode.<name>.decoration-name for this portlet mode. If no entry in the portlet resource
bundle with such a name exists the portal / portlet container should use the portlet mode 25
name as default decoration name.

If a custom portlet mode defined in the deployment descriptor is not mapped to a custom
portlet mode provided by the portal or otherwise supported as non-managed portlet mode,
portlets must not be invoked in that portlet mode.

For example, the deployment descriptor for a portlet application containing portlets that 30
support clipboard and admin custom portlet modes would have the following definition:

<portlet-app>
 ...
 <custom-portlet-mode>
 <description>Creates content for Cut and Paste</description> 35
 <portlet-mode>clipboard</portlet-mode>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 61

 <portal-managed>false</portal-managed>
 </custom-portlet-mode>

 <custom-portlet-mode>
 <description>Provides administration functions</description> 5
 <portlet-mode>admin</portlet-mode>
 <portal-managed>true</portal-managed>
 </custom-portlet-mode>
 ...
</portlet-app> 10

The PLT.A Extended Portlet Modes appendix defines a list of portlet mode names and
their suggested utilization. Portals implementing these predefined custom portlet modes
could do an automatic mapping when custom portlet modes with those names are defined
in the deployment descriptor. Therefore providing a decoration name or portal-managed
element for the modes defined in PLT.A is not necessary. 15

PLT.8.5 GenericPortlet Render Handling

The GenericPortlet class implementation of the render method dispatches requests
to the methods annotated with the tag @RenderMode(name=<portlet mode name>).
The method must have the following signature:

void <methodname> (RenderRequest, RenderResponse) throws 20
 PortletException, java.io.IOException;

If no matching annotated method is found GenericPortlet will dispatch to the doView,
doEdit or doHelp method depending on the portlet mode indicated in the request using
the doDispatch method or throws a PortletException if the mode is not VIEW, EDIT,
or HELP.lii 25

PLT.8.6 Defining Portlet Modes Support

Portlets must describe within their definition, in the deployment descriptor, the portlet
modes they can handle for each markup type they support in the render method. As all
portlets must support the VIEW portlet mode, VIEW does not have to be indicated.liii The
portlet must not be invoked in a portlet mode that has not been declared as supported for 30
a given markup type.liv

The following example shows a snippet of the portlet modes a portlet defines as
supporting in its deployment descriptor definition:

... 35
<supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 ... 40
</supports>
<supports>
 <mime-type>text/vnd.wap.wml</mime-type>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 62

 <portlet-mode>help</portlet-mode>
 ...
</supports>
...

For HTML markup, this portlet supports the EDIT and HELP portlet modes in addition to 5
the required VIEW portlet mode. For WML markup, it supports the VIEW and HELP portlet
modes.

The portlet container must ignore all references to custom portlet modes that are not
supported by the portal implementation, or that have no mapping to portlet modes
supported by the portal.lv 10

PLT.8.7 Setting next possible Portlet Modes

Via the render response the portlet can set next possible portlet modes that make sense
from the portlet point of view. If set, the portal should honor these enumeration of portlet
modes and only provide the end user with choices to the provided portlet modes or a
subset of these modes based on access control considerations. If the portlet does not set 15
any next possible portlet modes the default is that all portlet modes that the portlet has
defined supporting in the portlet deployment descriptor are meaningful new portlet
modes. In order to ensure that the next possible portlet modes are honored by all portal
implementations the portlet should set the javax.portlet.renderHeaders container
runtime option and either overwrite the getNextPossiblePortletModes method in the 20
GenericPortlet or set the next possible portlet modes in the RENDER_HEADERS sub-
phase of the render phase (see PLT.11.1.1.4.3) via setNextPossiblePortletModes.
This allows that the portal receives these suggested new modes before writing the portlet
window decorations and thus is able to optimize the amount of buffering needed.

 25

JavaTM Portlet Specification, version 2.0 (2008-01-11) 63

PLT.9

Window States

A window state is an indicator of the amount of portal page space that will be assigned to
the content generated by a portlet via the render method. When invoking a portlet, the
portlet-container provides the current window state to the portlet. The portlet may use the 5
window state to decide how much information it should render. Portlets can
programmatically change their window state when processing an action request.

The Portlet Specification defines three window states, NORMAL, MAXIMIZED and

MINIMIZED. The WindowState class defines constants for these window states.

PLT.9.1 NORMAL Window State 10

The NORMAL window state indicates that a portlet may be sharing the page with other
portlets. It may also indicate that the target device has limited display capabilities.
Therefore, a portlet should restrict the size of its rendered output in this window state.

PLT.9.2 MAXIMIZED Window State

The MAXIMIZED window state is an indication that a portlet may be the only portlet being 15
rendered in the portal page, or that the portlet has more space compared to other portlets
in the portal page. A portlet may generate richer content when its window state is
MAXIMIZED.

PLT.9.3 MINIMIZED Window State

When a portlet is in MINIMIZED window state, the portlet should only render minimal 20
output or no output at all.

PLT.9.4 Custom Window States

Portal vendors may define custom window states.

Portlets can only use window states that are defined by the portal. Portlets must define the
custom window states they intend to use in the deployment descriptor using the custom-25
window-state element. At deployment time, the custom window states defined in the

JavaTM Portlet Specification, version 2.0 (2008-01-11) 64

deployment descriptors should be mapped to custom window states supported by the
portal implementation.

If a custom window state defined in the deployment descriptor is not mapped to a custom
window state provided by the portal, portlets must not be invoked in that window state.lvi

For example, the deployment descriptor for a portlet application containing portlets that 5
use a custom half_page window state would have the following definition:

<portlet-app>
 ...
 <custom-window-state>
 <description>Occupies 50% of the portal page</description> 10
 <window-state>half_page</window-state>
 </custom-window-state>
 ...
</portlet-app>

 15

PLT.9.5 Defining Window State Support

Portlets may restrict within their definition, in the deployment descriptor, the custom
window states they can handle for each markup type they support in the render method.
If the portlet does not list explicitly which window states it supports, the portal / portlet
container should assume that the portlet supports all pre-defined window states and all 20
custom window states defined for this portlet application.

As all portlets must at least support the pre-defined window states NORMAL,

MAXIMIZED, MINIMIZED, these window states do not have to be indicated.lvii The portlet
should not be invoked in a custom window state that has not been declared as supported
for a given markup type. 25

The following example shows a snippet of the window states a portlet defines as
supporting in its deployment descriptor definition:

...
<supports> 30
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 <window-state>half-page</window-state>
 ... 35
</supports>
<supports>
 <mime-type>text/vnd.wap.wml</mime-type>
 <portlet-mode>help</portlet-mode>
 ... 40
</supports>
...

JavaTM Portlet Specification, version 2.0 (2008-01-11) 65

For HTML markup, this portlet supports the HALF-PAGE window state in addition to the
required pre-defined window states. For WML markup, it supports only the pre-defined
window states.

The portlet container must ignore all references to custom window states that are not
supported by the portal implementation, or that have no mapping to window states 5
supported by the portal.lviii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 67

PLT.10

Portlet Context

The PortletContext interface defines a portlet’s view of the portlet application within
which the portlet is running. Using the PortletContext object, a portlet can log events,
obtain portlet application resources, application and portlet runtime options and set and 5
store attributes that other portlets and servlets in the portlet application can access.

PLT.10.1 Scope of the Portlet Context

There is one instance of the PortletContext interface associated with each portlet
application deployed into a portlet container.lix In cases where the container is distributed
over many virtual machines, a portlet application will have an instance of the 10
PortletContext interface for each VM.lx

PLT.10.2 Portlet Context functionality

Through the PortletContext interface, it is possible to access context initialization
parameters, retrieve and store context attributes, obtain static resources from the portlet
application and obtain a request dispatcher to include servlets and JSPs. 15

PLT.10.3 Relationship with the Servlet Context

A portlet application is an extended web application. As a web application, a portlet
application also has a servlet context. The portlet context leverages most of its
functionality from the servlet context of the portlet application. However, the context
objects themselves may be different objects. 20

The context-wide initialization parameters are the same as initialization parameters of the
servlet context and the context attributes are shared with the servlet context. Therefore,
they must be defined in the web application deployment descriptor (the web.xml file).
The initialization parameters accessible through the PortletContext must be the same
that are accessible through the ServletContext of the portlet application.lxi 25

Context attributes set using the PortletContext must be stored in the ServletContext
of the portlet application. A direct consequence of this is that data stored in the
ServletContext by servlets or JSPs is accessible to portlets through the
PortletContext and vice versa.lxii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 68

The PortletContext must offer access to the same set of resources the
ServletContext exposes.lxiii

The PortletContext must handle the same temporary working directory the
ServletContext handles. It must be accessible as a context attribute using the same
constant defined in the Servlet Specification SVR 3 Servlet Context Chapter, 5
javax.servlet.context.tempdir.lxiv The portlet context must follow the same
behavior and functionality that the servlet context has for virtual hosting and reloading
considerations. (see Servlet Specification SVR 3 Servlet Context Chapter)lxv:

PLT.10.3.1 Correspondence between ServletContext and
PortletContext methods 10

The following methods of the PortletContext should provide the same functionality as
the methods of the ServletContext of similar name: getAttribute,
getAttributeNames, getInitParameter, getInitParameterNames, getMimeType,
getRealPath, getResource, getResourcePaths, getResourceAsStream, log,
removeAttribute and setAttribute. 15

PLT.10.4 Portlet Container Runtime Options

The portlet can define additional runtime behavior in the portlet.xml on either the
portlet application level or the portlet level with the container-runtime-option element.
Runtime options that are defined on the application level should be applied to all portlets
in the portlet application. Runtime options that are defined on the portlet level should be 20
applied for this portlet only and override any runtime options defined on the application
level with the same name.

Container runtime options besides the
javax.portlet.actionScopedRequestAttributes option are optional to support by
the portlet container and the portlet can find out which container runtime options are 25
supported by the portlet container running the portlet via the method
getContainerRuntimeOptions on the PortletContext.

The getContainerRuntimeOptions method returns an enumeration of type String
containing the keys of all container runtime options that the current portlet container
supports. 30

PLT.10.4.1 Runtime Option javax.portlet.escapeXml

In the Java Portlet Specification V1.0 the behavior in regards to XML escaping URLs
written by the tag library was undefined and thus portlets may have been coded with the
assumption that the URLs were not XML escaped. In order to be able to run these
portlets on a Java Portlet Specification V 2.0 container the specification provides the 35
javax.portlet.escapeXml container runtime option. The value of this setting can either

JavaTM Portlet Specification, version 2.0 (2008-01-11) 69

be true for XML escaping URLs per default, or false for not XML escaping URLs per
default.

Portlets that require that the default behavior for URLs written to the output stream via
the portlet tag library should therefore define the following container runtime option in
the portlet deployment descriptor: 5

<portlet>

…

 <container-runtime-option>

 <name>javax.portlet.escapeXml</name>

 <value>false</value> 10

 </container-runtime-option>

 </portlet>

If the portlet has defined the javax.portlet.escapeXml container runtime option the
portlet container should honor this setting as otherwise the portlet may not work 15
correctly.

PLT.10.4.2 Runtime Option javax.portlet.renderHeaders

Portlets that need to write any headers in the render phase can set the additional
container-runtime-option with name javax.portlet.renderHeaders and value true.
The default for this setting is false. When set to true streaming portal implementations 20
should call the render method of the portlet twice with RENDER_PART attribute set in the
render request (see PLT.11.1.4.3.). Example:

<portlet>

…

 <container-runtime-option> 25

 <name>javax.portlet.renderHeaders</name>

 <value>true</value>

 </container-runtime-option>

 </portlet>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 70

PLT.10.4.3 Runtime Option
javax.portlet.servletDefaultSessionScope

The default for the session variable of included / forwarded servlets or JSPs is that it
maps to the portlet session with application scope. Some portlets may require that the
session variable of included / forwarded servlets or JSPs maps instead to the portlet 5
session scope in order to work correctly. These portlets can indicate this via setting the
container-runtime-option javax.portlet.servletDefaultSessionScope to
PORTLET_SCOPE. The default for javax.portlet.servletDefaultSessionScope is
APPLICATION_SCOPE.

Example: 10

<portlet>

…

 <container-runtime-option>

 <name>javax.portlet.servletDefaultSessionScope</name>

 <value>PORTLET_SCOPE</value> 15

 </container-runtime-option>

 </portlet>

Portlet developers should note that not all portlet containers may be able to provide this
feature as a portable JavaEE solution does not currently exist. Therefore, relying on this 20
feature may restrict the numbers of portlet containers the portlet can be executed on.

PLT.10.4.4 Runtime Option
javax.portlet.actionScopedRequestAttributes

The Java Portlet Specification follows a model of separating concerns in different 25
lifecycle methods, like processAction, processEvent, render. This provides a clean
separation of the action semantics from the rendering of the content, however, it may
create some issues with servlet-based applications that don’t follow this strict Model-
View-Controller pattern. Such applications in some cases assume that attributes that they
set in the action phase will be accessible again when starting the rendering. The Java 30
Portlet Specification provides the render parameters for such use cases, but some
applications need to transport complex objects instead of strings.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 71

One example for such an use case is a Java Server Faces (JSF) bridge portlet that expects
to be executed in a single lifecycle phase for processing actions, events and rendering
from the JSF point of view and thus needs to transport attributes from action to
subsequent event and render calls until the next action occurs.

For such use cases the Java Portlet Specification provides the action-scoped request 5
attributes as container runtime option with the intent to provide portlets with these
request attributes until a new action occurs. This container runtime option must be
supported by portlet containers. lxvi

Portlets should note that using this container runtime option will result in increased
memory usage and thus may have a decreased performance as the portlet container needs 10
to maintain and store these attributes across requests.

Portlets that want to leverage the action-scoped request attributes need to set the
container runtime option javax.portlet.actionScopedRequestAttributes to true,
default is false. In addition the portlet may provide a value called
numberOfCachedScopes where the following value element must be a positive number 15
indicating the number of scopes the portlets wants to have cached by the portlet
container. This value is a hint to the portlet container that the portlet container may not be
able to honor because of resource constraints. The order of the values in the portlet
deployment descriptor must be true, numberOfCachedScopes, <number of cached
scopes>. 20

Example:

<portlet>

…

 <container-runtime-option> 25

 <name>javax.portlet.actionScopedRequestAttributes</name>

 <value>true</value>

 <value>numberOfCachedScopes</value>

 <value>10</value> 30

 </container-runtime-option>

 </portlet>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 72

PLT.10.4.4.1 Action Scope ID Render Parameter

The portlet container must store the action scope ID as render parameter with the name
“javax.portlet.as”, defined as PortletRequest.ACTION_SCOPE_ID. When using the
action-scoped request attribute extension the portlet must not use this render parameter
name for its private render parameters. 5

The portlet container must provide the action scope ID render parameter and its value
when calling one of the portlet lifecycle methods and is responsible for setting this action
scope ID at the end of a processAction or processEvent method call. The portlet
should not set a value for the render parameter named
PortletRequest.ACTION_SCOPE_ID (“javax.portlet.as”). 10

If the portlet removes the PortletRequest.ATION_SCOPE_ID render parameter in a
PortletURL listener the portlet container should honor this and create a portlet URL
without this render parameter. This allows the portlet to create resource URLs that are
cacheable across action scopes.

PLT.10.4.4.2 Lifetime of Action-scoped Request Attributes 15

The portlet can view attributes set on action, event, or resource requests in any of its
lifecycle requests lasting until the next action occurs, or until some timeout or
invalidation mechanism of the portlet container frees up the occupied memory, e.g. the
user session has timed out.

A new action scope is started when 20

• receiving an action – starts a new action scope with a new scope ID, all previous
attributes are no longer accessible, new attributes can be stored.

• receiving a render without an existing scope ID – starts a new scope without any
scope ID, all previous attributes are no longer accessible, no new attributes can be
stored. 25

• receiving an event without an existing scope ID - starts a new action scope with a
new scope ID, all previous attributes are no longer accessible, new attributes can
be stored.

• receiving an event with an existing scope ID after the first render for this scope
had occurred, as this event will likely have an action semantic. All previous 30
attributes are no longer accessible, new attributes can be stored.

The existing scope is preserved with the current scope ID and action-scoped attributes
when

• receiving a render call with an existing scope ID 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 73

• receiving a processEvent call with an existing scope ID before the first render
for this scope had occurred.

• receiving a serveResouce call with an existing scope ID

The following attributes are not stored in the action scope by the portlet container: 5

• all attributes starting with javax.portlet
• all Java Portlet Specification defined objects, like request, response, session, as

they are only valid for the current request
• any other attributes the portal/portlet container provides itself for handling the

lifecycle call 10

The portlet may also filter out attributes that should not be stored in the action-scope at
the end of the request either via removeAttribute or via a response filter.

If portlets use non-serializable objects as attribute values they may not be provided across
different requests, e.g. if the portlet container leverages mechanisms such as a session and 15
session replication. However, portlet containers should either provide the complete set of
attributes to the portlet or discard the entire set of attributes in order to allow the portlet to
always run in a consistent state.

PLT.10.4.4.3 ServeResource Calls

If a serveResource call is triggered by a resource URL with a cache level of FULL the 20
action scope ID may not be included and thus the portlet may not have access to the
action-scoped attributes.

PLT.10.4.4.4 Examples

Example 1:

• portlet receives a processAction call and sets attribute foo, new scope contains foo 25
• portlet receives a processEvent call reads foo and sets bar, scope contains foo, bar
• portlet receives a render call, scope contains foo, bar
• portlet receives a processEvent call and sets foo2, new scope contains foo2
• portlet receives a render call, scope contains foo2

 30

Example 2:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 74

• portlet receives a render call, empty scope
• portlet receives a processEvent call and sets foo and bar, new scope contains foo,

bar
• portlet receives a serveResource call, scope contains foo, bar and sets foo’ and

bar2, new scope contains foo’, bar and bar 2 5

PLT.10.4.4.5 Semantics for Portlet Containers

In order to provide a consistent user experience for end users the portlet container should
keep previous action-scoped attributes cached in order to allow the end user to navigate
between different views with the browser forward and backward buttons. The portlet
container should use the specified numberOfCachedScopes provided by the portlet or a 10
meaningful default if the portlet has not provided this value.

In order to determine if a render has already occurred for the current action-scope it is
assumed that the portlet container stores a bit invisible to the portlet in the action-scoped
attributes that indicates if a render has already occurred. 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 75

PLT.11

Portlet Requests

The request objects encapsulate all information about the client request, parameters,
request content data, portlet mode, window state, etc. A request object is passed to the
processAction, processEvent, serveResource and render methods of the portlet. 5

PLT.11.1 PortletRequest Interface

The PortletRequest interface defines the common functionality for all the request
interfaces.

PLT.11.1.1 Request Parameters

If a portlet receives a request from a client request targeted to the portlet itself, the 10
parameters must be the string parameters encoded in the URL (added when creating the
PortletURL) and the string parameters sent by the client to the portlet as part of the client
request.lxvii The parameters the request object returns must be "x-www-form-
urlencoded" decoded.lxviii

The parameters are stored as a set of name-value pairs. Multiple parameter values can 15
exist for any given parameter name. The following methods of the PortletRequest
interface are available to access parameters:

• getParameter
• getParameterNames
• getParameterValues 20
• getParameterMap
• getPublicParameterMap
• getPrivateParameterMap

The getParameterValues method returns an array of String objects containing all the
parameter values associated with a parameter name. The value returned from the 25
getParameter method must be the first value in the array of String objects returned by
getParameterValues lxix. If there is a single parameter value associated with a parameter
name the method must return is an array of size one containing the parameter value.lxx.
The getParameterMap method must return an unmodifiable Map objectlxxi. If the request
does not have any parameters, the getParameterMap must return an empty Map 30
objectlxxii.The values in the returned Map object are from type String array.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 76

Parameters set on the portlet URL and the post body are aggregated into the request
parameter set. Portlet URL parameters are presented before post body data. lxxiii

If portlets namespace or encode URL parameters or form parameters they are also
responsible for removing the namespace. The portlet container will not remove any
namespacing the portlet has done on these parameters. 5

PLT.11.1.1.1 Form and Query Parameters

If the portlet is performing an HTML Form submission via HTTP method POST the post
form data will be populated to the portlet request parameter set if the content type is
application/x-www-form-urlencoded.

If the post form data are populated to the portlet request parameters the post form data 10
will no longer be available for reading directly from the request object’s input stream. If
the post form data is not included in the parameter set, the post data must still be
available to the portlet via the ActionRequest / ResourceRequest input stream.

If the portlet is performing an HTML Form submission via the HTTP method GET the
form data set is appended to the portlet URL used for the form submission and are 15
therefore accessible as request parameters for the portlet.

Note that some portal/portlet-containers implementations may encode internal state as
part of the URL query string and therefore do not support forms using the HTTP GET
method.

As portlet URLs may be ECMA script functions that produce the required URL only on 20
executing the URL the portlet should not simply add additional query parameters to a
portlet URL on the client.

PLT.11.1.1.2 Action and Event Request Parameters

The portlet-container must not propagate parameters received in an action or event
request to subsequent render requests of the portlet.lxxiv The portlet-container must not 25
propagate parameters received in an action to subsequent event requests of the portlet. lxxv

If a portlet wants to do that in either the processAction or processEvent methods, it
must use the setRenderParameter or setRenderParameters methods of the
StateAwareResponse object within the processAction or processEvent call. The set
render parameters must be provided to the processEvent and render calls of at least 30
the current client request. lxxvi

JavaTM Portlet Specification, version 2.0 (2008-01-11) 77

PLT.11.1.1.3 Render Request Parameters

If a portlet receives a render request that is the result of a client request targeted to
another portlet in the portal page, the parameters should be the same parameters as of the
previous render request from this client.

If a portlet receives an event that is the result of a client request targeted to another portlet 5
in the portal page, the parameters should be the same parameters as of the previous render
request from this client.

If a portlet receives a render request following an action or event request as part of the
same client request, the parameters received with render request must be the render
parameters set during the action or event request.lxxvii 10

If a portlet receives a render request that is the result of invoking a render URL targeting
this portlet the render parameters received with the render request must be the parameters
set on the render URL if these were not changed by the portlet as a result of an container
event received for this render URL.lxxviii

Commonly, portals provide controls to change the portlet mode and the window state of 15
portlets. The URLs these controls use are generated by the portal. Client requests
triggered by those URLs must be treated as render URLs and the existing render
parameters must be preserved.lxxix

A portlet must not see any parameter targeted to other portlets.lxxx

 20

Note that render parameters get automatically cleared if the portlet receives a
processAction or processEvent call and need to be explicitly re-set on the response of
such a lifecycle call.

PLT.11.1.1.4 Resource Request Parameters

For serveResource requests the portlet must receive any resource parameters that were 25
explicitly set on the ResourceURL that triggered the request. If the cacheability level of
that resource URL (see PLT.13.7) was PORTLET or PAGE, the portlet must also receive the
render parameters present in the request in which the URL was created

If a resource parameter is set that has the same name as a render parameter, the render
parameter must be the last entry in the parameter value array. 30

PLT.11.1.2 Public Render Parameters

In order to allow coordination of render parameters with other portlets, within the same
portlet application or across portlet applications, the portlet can declare public render

JavaTM Portlet Specification, version 2.0 (2008-01-11) 78

parameters in its deployment descriptor using the public-render-parameter element in
the portlet application section. Public render parameters are available in all lifecycle
methods of the portlet: processAction, processEvent, render, and serveResource.
Public render parameters can be viewed and changed by other portlets or components. In
the portlet section each portlet can specify the public render parameters it would like to 5
share via the supported-public-render-parameter element. The supported-

public-render-parameter element must reference the identifier of a public render
parameter defined in the portlet application section in a public-render-parameter
elementlxxxi. The portlet should use the defined public render parameter identifier in its
code in order to access the public render parameter. 10

Example:

<public-render-parameter>

 <identifier>foo</identifier>

 <qname xmlns:x=”http://example.com/params”>x:foo2</qname> 15

</public-render-parameter>

<public-render-parameter>

 <identifier>bar</identifier>

 <qname xmlns:x=”http://example.com/params”>x:foobar</qname>

</public-render-parameter> 20

<portlet>

 <portlet-name>portletA</portlet-name>

 …

 <supported-public-render-parameter>foo</supported-public-render-parameter>

</portlet> 25

<portlet>

 <portlet-name>portletB</portlet-name>

 …

JavaTM Portlet Specification, version 2.0 (2008-01-11) 79

 <supported-public-render-parameter>bar</supported-public-render-parameter>

</portlet>

The portlet container must only send those public render parameters to a portlet which the
portlet has defined support for using supported-public-render-parameter element in 5
the portlet.xmllxxxii. The portlet container must only share those render parameters of a
portlet which the portlet has declared as supported public render parameters using
supported-public-render-parameter element in the portlet.xml lxxxiii. The portlet
container is free to only provide a subset of the defined public render parameters to
portlets that are not target of a render URL as storing of render parameters is only 10
encouraged, but not mandated for portal / portlet container implementations. A public
render parameter that is not supplied for this request should be viewed by the portlet as
having the value null.

If the portlet was the target of a render URL and this render URL has set a specific public
render parameter the portlet must receive at least this render parameter lxxxiv 15

A portlet can access the public render parameters in any lifecycle method via the
getPublicParameterMap method of the portlet request. In addition the portlet can access
public render parameters via the getParameter and getParameterMap methods. In the
case of a processAction or serveResource call the public parameters are merged with
the action / resource parameters set on the action / resource URL. If a action or resource 20
parameter has the same name as a public render parameter the public render parameter
values must be the last entries in the parameter value array. lxxxv

If a portlet wants to delete a public render parameter it needs to use the
removePublicRenderParameter method on the StateAwareResponse or the
PortletURL. 25

By default all public render parameters declared by the portlet will be provided in the
current request. In order to minimize updates a portlet should only set public render
parameters explicitly on a render URL, if the values in the target request should be
different from the parameter values of the current request.

Portlets can access a merged set of public and private parameters via the getParameter 30
methods on the PortletRequest or separated as maps of private parameters via the
getPrivateParameterMap method and public parameters via the
getPublicParameterMap method. lxxxvi

The qname element should uniquely identify the public render parameter and use the
QNames as defined in the XML specifications: XML Schema Part2: Datatypes 35
specification (http://www.w3.org/TR/xmlschema-2/#QName), Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/#ns-qualnames), Namespaces in XML Errata

http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/XML/xml-names-19990114-errata

JavaTM Portlet Specification, version 2.0 (2008-01-11) 80

(http://www.w3.org/XML/xml-names-19990114-errata), TAG Finding: Using Qualified
Names (QNames) as Identifiers in Content (http://www.w3.org/2001/tag/doc/qnameids-
2002-06-17).

As an alternative the portlet can specify a default namespace via the default-
namespace element that will be applied to all public render parameters defined only with 5
a local name with the name element in the public render parameter definition section.

It is up to the portal implementation to decide which portlets may share the same public
render parameters. The portal should use the information provided in the deployment
descriptor, like the name, qname, alias names and description, in order to perform such a
mapping between public render parameters of different portlets. It is also an 10
implementation choice of the portal whether different portlet windows of the same portlet
will receive the same public render parameters. An example where different portlet
windows may not want to share the same render parameters is a generic viewer portlet
that takes as public render parameter the news article ID to display. The user may have
several of this viewer portlets on her pages that may be connected to different content 15
systems.

To enable localization support of public parameters for administration and configuration
tools, developers should provide a display name in the portlet application
ResourceBundle (see the PLT.25.10 Resource Bundles Section). The entry for the display
name should be constructed as ‘javax.portlet.app.public-render-20
parameter.<identifier>.display-name'.

PLT.11.1.3 Extra Request Parameters

The portal/portlet-container implementation may add extra parameters to portlet URLs to
help the portal/portlet-container route and process client requests.

Extra parameters used by the portal/portlet-container must be invisible to the portlets 25
receiving the request. lxxxvii It is the responsibility of the portal/portlet-container to
properly namespace these extra parameters to avoid name collisions with parameters the
portlets define.

Parameter names beginning with the “javax.portlet.” prefix are reserved for
definition by this specification and for use by portal/portlet-container implementations. 30

PLT.11.1.4 Request Attributes

Request attributes are objects associated with a portlet during a single portlet request.
Portlets can not assume that attributes are public between action, resource, event and
render requests. Request attributes may be set by the portlet or the portlet container to
express information that otherwise could not be expressed via the API. Request attributes 35
can be used to share information with a servlet or JSP being included via the
PortletRequestDispatcher.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 81

Attributes are set, obtained and removed using the following methods of the
PortletRequest interface:

• getAttribute
• getAttributeNames
• setAttribute 5
• removeAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the “javax.portlet.” prefix are reserved for definition
by this specification. It is suggested that all attributes placed into the attribute set be
named in accordance with the reverse domain name convention suggested by the Java 10
Programming Language Specification 1 for package naming.

PLT.11.1.4.1 The User Information Request Attribute

The portlet can access a map with user information attributes via the request attribute
PortletRequest.USER_INFO. lxxxviii See Chapter 20, User Information for more details.

PLT.11.1.4.2 The CC/PP Request Attribute 15

The portlet can access a Composite Capability/Preference Profile (CC/PP, W3C:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
http://www.w3.org/TR/2001/WD-CCPP-struct-vocab-20010315/) javax.ccpp.profile via
the request attribute PortletRequest.CCPP_PROFILE. The
PortletRequest.CCPP_PROFILE request attribute must return a javax.ccpp.Profile 20
based on the current portlet request. lxxxix It may contain additional CC/PP information set
by the portal / portlet container. (See JSR 188 (CC/PP Processing,
http://jcp.org/en/jsr/detail?id=188) for more details on CC/PP profile processing).

Note that once the CC/PP profile API provides a factory method taking the 25
PortletRequest / PortletResponse as parameters this attribute may become
deprecated.

PLT.11.1.4.3 The Render Part Request Attribute for Setting Headers in
the Render Phase

There are cases in which the portlet may want to return header information, or other 30
information that is required before getting the markup, like the portlet title or the next
possible portlet modes, in the render phase. However, some portal implementations may
choose to implement itself in a streaming manner and thus do not buffer the output of the
portlet. In order to support these implementations the Java Portlet Specification provides
the javax.portlet.renderHeaders container runtime setting and the RENDER_PART 35

http://www.w3.org/TR/2001/WD-CCPP-struct-vocab-20010315/

JavaTM Portlet Specification, version 2.0 (2008-01-11) 82

request attribute that these streaming portal implementations need to set. Portlets that
want to ensure that they run with maximum performance on all portal implementations
should leverage this mechanism for:

• Setting cookies
• Setting headers 5
• Setting the title
• Returning new possible portlet modes

Portlets that need to set any of the above mentioned headers should set the additional
container-runtime-option with name javax.portlet.renderHeaders and value true. 10
The default for this setting is false. When set to true streaming portal implementations
should call the render method of the portlet twice with RENDER_PART attribute set in the
render request. Example:

<portlet>

… 15

 <container-runtime-option>

 <name>javax.portlet.renderHeaders</name>

 <value>true</value>

 </container-runtime-option>

 </portlet> 20

If the RENDER_PART portlet request attribute is set it indicates that the render request
needs to be split into two parts:

1. The render headers part that must be indicated by setting the RENDER_PART
request attribute with the value RENDER_HEADERS. In this part the portlet should 25
only set the header related data, cookies, the next possible portlet modes and the
portlet title. The portlet can set cache information for this response that may differ
from the one set on the RENDER_MARKUP response.

2. The render markup part that must be indicated by setting the RENDER_PART
request attribute with the value RENDER_MARKUP. In this part the portlet should 30
produce only its markup.

Non-streaming portals will not set this attribute and thus the portlet should set headers,
portlet title and produce its markup in a single render request.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 83

Portlets should either extend GenericPortlet, which provides handling of the
RENDER_PART request attribute in the render method, or check for the RENDER_PART
request attribute themselves.

PLT.11.1.4.4 The Lifecycle Phase Request Attribute 5

The LIFECYCLE_PHASE request attribute of the PortletRequest interface allows a portlet
to determine the current lifecycle phase of this request. This attribute value must be
ACTION_PHASE if the current request is of type ActionRequest, EVENT_PHASE if the
current request is of type EventRequest, RENDER_PHASE if the current request is of type
RenderRequest, and RESOURCE_SERVING_PHASE if the current request is of type 10
ResourceRequest. xc

The main intent of this attribute is to allow frameworks implemented on top of the Java
Portlet Specification to perform the correct type casts from the
PortletRequest/PortletResponse to a specific request/response pair, like
ActionRequest/ActionResponse. 15

PLT.11.1.4.5 Action-scoped Request Attributes

The Java Portlet Specification follows a model of separating concerns in different
lifecycle methods, like processAction, processEvent, render. This provides a clean
separation of the action semantics from the rendering of the content, however, it may 20
create some issues with servlet-based applications that don’t follow this strict Model-
View-Controller pattern. Such applications in some cases assume that attributes that they
set in the action phase will be accessible again when starting the rendering. The Java
Portlet Specification provides the render parameters for such use cases, but some
applications need to transport complex objects instead of strings. 25

For such use cases the Java Portlet Specification provides the action-scoped request
attributes as container runtime option with the intent to provide portlets with these
request attributes until a new action occurs.

Section PLT.10.1.4.4 describes this option in more detail.

 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 84

PLT.11.1.5 Request Properties

A portlet can access portal/portlet-container specific properties and, if available, the
headers of the HTTP client request through the following methods of the methods of the
PortletRequest interface:

• getProperty 5
• getProperties
• getPropertyNames

There can be multiple properties with the same name. If there are multiple properties with
the same name, the getProperty method returns the first property value. The
getProperties method allows access to all the property values associated with a 10
particular property name, returning an Enumeration of String objects.

Depending on the underlying web-server/servlet-container and the portal/portlet-
container implementation, client request HTTP headers may not be always available.
Portlets should not rely on the presence of headers to function properly. The
PortletRequest interface provides specific methods to access information normally 15
available as HTTP headers: content-length, content-type, accept-language. Portlets
should use the specific methods for retrieving those values as the portal/portlet-container
implementation may use other means to determine that information.

PLT.11.1.5.1 Cookies

The portlet can access cookies provided by the current request with the getCookies 20
method. The returned cookie array provides the portlet with all cookie properties.

PLT.11.1.6 Request Context Path

The context path of a request is exposed via the request object. The context path is the
path prefix associated with the deployed portlet application. If the portlet application is
rooted at the base of the web server URL namespace (also known as "default" context), 25
this path must be an empty string.xci Otherwise, it must be the path the portlet application
is rooted to, the path must start with a '/' and it must not end with a '/' character.xcii

PLT.11.1.7 Security Attributes

The PortletRequest interface offers a set of methods that provide security information
about the user and the connection between the user and the portal. These methods are: 30

• getAuthType
• getRemoteUser
• getUserPrincipal
• isUserInRole
• isSecure 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 85

The getAuthType indicates the authentication scheme being used between the user and
the portal. It may return one of the defined constants (BASIC_AUTH, DIGEST_AUTH,
CERT_AUTH and FORM_AUTH) or another String value that represents a vendor provided
authentication type. If the user is not authenticated the getAuthType method must return
null.xciii 5

The getRemoteUser method returns the login name of the user making this request.

The getUserPrincipal method returns a java.security.Principal object containing
the name of the authenticated user.

The isUserInRole method indicates if an authenticated user is included in the specified
logical role. 10

The isSecure method indicates if the request has been transmitted over a secure protocol
such as HTTPS.

PLT.11.1.8 Response Content Types

Portlet developers may code portlets to support multiple content types. A portlet can
obtain, using the getResponseContentType method of the request object, a string 15
representing the default content type the portlet container assumes for the output.

If the portlet container supports additional content types for the portlet’s output, it must
declare the additional content types through the getResponseContentTypes method of
the request object. The returned Enumeration of strings should contain the content types
the portlet container supports in order of preference. The first element of the enumeration 20
must be the same content type returned by the getResponseContentType method.xciv

The returned values of the getResponseContentType and getResponseContentTypes
call are the same for processAction, processEvent and render calls occurring within
the same client request.

If a portlet defines support for all content types using a wildcard and the portlet container 25
supports all content types, the getResponseContentType may return the wildcard or the
portlet container preferred content type.

If the getResponseContentType or getResponseContentTypes methods are exposed
via an ActionRequest, EventRequest, or RenderRequest the following additional
restrictions apply: 30

• The content type must only includes the MIME type, not the character set. xcv The
character set of the response can be retrieved via the
RenderResponse.getCharacterEncoding.

• The getResponseContentTypes method must return only the content types
supported by the current portlet mode of the portlet.xcvi 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 86

If the getResponseContentType or getResponseContentTypes methods are exposed
via an ResourceRequest the returned values should be based on the HTTP Accept header
provided by the client.

PLT.11.1.9 Internationalization

The portal/portlet-container decides what locale will be used for creating the response for 5
a user. The portal/portlet-container may use information that the client sends with the
request. For example the Accept-Language header along with other mechanisms
described in the HTTP/1.1 specification. The getLocale method is provided in the
PortletRequest interface to inform the portlet about the locale of user the portal/portlet-
container has chosen. 10

PLT.11.1.10 Portlet Mode

The getPortletMode method of the PortletRequest interface allows a portlet to find
out its current portlet mode. A portlet may be restricted to work with a subset of the
portlet modes supported by the portal/portlet-container. A portlet can use the
isPortletModeAllowed method of the PortletRequest interface to find out if the 15
portlet is allowed to use a portlet mode. A portlet mode is not allowed if the portlet mode
is not in the portlet definition or, the portlet or the user has been constrained further by
the portal. Note that the VIEW mode is always allowed, even if not explicitly listed in the
portlet definition.

PLT.11.1.11 Window State 20

The getWindowState method of the PortletRequest interface allows a portlet to find
out its current window state.

A portlet may be restricted to work with a subset of the window states supported by the
portal/portlet-container. A portlet can use the isWindowStateAllowed method of the
PortletRequest interface to find out if the portlet is allowed to use a window state. 25

PLT.11.1.12 Access to the Portlet Window ID

The getWindowID method of the PortletRequest interface provides the portlet with the
current portlet window ID. The portlet window ID must be unique for this portlet window
and constant for the lifetime of the portlet window. The portlet window ID retrieved with
the getWindowID method must be the same as the one that is used by the portlet container 30
for scoping the portlet-scope session attributes. xcvii

PLT.11.2 ClientDataRequest Interface

The ClientDataRequest interface extends the PortletRequest interface and it is used
as base class for the ActionRequest and ResourceRequest. In addition to the

JavaTM Portlet Specification, version 2.0 (2008-01-11) 87

functionality provided by the PortletRequest interface, the ClientDataRequest
interface represents the request information of the HTTP request issued from the client to
the consuming application / portal, such as the input stream.

PLT.11.2.1 Retrieving Uploaded Data

The input stream is useful when the client request contains HTTP POST data of type 5
other than application/x-www-form-urlencoded. For example, when a file is
uploaded to the portlet as part of a user interaction.

As a convenience to the portlet developer, the ClientDataRequest interface also
provides a getReader method that retrieves the HTTP POST data as character data
according to the character encoding defined in the request. 10

Only one of the two methods, getPortletInputStream or getReader, can be used
during an action request. If the input stream is obtained, a call to the getReader must
throw an IllegalStateException. Similarly, if the reader is obtained, a call to the
getPortletInputStream must throw an IllegalStateException.xcviii

To help manage the input stream, the ClientDataRequest interface also provides the 15
following methods:

• getContentType
• getCharacterEncoding
• setCharacterEncoding
• getContentLength 20

The setCharacterEncoding method only sets the character set for the Reader that the
getReader method returns.

If the user request HTTP POST data is of type application/x-www-form-urlencoded,
this data has been already processed by the portal/portlet-container and is available as
request parameters. The getPortletInputStream and getReader methods must throw 25
an IllegalStateException if called.xcix

PLT.11.3 ActionRequest Interface

The ActionRequest interface extends the ClientDataRequest interface and is used in
the processAction method of the Portlet interface. Currently, the ActionRequest
interface does not define any additional methods but only the ACTION_NAME constant that 30
can be used together with the @ProcessAction annotation.

PLT.11.4 ResourceRequest Interface

The ResourceRequest interface extends the ClientDataRequest interface and is used
in the serveResource method of the ResourceServingPortlet interface. The

JavaTM Portlet Specification, version 2.0 (2008-01-11) 88

ResourceRequest interface defines in addition the ETAG constant and the getETag
method for validation based caching and the getResourceID method for getting the
resource ID set on the resource URL.

PLT.11.5 EventRequest Interface

The EventRequest interface extends the PortletRequest interface and is used in the 5
processEvent method of the EventPortlet interface. The EventRequest interface
provides the event that triggered the processEvent call via the getEvent method which
returns an Event object. The Event object provides the event QName via getQName.

PLT.11.6 RenderRequest Interface

The RenderRequest interface extends the PortletRequest interface and is used in the 10
render method of the Portlet interface. Currently, the RenderRequest interface does
not define any additional methods.

PLT.11.7 Lifetime of the Request Objects

Each request object is valid only within the scope of a particular processAction,
processEvent, serveResource or render method call. Containers commonly recycle 15
request objects in order to avoid the performance overhead of request object creation. The
developer must be aware that maintaining references to request objects outside the scope
described above may lead to non-deterministic behavior.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 89

PLT.12

Portlet Responses

The response objects encapsulate all information to be returned from the portlet to the
portlet container during a request: a redirection, a portlet mode change, title, content, etc. 5
The portal/portlet-container will use this information to construct the response -usually a
portal page- to be returned to the client. A response object is passed to the
processAction, processEvent, serveResource and the render methods of the
portlet.

PLT.12.1 PortletResponse Interface 10

The PortletResponse interface defines the common functionality for the
ActionResponse, EventResponse, ResourceResponse and RenderResponse
interfaces.

PLT.12.1.1 Response Properties

Properties can be used by portlets to send vendor specific information to the 15
portal/portlet-container.

A portlet can set properties using the following methods of the PortletResponse
interface:

• setProperty
• addProperty 20

The setProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addProperty method
adds a property value to the set with a given name. If there are no property values already
associated with the name, a new set is created. 25

Response properties can be viewed as header values set for the portal application. If these
header values are intended to be transmitted to the client they should be set before the
response is committed. When setting headers in the render lifecycle phase portlets should
set the header in the render headers part or simply override the
GenericPortlet.doHeaders method (see PLT.11.1.1.4.3). 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 90

The portlet should note that headers set on the response are not guaranteed to be
transported to the client as the portal application may restrict headers due to security
reasons, or they may conflict with other headers set by other portlets on the page.

PLT.12.1.2 Encoding of URLs 5

Portlets may generate content with URLs referring to other resources within the portlet
application, such as servlets, JSPs, images and other static files. Some portal/portlet-
container implementations may require those URLs to contain implementation specific
data encoded in it. Because of that, portlets should use the encodeURL method to create
such URLs. The encodeURL method may include the session ID and other portal/portlet-10
container specific information into the URL. If encoding is not needed, it may return the
URL unchanged.

Resources that are addressed not by an URL encoded with encodeURL, or directly via a
ResourceURL, are not guaranteed to be accessible.

Portlet developer should be aware that the returned URL might not be a well formed 15
URL but a special token at the time the portlet is generating its content. Thus portlets
should not add additional parameters on the resulting URL or expect to be able to parse
the URL. As a result, the outcome of the encodeURL call may be different than calling
encodeURL in the servlet world.

PLT.12.1.3 Namespacing 20

Within their content, portlets may include elements that must be unique within the whole
portal page. JavaScript functions and variables are an example of this.

The getNamespace method must provide the portlet with a mechanism that ensures the
uniqueness of the returned string in the whole portal page.c For example, the
getNamespace method will return a unique string that could be prefixed to a JavaScript 25
variable name within the content generated by the portlet, ensuring its uniqueness in the
whole page. The getNamespace method must return the same value for the lifetime of the
portlet window.ci

The getNamespace method must return a valid identifier as defined in the 3.8 Identifier
Section of the Java Language Specification Second Edition.cii 30

PLT.12.1.4 Setting Cookies

A portlet can set HTTP cookies at the response via the addProperty method with a
javax.servlet.http.Cookie as parameter. The portal application is not required to
transfer the cookie to the client. Thus the portlet should not assume that it has access to

JavaTM Portlet Specification, version 2.0 (2008-01-11) 91

the cookie on the client or that request triggered with URLs not generated by the portlet
API can access the cookie.

Cookies set in the response of one lifecycle call should be available to the portlet in the
subsequent lifecycle calls, e.g. setting a cookie in processAction should enable the
portlet to retrieve the cookie in the next render call. 5

For requests triggered via portlet URLs the portlet should receive back the cookie.
Cookies can be retrieved via the request.getCookies method.

Cookies are properties and all restrictions said above about properties also apply for
cookies, i.e. to be successfully transmitted back to the client, cookies must be set before
the response is committed. Cookies set in render or serveResource after the response is 10
committed will be ignored by the portlet container.

When setting cookies in the render lifecycle phase portlets should set the cookies in the
render headers part or simply override the GenericPortlet.doHeaders method in order
to run with maximum performance on all portal implementations (see PLT.11.1.1.4.3).

PLT.12.2 StateAwareResponse Interface 15

The StateAwareResponse interface extends the PortletResponse interface and in
addition provides methods to set new render parameters, a new portlet mode, or window
state. ActionResponse and EventResponse both extend this interface.

PLT.12.2.1 Render Parameters

Using the setRenderParameter and setRenderParameters methods portlets may set 20
render parameters. A call to any of the setRenderParameter methods must replace any
parameter with the same name previously set. ciii Subsequent lifecycle calls, like
processEvent or render that are part of the current client request should contain the
newly set render parameters. If no other requests occur which influence render
parameters, like subsequent processEvent calls of this client request, occur these 25
parameters will be used in all subsequent render requests until a new client request or
event targets the portlet.

Portlet developers do not need to “x-www-form-urlencoded” encode render parameters
names and values set in the StateAwareResponse.

The removePublicRenderParameter method allows the portlet to remove a public 30
render parameter.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 92

PLT.12.2.2 Portlet Modes and Window State Changes

The setPortletMode method allows a portlet to change its current portlet mode. The
new portlet mode will be effective in the following processEvent and render requests.
If a portlet attempts to set a portlet mode that it is not allowed to switch to, a
PortletModeException must be thrown.civ 5

The setWindowState method allows a portlet to change its current window state. The
new window state will be effective in the following processEvent and render requests.
If a portlet attempts to set a window state that it is not allowed to switch to, a
WindowStateException must be thrown.cv

Portlets cannot assume that subsequent processEvent or render calls will be called with 10
the set portlet mode or window state as the portal/portlet-container could override these
changes.

If the portlet does not set a new portlet or window state at the StateAwareResponse
interface the current portlet mode and window state are preserved.

PLT.12.2.3 Publishing Events 15

The portlet can publish events via the setEvent method. It is also valid to call setEvent
multiple times in the current processAction or processEvent method and thus publish
multiple events (see PLT. 15.2).

PLT.12.3 ActionResponse Interface

The ActionResponse interface extends the StateAwareResponse interface and it is used 20
in the processAction method of the Portlet interface. This interface also allows a
portlet to redirect the user to another URL.

PLT.12.3.1 Redirections

The sendRedirect(String location) method instructs the portal/portlet-container to
set the appropriate headers and content body to redirect the user to a different URL. A 25
fully qualified URL or a full path URL must be specified. If a relative path URL is given,
an IllegalArgumentException must be thrown.cvi

If the sendRedirect(String location) method is called after the setPortletMode,
setWindowState, removePublicRenderParameter, setRenderParameter or
setRenderParameters methods of the ActionResponse interface, an 30
IllegalStateException must be thrown and the redirection must not be executed.cvii

The sendRedirect(String location, String renderUrlParamName) method
instructs the portal/portlet-container to set the appropriate headers and content body to

JavaTM Portlet Specification, version 2.0 (2008-01-11) 93

redirect the user to a different URL. A fully qualified URL or a full path URL must be
specified. If a relative path URL is given, an IllegalArgumentException must be
thrown.cviii

The portlet container must attach a render URL with the currently set portlet mode,
window state and render parameters on the ActionResponse and the current public 5
render parameters. cix The attached URL must be available as query parameter value
under the key provided with the renderUrlParamName parameter. cx

New values for portlet mode, window state, private or public render parameters must be
encoded in the attached render URLcxi, but are not remembered after the redirect is
issued. 10

Sending events when doing a redirect is discouraged as these events may be discarded by
the portlet container / portal application as the further processing of the event may result
in state changes that the portlet container would not be able to honor because of the
performed redirect.

PLT.12.4 EventResponse Interface 15

The EventResponse interface extends the StateAwareResponse interface and adds the
additional method setRenderParameters(EventRequest request). One thing to note
is that if a portlet receives multiple processEvent calls while processing one client
request the new portlet mode or window state that the portlet may have set, may be not
validated by the portal between these multiple processEvent calls. This means that even 20
if the portlet container may not throw an exception when the portlet sets a new portlet
mode or window state that the portal may still not approve this portlet mode or window
state change and call the portlet render method with a different portlet mode or window
state.

PLT.12.5 MimeResponse Interface 25

The MimeResponse interface extends the PortletResponse interface and is used as base
interface for RenderResponse and ResourceResponse. In addition to the
PortletResponse interface the MimeResponse interface provides the functionality to
create MIME-based content that is returned to the portal application.

PLT.12.5.1 Content Type 30

A portlet can set the content type of the response using the setContentType method of
the MimeResponse interface in order to indicate to the portlet container which content
type the portlet has chosen.

For the render response the setContentType method must throw an
IllegalArgumentException if the content type set does not match (including wildcard 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 94

matching) any of the content types returned by the getResponseContentType method of
the PortletRequest objectcxii. For the render response the portlet container should
ignore any character encoding specified as part of the content type and treat the content
type as if the character encoding was not specified.

 5

The setContentType method must be called before the getWriter or
getPortletOutputStream methods. If called after, it should be ignored.

If the portlet has set a content type, the getContentType method must return it.
Otherwise, the getContentType method must return null.cxiii

If the portlet does not specify a content type before the getWriter or 10
getPortletOutputStream methods the portlet container assumes the content type of the
PortletRequest.getResponseContentType()method and resolves wildcards on a best-
can-do basis.

PLT.12.5.2 Output Stream and Writer Objects

A portlet may generate its content by writing to the OutputStream or to the Writer of 15
the MimeResponse object. A portlet must use only one of these objects. The portlet
container must throw an IllegalStateException if a portlet attempts to use both.cxiv

The termination of the render or serveResource method of the portlet indicates that the
portlet has satisfied the request and that the output buffer is to be flushed.

In render the raw OutputStream is available because of some servlet container 20
implementations requirements and for portlets that do not generate markup fragments.
Portlets should only use the raw OutputStream for binary content and use the Writer for
text-based markup. If a portlet utilizes the OutputStream, the portlet is responsible for
using the proper character encoding.

PLT.12.5.3 Access to Response Headers 25

A portlet can set HTTP headers for the response via the setProperty or addProperty
call in the MimeResponse. To be successfully transmitted back, headers must be set
before the response is committed. Headers set after the response is committed will be
ignored by the portlet container.

Note that it is not guaranteed that headers, like cookies, will be transmitted all the way 30
back to the client.

For render calls, portlets should set headers in the render headers part of the render
lifecycle phase or simply override the GenericPortlet.doHeaders method (see
PLT.11.1.4.3) in order to run with maximum performance on all portal implementations.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 95

PLT.12.5.4 Setting Markup Head Elements

A portlet can set markup head elements at the response via the addProperty method with

MimeResponse.MARKUP_HEAD_ELEMENT (value:
"javax.portlet.markup.head.element") as property name and an
org.w3c.dom.Element value. 5

This property is intended to be a hint to the portal application that the provided DOM
element should be added to the markup head section of the response to the client.

Support for this property is optional and the portlet can verify if the calling portal
supports this property via the MARKUP_HEAD_ELEMENT_SUPPORT property on the
PortalContext. 10

Even if the calling portal supports this property, delivery of the DOM element to the
client cannot be guaranteed, e.g. due to possible security rules of the portal application or
elements that conflict with the response of other portlets.

For render calls, portlets should set head properties in the render headers part of the
render lifecycle phase or simply override the GenericPortlet.doHeaders method (see 15
PLT.11.1.4.3) in order to run with maximum performance on all portal implementations.

PLT.12.5.5 Buffering

A portlet container is allowed, but not required, to buffer output going to the client for
efficiency purposes. Typically servers that do buffering make it the default, but allow 20
portlets to specify buffering parameters.

The following methods in the MimeResponse interface allow a portlet to access and set
buffering information:

• getBufferSize
• setBufferSize 25
• isCommitted
• reset
• resetBuffer
• flushBuffer

These methods are provided on the MimeResponse interface to allow buffering operations 30
to be performed whether the portlet is using an OutputStream or a Writer.

The getBufferSize method returns the size of the underlying buffer being used. If no
buffering is being used, this method must return the int value of 0 (zero).cxv

JavaTM Portlet Specification, version 2.0 (2008-01-11) 96

The portlet can request a preferred buffer size by using the setBufferSize method. The
buffer assigned is not required to be the size requested by the portlet, but must be at least
as large as the size requested.cxvi This allows the container to reuse a set of fixed size
buffers, providing a larger buffer than requested if appropriate. The method should be
called before any content is written using a OutputStream or Writer. If any content has 5
been written, this method may throw an IllegalStateException.

The isCommitted method returns a boolean value indicating whether any response bytes
have been returned to the client. The flushBuffer method forces content in the buffer to
be written to the client.

The reset method clears data in the buffer when the response is not committed. 10
Properties set by the portlet prior to the reset call must be cleared as well.cxvii The
resetBuffer method clears content in the buffer if the response is not committed
without clearing the properties.

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown.cxviii The response and its associated buffer 15
must be unchanged.cxix

When using a buffer, the container must immediately flush the contents of a filled buffer
to the portal application.cxx If this is the first data that is sent to the portal application, the
response must be considered as committed.

PLT.12.5.6 Predefined MimeResponse Properties 20

The MimeResponse interface defines some property names that allow portlets leveraging
these extensions to interoperate across different portal / portlet container
implementations.

PLT.12.5.6.1 Cache properties

The MimeResponse defines the property names CACHE_SCOPE, EXPIRATION_CACHE, 25
ETAG and USE_CACHED_CONTENT and the property values PRIVATE_SCOPE and
PUBLIC_SCOPE, which can be used for validating expired content, setting new expiration
times and cache scopes. See PLT.22 for more details.

PLT.12.5.6.2 Namespaced Response Property

The NAMESPACED_RESPONSE constant is intended to be a hint to the portal application that 30
the returned content is completely namespaced. This includes all markup id elements,
form fields, etc. One example where this might be used is for portal applications that are
form-based and thus need to re-write any forms included in the portlet markup.

This property needs to be set using the setProperty method with a non-null value. The
value itself is not evaluated. The value of the NAMESPACED_RESPONSE constant is X-35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 97

JAVAX-PORTLET-NAMESPACED-RESPONSE indicating that it is intended to be a header in
the portlet response to the portal application.Portlets should set the namespaced property
in the render headers part of the render lifecycle phase or simply override the
GenericPortlet.doHeaders method in order to run with maximum performance on all
portal implementations (see PLT.11.1.4.3). 5

PLT.12.6 RenderResponse Interface

The RenderResponse interface extends the MimeResponse interface and it is used in the
render method of the Portlet interface. This interface allows a portlet to set its title,
indicate the next possible portlet modes, and generate content.

The portlet cannot set the character encoding or the locale of the response as these are 10
pre-set by the portal / portlet container.

PLT.12.6.1 Portlet Title

A portlet may indicate to the portal/portlet-container its preferred title. It is up to the
portal/portlet-container to use the preferred title set by the portlet.

The setTitle method must be called before the output of the portlet has been 15
committed, if called after it should be ignored.cxxi

Portlets should set the javax.portlet.renderHeaders container runtime option and
either set the title in the render headers part of the render lifecycle phase (see
PLT.11.1.1.4.3) or simply override the GenericPortlet.getTitle method in order to
run with maximum performance on all portal implementations. 20

PLT.12.6.2 Next possible portlet modes

A portlet may indicate to the portal application the next possible portlet modes that make
sense from the portlet point of view via the setNextPossiblePortletModes method.

If set, the portal should honor these enumeration of portlet modes and only provide the
end user with choices to the provided portlet modes or a subset of these modes based on 25
access control considerations.

If the portlet does not set any next possible portlet modes the default is that all portlet
modes that the portlet has defined supporting in the portlet deployment descriptor are
meaningful new portlet modes.

In order to ensure that the next possible portlet modes are honored by all portal 30
implementations, portlets should set the javax.portlet.renderHeaders container
runtime option and either set the next possible portlet modes in the render headers part of
the render lifecycle phase (see PLT.11.1.1.4.3) or simply override the GenericPortlet.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 98

getNextPossiblePortletModes method in order to run with maximum performance on
all portal implementations.

PLT.12.7 ResourceResponse Interface

The ResourceResponse interface extends the MimeResponse interface and is used in the
serveResource method of the ResourceServingPortlet interface. This interface 5
allows a portlet to generate content that is directly served to the client, including binary
content.

The portlet can set the character encoding or the locale of the response. The portal /
portlet container may pre-set character encoding and locale.

PLT.12.7.1 Setting the Response Character Set 10

The portlet can set the character encoding for a resource response in several ways:

• via the setCharacterEncoding method
• via the setContentType method. Calls to setContentType set the character

encoding only if the given content type string provides a value for the charset
attribute. 15

• via the setLocale method and a locale-encoding-mapping-list mapping in
the web.xml deployment descriptor (see servlet specification SVR.5.4 for
details). Calls to setLocale set the character encoding only if neither
setCharacterEncoding nor setContentType has set the character encoding
before. 20

If the portlet does not set a character encoding via one of the above listed methods before
calling getWriter UTF-8 is applied by the portlet container as default character
encoding.

 25

PLT.12.8 Lifetime of Response Objects

Each response object is valid only within the scope of a particular processAction,
processEvent, serveResource, or render method call. Containers commonly
recycle response objects in order to avoid the performance overhead of response object
creation. The developer must be aware that maintaining references to response objects 30
outside the scope described above may lead to non-deterministic behavior.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 99

JavaTM Portlet Specification, version 2.0 (2008-01-11) 100

PLT.13

Resource Serving

Portlets can create two different kinds of resource links in order to serve resources:

1. Direct links to the resource in the same portlet web application. These links are
constructed by the portlet and encoded with the PortletResponse.encodeURL() 5
method.
Note that this method might not return a valid URL.
Direct links are not guaranteed to pass through the portal server and will not have
the portlet context available.
Direct links should be used for use cases where the access to the portlet context 10
and access through the portal is not needed, as they are more efficient than
resource serving requests via resource URLs through the portal.

2. Resource URL links pointing back to the portlet. Via these links the
serveResource method of the ResourceServingPortlet interface is called and
the portlet can serve the resource. Thus resources served via resource URLs may 15
be protected by the portal security and can leverage the portlet context. Static
resources should still be served with direct links in order to allow portal
applications to configure and optimize static resource serving in a consistent
manner.

The remainder of this chapter defines how resource URL links can be created and how 20
the portlet is called to serve the resource.

PLT.13.1 ResourceServingPortlet Interface

A portlet that wants to serve resources addressed via a resource URL must implement the
ResourceServingPortlet interface with the method serveResource. The portlet
container must not render any output in addition to the content returned by the 25
serveResource call. For serveResource calls the portal application should just act as a
proxy for accessing the resource.

The serveResource call normally follows a render call and can be viewed as a logical
extension the render phase. The portlet should not change any state in the
serveResource call that was issued via an HTTP method GET. 30

For use cases that require state changes the serveResource call should be issued via an
HTTP method POST or PUT or DELETE. For serveResource calls only state changes
to non-shared state, like the portlet session scope or portlet preferences, should be
performed as otherwise portlets participating in this shared state would display stale

JavaTM Portlet Specification, version 2.0 (2008-01-11) 101

markup. The portlet should note that such state changes impact cachability of the
resource and set the cache settings accordingly.

The serveResource call can also be used to implement Asynchronous Javascript and
XML (AJAX) use cases (see Chapter 14).

Figure 13-1 Resource Request Handling Sequence 5

Client Portal
Portlet

container
Portlets

A B C

A

B C

A’

B’ C’

Page request

serveResource

Not defined by the Java Portlet Specification

New Page
with
ResourceURL
in Markup of
Portlet CA’

B’ C’
Resource
request

R

Resource
markup

PLT.13.2 Access to Render Parameters, Portlet Mode, and
Window State

The ResourceRequest should be provided with the current portlet mode and window
state. The ResourceRequest call should also be provided with the current render 10
parameters of the portlet.

PLT.13.3 Access to Request and Response Headers

Given that the portal / portlet container does not render any additional markup for a
serveResource response it is important for the portlet to be able to access the incoming
request headers and to be able to set new headers for the response. 15

A portlet can access the headers of the HTTP client request through the getProperty or
getProperties call, like all portlet requests (see PLT 11.1.5).

A portlet can set HTTP headers for the response via the setProperty or addProperty call in
the PortletResponse. To be successfully transmitted back to the client, headers must be

JavaTM Portlet Specification, version 2.0 (2008-01-11) 102

set before the response is committed. Headers set after the response is committed will be
ignored by the portlet container.

The portlet should be aware that the portal application may filter out some headers due to
the fact that it has already set these headers to a different value or because of security
reasons. 5

PLT.13.4 Getting the HTTP Method

The portlet must be able to get the HTTP method with which this request was made, for
example, GET, POST, or PUT, via the getMethod call on the ResourceRequest. cxxii

PLT.13.5 Access to the Resource ID

The portlet must be able to get the resource ID that was set on the resource URL with the 10
setResourceID method via the getResourceID method from the resource request. cxxiii If
no resource ID was set on the resource URL the getResourceID method must return
null. cxxiv

PLT.13.6 Resource URLs

The portlet can create resource URLs pointing back to itself via the createResourceURL 15
method on the PortletResponse. When an end user invokes such a resource URL the
portlet container must call the serveResource method of the portlet or return a valid
cached result for this resource URLcxxv If the portlet does not implement the
ResourceServingPortlet interface it is left to the portal / portlet container to either
provide some meaningful error handling or ignore the URL. 20

The portlet container must not call the processAction or processEvent methodcxxvi.
Resource URLs should be provided with the current portlet mode, window state, and
render parameters that the portlet can access via the ResourceRequest with
getPortletMode, getWindowState, or one of the getParameter methods.
ResourceURLs cannot change the current portlet mode, window state or render 25
parameterscxxvii. Parameters set on a resource URL are not render parameters but
parameters for serving this resource and will last only for the current serveResource
request.

If a parameter is set that has the same name as a render parameter that this resource URL
contains, the render parameter values must be the last entries in the parameter value 30
array. cxxviii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 103

PLT.13.7 Caching of Resources

The supported use cases for serveResource include retrieving new markup fragments
based on the current portlet state and allowing the portlet to include portlet URLs in the
returned markup. If portlet URLs are included in the markup, portals / portlet containers
must create correct portlet URLs for all text-based markup types. cxxix If the returned 5
markup of the serveResource call includes portlet URLs the cachability of the markup
on the browser will most likely be limited as a common practice of portal application is to
encode the state of the portlets in the URL.

With the setCacheability method on the ResourceURL the portlet can indicate that it
only needs parts of the overall state via the cache level parameter and thus the portal 10
application can create URLs that result in an increased likelihood of a subsequent
browser access being served from a browser/web cache. With the getCachability
method on the ResourceURL the portlet can retrieve the current cache level.

The following values are defined for the cache level parameter:

• FULL – The resource URL does not need to contain the current state of the page 15
or the current render parameters, portlet mode, or window state of the portlet.
Thus the portlet should not access the portlet mode, window state, or render
parameters in the serveResource call.
Only URLs with a cache level FULL are allowed in the response of the
serveResource call triggered via a ResourceURL with a cache level FULL. The 20
same restriction is true for all downstream URLs that result from this
serveResource call. Setting a cachability different from FULL must result in an
IllegalStateExceptioncxxx. Attempts to create URLs that are not of type FULL
or are not resource URLs in the current or a downstream response must result in
an IllegalStateExceptioncxxxi. 25
In order to enable sharing of the resource between different portlet applications
the portlet can set a unique ID, preferable a QName in the QName.toString
format, via the property key ResourceURL.SHARED on the resource URL. This
unique ID is intended to allow the portal application identifying resource links
that identify the same resource (e.g. in case of a JavaScript library it could 30
include the namespace + name of the library + version). All downstream URLs
will be assumed to have the same sharing ID if no other unique ID is specified.
For resource URLs that have set the ResourceURL.SHARED property the portlet
may not get called for serving the resource as it may already be cached on the
portlet application when serving the same resource for a different portlet. 35
URLs of the type FULL have the highest cacheability in the browser as they do
not depend on any state of the portlet or page.

• PORTLET – The serveResource call triggered by a PORTLET resource URL
does have access to the portlet state consisting of the render parameters, portlet
mode and window state. The resource URL does not include further state of the 40
portal page and therefore the markup returned from serveResource, or any

JavaTM Portlet Specification, version 2.0 (2008-01-11) 104

further downstream calls resulting from this URL, must only include URLs of
type FULL or PORLET. Creating other URLs, e.g. resource URLs of type PAGE or
action or render URLs, must result in an IllegalStateExceptioncxxxii
URLs of the type PORTLET are cacheable on the portlet level in the browser and
can be served from the browser cache for as long as the state of this portlet does 5
not change.

• PAGE – The resource URL may contain artifacts that require knowledge of the
state of the complete page, like PortletURLs, or resource URLs of type PAGE.
The markup returned by such a resource URL may contain any portlet URL.
Resource URLs of the type PAGE are only cacheable on the page level and can 10
only be served from the browser cache as long as no state on the page changes.

The cacheability constants are ordered (from strong to weak) in the following manner:
FULL, PORTLET, PAGE.

If no cachability is set on the resource URL, the cacheability setting of the parent
resource is used. If no parent resource is available, PAGE is the default. 15

E.g. a portlet creates in render a resource URL with cachability PORTLET. When this
resource URL is being triggered and the serveResource method of the portlet is being
called all resource URLs created in this serveResource call will have per default
PORTLET cacheability. The portlet can only further restrict the cacheability, e.g. set it to
FULL, but not lessen it, like trying to set it to PAGE. 20

PLT.13.8 Generic Portlet Support

The serveResource method in the GenericPortlet class tries to forward the resource
serving to the resource ID set on URL triggering the request for serving the resource. If
no resource ID is set, the serveResource method does nothing.

 25

JavaTM Portlet Specification, version 2.0 (2008-01-11) 105

PLT.14

Serving Fragments through Portlets

Through the render method of the Portlet interface the Portlet produces its complete
markup that is embedded as a fragment into the overall page by the portal application.
However, there are use cases where the portlet would like to only replace a part of its 5
markup, e.g. via an AJAX call.

1. There are two different scenarios: Perform operations that don’t need coordination
features or change shared state, like portlet application session scope data, or any
navigational state, like render parameters, portlet mode or window state.

2. Perform operations that want to leverage coordination features or need to change 10
shared state like portlet application session scope data, render parameters, portlet
mode or window state.

For scenario 1 the Java Portlet Specification provides the serveResource method.

Scenario 2 requires coordination between the portlet and the portal application as
changing shared state or state that may be stored on the client, like render parameters, 15
affects not only the portlet markup itself, but also other parts of the page. Thus the portal
application needs to provide these updates and the portlet needs to have some means to
allow the portal performing these updates. Version 2.0 of the Java Portlet Specification
does not address this coordinated scenario that requires defining client side interfaces and
thus reaches beyond the Java space. 20

The remainder of this chapter explains how to serve portlet fragments by using the
serveResource method. In this context a portlet fragment is a response that impacts in
most cases only parts of the portlet markup. A fragment response will be commonly in a
HTML format but it can also be XML, JSON, etc.

PLT.14.1 Serving Fragments via serveResource Method 25

Serving fragments via serveResource is under the complete control of the portlet.
Typically a portlet would issue an XMLHttpRequest with a resource URL and provide
either markup or data as response in the serveResource method. The ECMA client side
code of the portlet is then responsible for inserting either the markup or otherwise update
the page DOM in a non-disruptive manner for the other components on the page. 30

Due to the fact that the portal application is not involved in serving the fragment several
restrictions apply for serving fragments via serveResource:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 106

• No support for coordination like events or shared render parameters. The portlet
will only receive the current shared render parameter values, cannot change these
values.

• The serveResource call cannot set new render parameters, a new portlet mode or
window state. 5

• The serveResource call cannot issue redirects.
• The serveResource call should not change application-scoped session state, as

other parts of the page will not see these session updates and thus represent an
inconsistent user experience.

 10

The portlet should note that such state changes impact cachability of the resource
response and set the cache settings accordingly. The following figure shows how a
request flow using serveResource for serving portlet fragments will look like. Figure 2:
Request flow when serving fragments via the serveResource method

Client Portal
Portlet

container
Portlets

A B C

render

processAction
A

B C

A

B’ C

Action on B

serveResource

Not defined by the Java Portlet Specification

New Page

A’

B’ C

A: XHR via
resourceURL

Fragment
returned to A

A updates
itself

 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 107

The top part of the picture shows a normal action request that results in a complete page
re-rendering. In portlet A’s markup is a resource URL that gets triggered by the user and
results in an asynchronous XMLHttpRequest to the portlet, which then results in calling
the serveResource method on portlet A. Portlet A returns a portlet fragment that gets
delivered all the way back to the client and is evaluated and processed by some script 5
code of portlet A on the client. This could then result in portlet A updating itself via
direct manipulation of the browser DOM.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 108

PLT.15

Coordination between portlets

In order to provide coordination between portlets the Java Portlet Specification
introduces the following mechanisms: 5

• sharing data between artifacts in the same web application via the session in the
application scope (see PLT.17.2)

• public render parameters in order to share render state between portlets (see
PLT.11.1.2)

• portlet events that a portlet can receive and send 10

In this chapter we’ll cover briefly the public render parameters and the portlet events in
detail.

Note that it is not in the scope of this specification to define how portlets are wired
together, nor how a set of portlets relate to each other or to a portal page. All this is done 15
on portal application level and is not reflected in the Java Portlet API or portlet.xml.

PLT.15.1 Public Render Parameters

Public render parameters are intended for sharing view state across portlets. Using public
render parameters instead of events avoids the additional process event call and enables
the end-user using the browser navigation and bookmarking if the portal stores the render 20
parameters in the URL.

An example where public render parameters are useful is the following: a weather portlet
wants to display the weather of a selected city. It therefore uses the public render
parameters for encoding the zip code. The user now adds additional portlets on the page
that also have zip code as one of their public render parameters, like a map portlet 25
displaying the location of the city and a tourist information portlet displaying tourist
information for the selected city. If the portal encodes the zip code into the URL the user
can even bookmark these information for specific cities.

For more details on public render parameters see PLT.11.1.1.2.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 109

PLT.15.2 Portlet Events

Portlet events are intended to allow portlets to react to actions or state changes not
directly related to an interaction of the user with the portlet. Events could be either portal
or portlet container generated or the result of a user interaction with other portlets. The
portlet event model is a loosely coupled, brokered model that allows creating portlets as 5
stand-alone portlets that can be wired together with other portlets at runtime. Portlet
programmers should therefore not make any specific assumptions about the environment
of portlets they are running together with. The means of wiring different portlets together
is portal implementation specific.

Portlet events are not a replacement for reliable messaging (see other JavaEE APIs, like 10
Java Message Service, JMS, for providing reliable messaging). Portlet events are not
guaranteed to be delivered and thus the portlet should always work in a meaningful
manner even if some or all events are not being delivered.

In response to an event a portlet may publish new events that should be delivered to other
portlets and thus may trigger state changes on these other portlets. 15

An example where a portlet may want to offer receiving events is for state changes
triggered by simple user interactions, e.g. adding an item to a shopping cart. By offering
this as an event to other portlets these can trigger adding items to the shopping cart based
on the user interactions happing inside these portlets. In contrast to using the portlet
application scope session this will work across portlet application boundaries. 20

PLT.15.2.1 EventPortlet Interface

In order to receive events the portlet must implement the EventPortlet interface in the
javax.portlet package. The portlet container will call the processEvent method for
each event targeted to the portlet with an EventRequest and EventResponse object.
Events are targeted by the portal / portlet container to a specific portlet window in the 25
current client request.

Events are a lifecycle operation that occurs before the rendering phase. The portlet may
issue events via the setEvent method during the action processing which will be
processed by the portlet container after the action processing has finished. As a result of
issuing an event the portlet may optionally receive events from other portlets or container 30
events. A portlet that is not target of a user action may optionally receive container
events, e.g. a portlet mode changed event, or events from other portlets, e.g. an item was
added to the shopping cart event.

PLT.15.2.2 Receiving Events

The portlet can access the event that triggered the current process event call by using the 35
EventRequest.getEvent method. This method returns an object of type Event

JavaTM Portlet Specification, version 2.0 (2008-01-11) 110

encapsulating the current event name and value. The event must always have a name and
may optionally have a value.cxxxiii

Event names are represented as QNames in order to make them uniquely identifiable. The
event name can be either retrieved with the getQName method that returns the complete
QName of the event, or with the getName method that only returns the local part of the 5
event name.

If the event has a value it must be based on the type defined in the deployment descriptor.
cxxxiv The default XML to Java mapping that every container should support is the JAXB
mapping (see PLT.27). Portlet containers are free to support additional mapping
mechanisms beyond the JAXB mapping. For optimization purposes in local Java runtime 10
environments the portlet container can use Java Serialization or direct Java object passing
for the event payload. The portlet must not make any assumptions on the mechanism the
portlet container chooses to pass the event payload.

Example for receiving an event: 15

event defined in the DD:

<default-namespace>http:example.com/events</default-namespace>
<event-definition>
 <name>foo</name>
 <value-type>java.lang.String</value-type> 20
</event-definition>
....
<portlet>
...
<supported-processing-event> 25
 <name>foo</name></supported-processing-event>
...
</portlet>

event processing in the portlet:

void processEvent(EventRequest req, EventResponse resp) 30
{
...
Event event = req.getEvent();
if (event.getName().equals(“foo”))
 { 35
 String payload = (String) event.getValue();
 ...
 }

PLT.15.2.3 Sending Events

The portlet can publish events via the StateAwareResponse.setEvent method.cxxxv The 40
StateAwareReponse methods are exposed via the ActionResponse and EventResponse

JavaTM Portlet Specification, version 2.0 (2008-01-11) 111

interfaces. It is also valid to call StateAwareResponse.setEvent multiple times in the
current processAction or processEvent method. cxxxvi

Events can be published either with their full QName with the setEvent(QName,
Serializable) or by only specifying their local part with the setEvent(String,
Serializable) method. If only the local part is specified the namespace must be the 5
default namespace defined in the portlet deployment descriptor with the default-
namespace element. cxxxvii If no such element is provided in the portlet deployment
descriptor the XML default namespace javax.xml.XMLConstants.NULL_NS_URI must
be assumed. cxxxviii

The event payload must have a valid JAXB binding, or be in the list of Java primitive 10
types / standard classes of the JAXB 2.0 specification section 8.5.1 or 8.5.2 (except
java.lang.Object), and implement java.io.Serializable. Otherwise the setEvent
method on the StateAwareResponse must throw a
java.lang.IllegalArgumentException. cxxxix

 15

Example for sending an event:

event defined in the DD:

<event-definition>
 <qname xmlns:x=”http:example.com/events”>x:foo.bar</qname>
 <value-type>com.example.Address</value-type> 20
</event-definition>
....
<portlet>
...
<supported-publishing-event> 25
 <qname
xmlns:x=”http:example.com/events”>x:foo.bar</qname></supported-
publishing-event>
...
</portlet> 30

event processing in the portlet:

@XmlRootElement
 public class Address implements Serializable
 {
 private String street; 35
 private String city;
 public void setStreet(String s) {street = s;}
 public String getStreet() { return street;}
 public void setCity(String c) { city = c;}
 public String getCity() { return city;} 40
 }

void processEvent(EventRequest req, EventResponse resp)
{ 45
...

JavaTM Portlet Specification, version 2.0 (2008-01-11) 112

Address sampleAddress = new Address();
sampleAddress.setStreet(“myStreet”);
sampleAddress.setCity(“myCity”);
QName name = new QName (”http:example.com/events”, “foo.bar”);
resp.setEvent(name, sampleAddress); 5
}

PLT.15.2.4 Event declaration

The portlet should declare all events that it would like to receive and the ones it would
like to initiate. Typically portlets only receive events that the portlet has declared as
processing events. 10

PLT.15.2.4.1 Declaration in the deployment descriptor

The portlet should declare events in the portlet.xml deployment descriptor (see PLT.24
Deployment Descriptor). On the application level the portlet should define the basic
event definition with the event-definition element. The event definition must contain
an event name. cxl The portlet container must use the event name entry in the portlet 15
deployment descriptor as event name when submitting an event to the portlet. cxli The
portlet can specify additional alias names in order to enable portals performing an
automatic wiring between events. When publishing an event the portlet should also use
the event name entry in the deployment descriptor as event name, otherwise the container
may ignore this event. 20

The event definition should be referenced on the portlet level where the portlet can define
the processing events with the supported-processing-event element and the events
being published with the supported-publishing-event element. The referenced event
name should either be the full QName provided with the qname element and referencing
the QName of the event definition provided by the qname element, or the local part of the 25
QName provided with the name element and referencing the local part of the event
definition provided by the name element.

Event definitions are valid for all entities created based on the portlet definition.

Portlet container or portal defined events do not need to be declared on the application
level with the event-definition element, but can be directly referenced on the portlet 30
level with the supported-processing-event element.

The event name should uniquely identify the event and use the QNames as defined in the
XML specifications: XML Schema Part2: Datatypes specification
(http://www.w3.org/TR/xmlschema-2/#QName), Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/#ns-qualnames), Namespaces in XML Errata 35
(http://www.w3.org/XML/xml-names-19990114-errata), TAG Finding: Using Qualified
Names (QNames) as Identifiers in Content (http://www.w3.org/2001/tag/doc/qnameids-
2002-06-17).

http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/XML/xml-names-19990114-errata

JavaTM Portlet Specification, version 2.0 (2008-01-11) 113

As an alternative the portlet can specify a default namespace via the default-namespace
element that will be applied to all events defined only with a local name with the name
element in the event definition section.

The portlet is encouraged to organize the local part of the event names in the event-
definition element in a hierarchical manner using the dot ‘.’ as separator. A trailing '.' 5
tells the Consumer that this is not the end of the hierarchy and the Portlet is interested in
all events with names in this branch of the hierarchy. The portlet must not specify events
with the same name but different types. Event names in the event-definition element
should not end with a trailing “.” character as wildcards are not supported in the event
definition level. Wildcards should only be used in the supported-processing-event or 10
supported-publishing-event elements and should be able to be resolved by the portlet
container to an event definition without wildcards in the event-definition element by
matching event names ending with a "." character to any event whose local name starts
with the characters before the "." character and also specifies the same namespace. If the
wildcard string should match a part of a hierarchy two dots are required at the end of the 15
wildcard string: one to denote the hierarchy and one for the wildcard: “foo.bar..”.

A localized display name for the portlet event definition should be provided in the
application level resource bundle (see PLT.25.10) with an entry of the name
javax.portlet.app.event-definition.<name>.display-name.

PLT.15.2.4.2 Events not declared in the Deployment Descriptor 20

The portlet can send events which are not declared in the portlet deployment descriptor at
runtime using the setEvent method on either the ActionResponse or EventResponse.
cxlii The portlet should note that by not declaring these events in the deployment
descriptor, the abilities of the portal for distributing the event to other portlets may be
limited or even non-existent. 25

PLT.15.2.5 Event processing

Events are valid only in the current client request and the portlet container must therefore
deliver all events within the current client request. cxliii Event delivery is not guaranteed
and the container may restrict event delivery in a meaningful manner, e.g. in order to
prevent endless loops. Events are not ordered and the container may re-order the received 30
events before distributing them. However, portal applications should distribute events
returned by a single portlet in the order the portlet called the setEvent method while
executing the processAction or processEvent method, but ordering of distribution is
not guaranteed. Thus portlet developers should rely on other mechanisms, like adding the
ordering in the event payload, if ordering of the events is required. 35

Event distribution is non-blocking and can happen in parallel for different portlet
windows.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 114

Event distribution must be serialized for a specific portlet window per client request so
that at any given time a portlet window is only processing one event in the
processEvent method for the current client request. cxliv The portlet container should
therefore queue the events for one portlet window for one user. When processing the
queue the container should take any previously returned event response data, like render 5
parameters, portlet mode, window state, into account and supply these updated values
with the event request.

Note that event processing for different portlets within the current client request may
happen in parallel and that therefore for state changes on shared data, like public render
parameters or the application session, the last state change wins. 10

Portlet event processing may occur after the processing of the action, if the portlet was
target of an action URL, and must be finished before the render phase. cxlv

Container raised events are issued by the portlet container and not a portlet. The portlet
should not publish container events, only process them. Container events published by
the portlet should be ignored by the portlet container. If a portlet would like to receive a 15
container raised event it should declare the event in the portlet deployment descriptor
with the <supported-processing-event> element.

PLT.15.2.6 Exceptions during event processing

A portlet may throw a PortletException, a PortletSecurityException or a
UnavailableException during the processEvent. 20

A PortletException signals that an error has occurred during the processing of the
event and that the portlet container should take appropriate measures to clean up the
event processing. If a portlet throws an exception in the processEvent method, all
operations on the EventResponse must be ignored. cxlvi The portal/portlet-container
should continue processing other events targeted to the portlet and the other portlets 25
participating in the current client request. Otherwise it is up to the portlet container
implementation if the error is faced to the end user, the portlet is removed from the
current request cycle or if the render method of the portlet is called.

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently. 30

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object. cxlvii A portlet that throws a permanent
UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted. 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 115

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent, thereby 5
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the event handling must be handled as a
PortletException.

When a portlet throws an exception, or when a portlet becomes unavailable, the
portal/portlet-container may include a proper error message in the portal page returned to 10
the user.

PLT.15.2.7 GenericPortlet support

The GenericPortlet implements theEventPortlet interface and provides a default
event handling. For a received event the GenericPortlet tries to dispatch to methods
annotated with the tag @ProcessEvent. The event name can be either specified as 15
QName or local part only.

For using QNames as event name the syntax is the following: @ProcessEvent
(qname=<event name>), where the event name must be in the format "{" + Namespace
URI + "}" + local part (like used by javax.xml.namespace.QName.toString()
method). If the Namespace URI is equal to the javax.xml.XMLConstants.NULL_NS_URI 20
only the local part is used.

For using only the local part of the event name and leverage the default namespace
defined in the portlet deployment descriptor with the default-namespace element the
following alternative is provided: @ProcessEvent (name=<event

name_local_part>), where the event name is only the local part. If no default 25
namespace is defined in the deployment descriptor the XML default namespace
XMLConstants.NULL_NS_URI is used.

If the local part of the event name has a wildcard at the end (“.”) the GenericPortlet
will try to match the received event either to the same wildcard event name or to the
longest matching event name for this wildcard. E.g. if an event with the local part of the 30
event name of "a.b.c.d" is being received and there are methods annotated for handling
"a.b." and "a.b.c." events in this portlet, the GenericPortlet will dispatch the event to
the method annotated with "a.b.c.".

The method annotated with the @ProcessEvent annotation must have the following
signature: 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 116

public void <methodname> (EventRequest, EventResponse) throws
PortletException, java.io.IOException;

If no such method can be found the GenericPortlet just sets the received render
parameters as new render parameters. If multiple annotations match the current event it is 5
indeterministic which method will be called for handling this event.

Example:

@ProcessEvent(qname="{http://com.example/events}foo.bar") 10

public void processFoo(EventRequest request, EventResponse response) throws
PortletException, java.io.IOException {

 // process event foo.bar

}

PLT.15.3 Predefined Container Events 15

The Web Service for Remote Portlets (WSRP) specification predefines some common
events that should be leveraged when requiring an event for one of the following
scenarios:

• Event handling failed (wsrp:eventHandlingFailed) –This is a portal application
generated event which signals to the portlet that the portal application detected 20
that errors occurred while distributing events. As a simple notification, this event
carries no predefined payload, but does use an open content definition.

• Navigations context changed (wsrp:newNavigationalContextScope)– allowing
the portlet to manage its own navigational context in a consistent manner with the
navigational context managed by the portal application. 25

• New portlet mode (wsrp:newMode) – indicating to the portlet that it has been put
into a new portlet mode and allowing the portlet to pre-set some state before
getting rendered in this new mode.

• New window state(wsrp:newWindowState) – indicating to the portlet that it has
been put into a new window state and allowing the portlet to pre-set some state 30
before getting rendered in this window state.

See section 5.11 of the Web Services for Remote Portlets specification V2.0 for more
details and the QNames for these events.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 117

Portals / portlet containers supporting one of the above predefined events should deliver
these events to all portlets having declared receiving event support for these events in the
portlet deployment descriptor.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 119

PLT.16

Portal Context

The PortalContext interface provides information about the portal that is invoking the
portlet.

The getPortalInfo method returns information such as the portal vendor and portal 5
version.

The getProperty and getPropertyNames methods return portal properties.

The getSupportedPortletModes method returns the portlet modes supported by the
portal.

The getSupportedWindowStates method returns the window states supported by the 10
portal.

A portlet obtains a PortalContext object from the request object using
getPortalContext method.

PLT.16.1 Support for Markup Head Elements 15

Portals should indicate if they support the MimeResponse property
MimeResponse.MARKUP_HEAD_ELEMENT (value:
"javax.portlet.markup.head.element") by providing the
PortalContext.HTML_HEAD_ELEMENT_SUPPORT (value:
"javax.portlet.markup.head.element.support") property on the PortalContext. 20

A non-null value of MARKUP_HEAD_ELEMENT_SUPPORT indicates that the portal application
supports the MARKUP_HEAD_ELEMENT property.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 121

PLT.17

Portlet Preferences

Portlets are commonly configured to provide a customized view or behavior for different
users. This configuration is represented as a persistent set of name-value pairs and it is
referred to as portlet preferences. The portlet container is responsible for the details of 5
retrieving and storing these preferences.

Portlet preferences are intended to store basic configuration data for portlets. It is not the
purpose of the portlet preferences to replace general purpose databases.

PLT.17.1 PortletPreferences Interface

Portlets have access to their preferences attributes through the PortletPreferences 10
interface. Portlets have access to the associated PortletPreferences object while they
are processing requests. Portlets may only modify preferences attributes during a
processAction, processEvent, or serveResource invocation.

Preference attributes are String array objects. Preferences attributes can be set to
null.cxlviii 15

To access and manipulate preference attributes, the PortletPreferences interface
provides the following methods:

• getNames
• getValue
• setValue 20
• getValues
• setValues
• getMap
• isReadOnly
• reset 25
• store

The getMap method returns an immutable Map of String keys and String[] values
containing all current preference values. Preferences values must not be modified if the
values in the Map are altered.cxlix The getValue and setValue methods are convenience
methods for dealing with single values. If a preference attribute has multiple values, the 30
getValue method returns the first value. The setValue method sets a single value into
a preferences attribute. If setValues method has been called with multiple values, the
subsequent setValue method overwrites all existing values replacing them with the new
single value.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 122

The following code sample demonstrates how a stock quote portlet would retrieve from
its preferences object, the preferred stock symbols, the URL of the backend quoting
services and the quote refresh frequency.

PortletPreferences prefs = req.getPreferences(); 5
String[] symbols =
 prefs.getValues(”preferredStockSymbols”,
 new String[]{”ACME”,”FOO”});
String url = prefs.getValue(”quotesFeedURL”,null);
int refreshInterval = 10
 Integer.parseInt(prefs.getValue(”refresh”,”10”));

The reset method must reset a preference attribute to its default value. If there is no
default value, the preference attribute must be deleted.cl It is left to the vendor to specify
how and from where the default value is obtained.

If a preference attribute is read only, the setValue, setValues and reset methods must 15
throw a ReadOnlyException when the portlet is in any of the standard modes.cli

The store method must persist all the changes made to the PortletPreferences object
in the persistent store.clii If the call returns successfully, it is safe to assume the changes
are permanent. The store method must be conducted as an atomic transaction regardless
of how many preference attributes have been modified.cliii The portlet container 20
implementation is responsible for handling concurrent writes to avoid inconsistency in
portlet preference attributes. All changes made to PortletPreferences object not
followed by a call to the store method must be discarded when the portlet finishes the
processAction, processEvent, or serveResource method. cliv If the store method is
invoked within the scope of a render method invocation, it must throw an 25
IllegalStateException.clv

The PortletPreferences object must reflect the current values of the persistent store
when the portlet container invokes the processAction, processEvent, render and
serveResource methods of the portlet. clvi

PLT.17.2 Preference Attributes Scopes 30

Portlet Specification assumes preference attributes are user specific, it does not make any
provision at API level or at semantic level for sharing preference attributes among users,
but enables sharing of preferences and different levels of portlet entities (see Section
5.3.1). If a portal/portlet-container implementation provides an extension mechanism for
sharing preference attributes, it should be well documented how the sharing of preference 35
attributes works. Sharing preference attributes may have significant impact on the
behavior of a portlet. In many circumstances it could be inappropriate sharing attributes
that are meant to be private or confidential to the user.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 123

PLT.17.3 Preference Attributes definition

The portlet definition may define the preference attributes a portlet uses.

A preference attribute definition may include initial default values. A preference attribute
definition may also indicate if the attribute is read only.

An example of a fragment of preferences attributes definition in the deployment 5
descriptor would be:

<portlet>
...
 <!—- Portlet Preferences --> 10
 <portlet-preferences>
 <preference>
 <name>PreferredStockSymbols</name>
 <value>FOO</value>
 <value>XYZ</value> 15
 <read-only>true</read-only>
 </preference>
 <preference>
 <name>quotesFeedURL</name>
 <value>http://www.foomarket.com/quotes</value> 20
 </preference>
 </portlet-preferences>
</portlet>

If a preference attribute definition does not contain the read-only element set to true,
the preference attribute is modifiable when the portlet is processing an action request in 25
any of the standard portlet modes (VIEW, EDIT or HELP).clvii Portlets may change the value
of modifiable preference attributes using the setValue, setValues and reset methods
of the PortletPreferences interface. Deployers may use the read-only element set to
true to fix certain preference values at deployment time. Portal/portlet-containers may
allow changing read-only preference attributes while performing administration tasks. 30

Portlets are not restricted to use preference attributes defined in the deployment
descriptor. They can programmatically add preference attributes using names not defined
in the deployment descriptor. These preferences attributes must be treated as modifiable
attributes. clviii

Portal administration and configuration tools may use and change, default preference 35
attributes when creating a new portlet preferences objects. In addition, the portal may
further constrain the modifiability of preferences values.

PLT.17.3.1 Localizing Preference Attributes

The Portlet Specification does not define a specific mechanism for localizing preference
attributes. It leverages the J2SE ResourceBundle classes. 40

JavaTM Portlet Specification, version 2.0 (2008-01-11) 124

To enable localization support of preference attributes for administration and
configuration tools, developers should adhere to the following naming convention for
entries in the portlet’s ResourceBundle (see the PLT.25.10 Resource Bundles Section).

Entries for preference attribute descriptions should be constructed as
‘javax.portlet.preference.description.<attribute-name>', where 5
<attribute-name> is the preference attribute name.

Entries for preference attribute names should be constructed as
‘javax.portlet.preference.name.<attribute-name>', where <attribute-name>
is the preference attribute name. These values should be used as localized preference
display names. 10

Entries for preference attribute values that require localization should be constructed as
'javax.portlet.preference.value.<attribute-name>.<attribute-value>',
where <attribute-name> is the preference attribute name and <attribute-value> is
the localized preference attribute value.

PLT.17.4 Validating Preference values 15

A class implementing the PreferencesValidator interface can be associated with the
preferences definition in the deployment descriptor, as shown in the following example:

<!—- Portlet Preferences -->
<portlet-preferences>
 ... 20
 <preferences-validator>
 com.foo.portlets.XYZValidator
 </preferences-validator>
</portlet-preferences>

A PreferencesValidator implementation must be coded in a thread safe manner as the 25
portlet container may invoke concurrently from several requests. When a validator is
associated with the preferences of a portlet definition, the store method of the
PortletPreferences implementation must invoke the validate method of the
validator before writing the changes to the persistent store.clix If the validation fails, the
PreferencesValidator implementation must throw a ValidatorException. If a 30
ValidatorException is thrown, the portlet container must cancel the store operation
and it must propagate the exception to the portlet.clx If the validation is successful, the
store operation must be completed.clxi Portlet preferences should not be modified when
they are being validated by a PreferencesValidator object.

When creating a ValidatorException, portlet developers may include the set of 35
preference attributes that caused the validator to fail. It is left to the developers to indicate
the first preference attribute that failed or the name of all the invalid preference attributes.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 125

PLT.18

Sessions

To build effective portlet applications, it is imperative that requests from a particular
client be associated with each other. There are many session tracking approaches such as
HTTP Cookies, SSL Sessions or URL rewriting. To free the programmer from having to 5
deal with session tracking directly, this specification defines a PortletSession interface
that allows a portal/portlet-container to use any of the approaches to track a user’s session
without involving the developers in the nuances of any one approach.

PLT.18.1 Creating a Session

A session is considered “new” when it is only a prospective session and has not been 10
established. Because the Portlet Specification is designed around a request-response
based protocol (HTTP would be an example of this type of protocol) a session is
considered to be new until a client “joins” it. A client joins a session when session
tracking information has been returned to the server indicating that a session has been
established. Until the client joins a session, it cannot be assumed that the next request 15
from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session
• The client chooses not to join a session

These conditions define the situation where the portlet container has no mechanism by 20
which to associate a request with a previous request. A portlet developer must design the
application to handle a situation where a client has not, cannot, or will not join a session.

For portlets within the same portlet application, a portlet container must ensure that every
portlet request generated as result of a group of requests originated from the portal to
complete a single client request receive or acquire the same session.clxii In addition, if 25
within these portlet requests more than one portlet creates a session, the session object
must be the same for all the portlets in the same portlet application.clxiii

PLT.18.2 Session Scope

PortletSession objects must be scoped at the portlet application context level.clxiv

JavaTM Portlet Specification, version 2.0 (2008-01-11) 126

Each portlet application has its own distinct PortletSession object per user session.
Note that the PortletSession object is only valid within the current client request and
thus should be retrieved via getPortletSession for each client request and not stored
by the portlet across client requests. The portlet container must not share the
PortletSession object or the attributes stored in it among different portlet applications 5
or among different user sessions.clxv

PLT.18.3 Binding Attributes into a Session

A portlet can bind an object attribute into a PortletSession by name.

The PortletSession interface defines two scopes for storing objects,
APPLICATION_SCOPE and PORTLET_SCOPE. 10

Any object stored in the session using the APPLICATION_SCOPE is available to any other
portlet that belongs to the same portlet application and that handles a request identified as
being a part of the same session.clxvi The portlet should take into account that objects that
are stored in the application scope can be accessed by other portlets in parallel and thus
should synchronize write access to these objects. 15

Objects stored in the session using the PORTLET_SCOPE must be available to the portlet
during requests for the same portlet window that the objects where stored from.clxvii The
object must be stored in the APPLICATION_SCOPE with the following fabricated attribute
name ‘javax.portlet.p.<ID>?<ATTRIBUTE_NAME>’. <ID> is a unique identification for
the portlet window (assigned by the portal/portlet-container) that must be equal to the ID 20
returned by the PortletRequest.getWindowID() method and not contain a ‘?’
character.clxviii <ATTRIBUTE_NAME> is the attribute name used to set the object in the
PORTLET_SCOPE of the portlet session.

Attributes stored in the PORTLET_SCOPE are not protected from other web components of
the portlet application. They are just conveniently namespaced. 25

The setAttribute method of the PortletSession interface binds an object to the
session into the specified scope. For example:

PortletSession session = request.getSession(true);
URL url = new URL(“http://www.foo.com”);
session.setAttribute(“home.url”,url,PortletSession.APPLICATION_SCOPE); 30
session.setAttribute(“bkg.color”,”RED”,PortletSession.PORTLET_SCOPE);

The getAttribute method from the PortletSession interface is used to retrieve
attributes stored in the session.

To remove objects from the session, the removeAttribute method is provided by the
PortletSession interface. 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 127

Objects that need to know when they are placed into a session or removed from a session
must implement the HttpSessionBindingListener of the servlet API (see Servlet
Specification 2.3, SRV.7.4 Section). The PortletSessionUtil class provides utility
methods to help determine the scope of the object in the PortletSession. If the object
was stored in the PORTLET_SCOPE, the decodeAttributeName method of the 5
PortletSessionUtil class allows retrieving the attribute name without any portlet-
container fabricated prefix. Portlet developers should always use the
PortletSessionUtil class to deal with attributes in the PORTLET_SCOPE when accessing
them through the servlet API.

PLT.18.4 Relationship with the Web Application HttpSession 10

A Portlet Application is also a Web Application. The Portlet Application may contain
servlets and JSPs in addition to portlets. Portlets, servlets and JSPs may share information
through their session. Note that the session objects may be different, but access to objects
stored in the application session scope is available to any portlet, servlet or JSPs within
the same portlet application. 15

The container must ensure that all attributes placed in the PortletSession are also
available in the HttpSession of the portlet application. A direct consequence of this is
that data stored in the HttpSession by servlets or JSPs of the Portlet Application is
accessible to portlets through the PortletSession in the portlet application scope.clxix
Conversely, data stored by portlets in the PortletSession in the portlet application 20
scope is accessible to servlets and JSPs through the HttpSession. clxx

If the HttpSession object is invalidated, the PortletSession object must also be invalidated
by the portlet container.clxxi If the PortletSession object is invalidated by a portlet, the
portlet container must invalidate the associated HttpSession object.clxxii

PLT.18.4.1 HttpSession Method Mapping 25

The getCreationTime, getId, getLastAccessedTime, getMaxInactiveInterval,
invalidate, isNew and setMaxInactiveInterval methods of the PortletSession
interface must provide the same functionality as the methods of the HttpSession
interface with identical names.

The getAttribute, setAttribute, removeAttribute and getAttributeNames 30
methods of the PortletSession interface must provide the same functionality as the
methods of the HttpSession interface with identical names adhering to the following
rules:

• The attribute names must be the same if APPLICATION_SCOPE scope is
used.clxxiii 35

• The attribute name has to conform with the specified prefixing if
PORTLET_SCOPE is used.clxxiv

JavaTM Portlet Specification, version 2.0 (2008-01-11) 128

• The variant of these methods that does not receive a scope must be treated as
PORTLET_SCOPE.clxxv

PLT.18.5 Writing to the Portlet Session

When writing to the portlet session the distinct lifecycle phases action and render should 5
be taken into account, as writing in the render phase may create issues as explained
below.

PLT.18.5.1 Process action and process event phase

Setting attributes in the action or event phase to the portlet session in the
PORTLET_SCOPE will likely not create any concurrency issues. Concurrency issues 10
may occur if the end user interacts at the same time with multiple browser windows with
this portlet window or triggers request to the portlet window with a faster rate than the
requests get processed.

Setting attributes in the APPLICATION_SCOPE are more likely to create concurrency
issues as these scopes are shared with other portlets that may run in parallel and also 15
change the same attribute.

A set or remove attribute call must be conducted as an atomic operation. The portlet
container implementation is responsible for handling concurrent writes to avoid
inconsistency in portlet session attributes.

PLT.18.5.2 Rendering phase 20

The portlet API does not prevent portlets writing to the portlet session even in the
rendering phase in either render or serveResource. The ability to write to the session
in the rendering phase is merely introduced in order to allow easier migration of existing,
servlet-based, web applications and the implementation of bridges frameworks that
bridge from the portlet environment to web application frameworks. 25

In general the usage of the set methods on the portlet session in render is strongly
discouraged as it breaks the concept of rendering being idempotent and re-playable. This
is especially true for APPLICATION_SCOPE attributes as different portlets share these
attributes.

PLT.18.6 Reserved HttpSession Attribute Names 30

Session attribute names starting with “javax.portlet.” are reserved for usage by the
Portlet Specification and for Portlet Container vendors. A Portlet Container vendor may

JavaTM Portlet Specification, version 2.0 (2008-01-11) 129

use this reserved namespace to store implementation specific components. Application
Developers must not use attribute names starting with this prefix.

PLT.18.7 Session Timeouts

The portlet session follows the timeout behavior of the servlet session as defined in the
Servlet Specification, SRV.7.5 Section. 5

PLT.18.8 Last Accessed Times

The portlet session follows the last accessed times behavior of the servlet session as
defined in the Servlet Specification, SRV.7.6 Section.

PLT.18.9 Important Session Semantics

The portlet session follows the same semantic considerations as the servlet session as 10
defined in the Servlet Specification, SRV.7.7.3 Section.

These considerations include Threading Issues, Distributed Environments and Client
Semantics.clxxvi

 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 131

PLT.19

Dispatching Requests to Servlets and JSPs

Portlets can delegate the execution of logic or creation of content to servlets and JSPs.
This is useful for implementing the Model-View-Controller pattern where the portlet may
act as controller and dispatch to different JSPs for rendering the views. 5

The PortletRequestDispatcher interface provides a mechanism to accomplish this
dispatching.

Servlets and JSPs invoked from within a portlet in the render phase should generate
markup fragments following the recommendations of the PLT.B Markup Fragment
Appendix. 10

PLT.19.1 Obtaining a PortletRequestDispatcher

PortletRequestDispatcher objects may be obtained using one of the following
methods of the PortletContext object:

• getRequestDispatcher
• getNamedDispatcher 15

The getRequestDispatcher method takes a String argument describing a path within
the scope of the PortletContext of a portlet application. This path must begin with a ‘/’
and it is relative to the PortletContext root. clxxvii

The getNamedDispatcher method takes a String argument indicating the name of a
servlet known to the PortletContext of the portlet application. 20

If no resource can be resolved based on the given path or name the methods must return
null.clxxviii

PLT.19.1.1 Query Strings in Request Dispatcher Paths

The getRequestDispatcher method of the PortletContext that creates
PortletRequestDispatcher objects using path information allows the optional 25
attachment of query string information to the path. For example, a Developer may obtain
a PortletRequestDispatcher by using the following code:

String path = "/raisons.jsp?orderno=5";
PortletRequestDispatcher rd = context.getRequestDispatcher(path);

JavaTM Portlet Specification, version 2.0 (2008-01-11) 132

rd.include(renderRequest, renderResponse);

Parameters specified in the query string used to create the PortletRequestDispatcher
must be aggregated with the portlet render parameters and take precedence over other
portlet render parameters of the same name passed to the included servlet or JSP. The
parameters associated with a PortletRequestDispatcher are scoped to apply only for 5
the duration of the include call.clxxix

PLT.19.2 Using a Request Dispatcher

To include a servlet or a JSP, a portlet calls the include method of the
PortletRequestDispatcher interface. To forward the request processing to a servlet or
JSP the portlet calls the forward method of the PortletRequestDispatcher interface. 10

The parameters to these methods must be the request and response arguments that were
passed in via the corresponding lifecycle method (e.g. processAction, processEvent,
serveResource, render) , or the request and response arguments must be instances of
the corresponding subclasses of the request and response wrapper classes that were
introduced for version 2.0 of the specification. clxxx In the latter case, the wrapper 15
instances must wrap the request or response objects that the container passed into the
lifecycle method.

The portlet container must ensure that the servlet or JSP called through a
PortletRequestDispatcher is called in the same thread as the
PortletRequestDispatcher include invocation.clxxxi 20

PLT.19.3 The Include Method

The include method of the PortletRequestDispatcher interface may be called at any
time and multiple times within the current portlet lifecycle method. The servlet or JSP
being included can make a limited use of the received HttpServletRequest and
HttpServletResponse objects. 25

Servlets and JSPs included from portlets should not use the servlet RequestDispatcher
forward method as its behavior may be non-deterministic.

Servlets and JSPs included from portlets in the render method must be handled as HTTP
GET requests.clxxxii

The lookup of the servlet given a path is done according to the servlet path matching rule 30
defined in SRV.11 section of the servlet specification.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 133

PLT.19.3.1 Included Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet or JSP
being used from within an include call has access to the path used to obtain the
PortletRequestDispatcher. The following request attributes must be setclxxxiii:

javax.servlet.include.request_uri 5
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet via the getAttribute method 10
on the request object.

If the included servlet was obtained by using the getNamedDispatcher method these
attributes are not set.

PLT.19.3.2 Included Request Attributes

In addition to the request attributes specified in Servlet Specification, SRV.8.3.1 Section, 15
the included servlet or JSP must have the following request attributes set:

Request Attribute Type

javax.portlet.config javax.portlet.PortletConfig 20

For includes from the processAction method the following additional attributes must
be set:

Request Attribute Type 25

javax.portlet.request javax.portlet.ActionRequest
javax.portlet.response javax.portlet.ActionResponse

For includes from the processEvent method the following additional attributes must be 30
set:

Request Attribute Type

javax.portlet.request javax.portlet.EventRequest 35
javax.portlet.response javax.portlet.EventResponse

For includes from the render method the following additional attributes must be set:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 134

Request Attribute Type

javax.portlet.request javax.portlet.RenderRequest
javax.portlet.response javax.portlet.RenderResponse 5

For includes from the serveResource method the following additional attributes must be
set:

Request Attribute Type 10

javax.portlet.request javax.portlet.ResourceRequest
javax.portlet.response javax.portlet.ResourceResponse

 15

These attributes must be the same Portlet API objects accessible to the portlet doing the
include call.clxxxiv They are accessible from the included servlet or JSP via the
getAttribute method on the HttpServletRequest object.

PLT.19.3.3 Request and Response Objects for Included
Servlets/JSPs from within the Action and Event processing Methods 20

The target servlet or JSP of the portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
processAction or processEvent method in order to keep the action semantic intact.

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getRealPath, getLocalAddress, getLocalName, and 25
getRequestURL.clxxxv

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort.clxxxvi

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query 30
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.clxxxvii

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName, 35
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid, getCookies.clxxxviii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 135

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.19.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
getParameterValues and getParameterMap.clxxxix

In case of an include from processAction, the following methods of the 5
HttpServletRequest must be based on the corresponding methods of the
ActionRequest: getCharacterEncoding, setCharacterEncoding,

getContentType, getInputStream, getContentLength, getMethod and
getReader.cxc

In case of an include from processEvent, the following methods of the 10
HttpServletRequest must do no operations and/or return null:
getCharacterEncoding, setCharacterEncoding, getContentType,
getInputStream and getReader.cxci The getContentLength method of the
HttpServletRequest must return 0.cxcii The getMethod method of the
HTTPServletRequest must be based on the corresponding method of the EventRequest, 15
which must provide the name of the HTTP method with which the original action request
was made. cxciii

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.cxciv 20

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL
and isRequestedSessionIdFromUrl.cxcv

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’. 25
cxcvi

The following methods of the HttpServletResponse must return null:
encodeRedirectURL, encodeRedirectUrl, getCharacterEncoding,
getContentType, getLocale, resetBuffer, reset. cxcvii

The following method of the HttpServletResponse must return 0: 30
getBufferSize.cxcviii

The following methods of the HttpServletResponse must return an outputstream /
writer that ignores any output written to it: getOutputStream and getWriter. cxcix

The following methods of the HttpServletResponse must be equivalent to the methods
of the ActionResponse/EventResponse of similar name: encodeURL and encodeUrl.cc 35

The following methods of the HttpServletResponse must perform no operations:
setContentType, setCharacterEncoding, setContentLength, setLocale,
addCookie, sendError, sendRedirect, setDateHeader, addDateHeader,

JavaTM Portlet Specification, version 2.0 (2008-01-11) 136

setHeader, addHeader, setIntHeader, addIntHeader, setStatus,
setBufferSize and flushBuffer.cci

The containsHeader method of the HttpServletResponse must return false. ccii

The isCommitted method of the HttpServletResponse must return true.cciii

 5

PLT.19.3.4 Request and Response Objects for Included
Servlets/JSPs from within the Render Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
render method. 10

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getLocalAddress, getLocalName, getRealPath, and
getRequestURL.cciv

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort.ccv

 15

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.ccvi 20

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId, 25
isRequestedSessionIdValid, getCookies.ccvii

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
getParameterValues and getParameterMap.ccviii 30

The following methods of the HttpServletRequest must do no operations and return
null: getCharacterEncoding, setCharacterEncoding, getContentType,

getInputStream and getReader.ccix The getContentLength method of the
HttpServletRequest must return 0.ccx

JavaTM Portlet Specification, version 2.0 (2008-01-11) 137

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.ccxi.

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, isUserInRole, 5
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL
and isRequestedSessionIdFromUrl.ccxii

The getMethod method of the HttpServletRequest must always return ‘GET’.ccxiii

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’.
ccxiv 10

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.ccxvThe following methods of the
HttpServletResponse must be equivalent to the methods of the RenderResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,

resetBuffer, reset, getBufferSize, isCommitted, getOutputStream, 15
getWriter, encodeURL and encodeUrl.ccxvi

The following methods of the HttpServletResponse must perform no operations:
setContentType, setContentLength, setLocale, addCookie, sendError,
sendRedirect, setDateHeader, addDateHeader, setHeader, addHeader,
setIntHeader, addIntHeader and setStatus.ccxvii The containsHeader method of 20
the HttpServletResponse must return false. ccxviii

The getLocale method of the HttpServletResponse must be based on the getLocale
method of the RenderResponse.ccxix

PLT.19.3.5 Request and Response Objects for Included
Servlets/JSPs from within the ServeResource Method 25

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
serveResource method.

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getLocalAddress, getLocalName, getRealPath, and 30
getRequestURL.ccxx

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort.ccxxi

The response of HttpUtils.getRequestURL is undefined and should not be used.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 138

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.ccxxii

The following methods of the HttpServletRequest must be equivalent to the methods 5
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid, getCookies.ccxxiii 10

The following methods of the HttpServletRequest must be equivalent to the methods
of the ResourceRequest of similar name: getCharacterEncoding,

setCharacterEncoding, getContentType, getMethod, getContentLength and
getReader. ccxxiv The HttpServletRequest getInputStream must be equivalent to
the method getPortletInputStream of the ResourceRequest. 15

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
getParameterValues and getParameterMap.ccxxv

The following methods of the HttpServletRequest must be based on the properties 20
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.ccxxvi.

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL 25
and isRequestedSessionIdFromUrl.ccxxvii

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’.
ccxxviii

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.ccxxixThe following methods of the 30
HttpServletResponse must be equivalent to the methods of the ResourceResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,

resetBuffer, reset, getBufferSize, isCommitted, getOutputStream,

getWriter, getLocale, encodeURL and encodeUrl.ccxxx

The following methods of the HttpServletResponse must perform no operations: 35
sendError, sendRedirect, addCookie, setDateHeader, addDateHeader,
setHeader, addHeader, setIntHeader, addIntHeader, setContentLength,
setCharacterEncoding, setContentType, setLocale and setStatus.ccxxxi The
containsHeader method of the HttpServletResponse must return false. ccxxxii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 139

PLT.19.3.6 Comparison of the different Request Dispatcher
Includes

HttpServletRequ
est method

ActionReques
t mapping

EventRequest
mapping

RenderReque
st mapping

ResourceReque
st mapping

getAuthType getAuthType getAuthType getAuthType getAuthType
getContextPath getContextPa

th
getContextPath getContextPa

th
getContextPath

getCookies getCookies getCookies getCookies getCookies
getDateHeader getProperties getProperties getProperties getProperties
getHeader getProperties getProperties getProperties getProperties
getHeaderName
s

getPropertyN
ames

getPropertyNa
mes

getPropertyN
ames

getPropertyNa
mes

getHeaders getProperties getProperties getProperties getProperties
getIntHeader getProperties getProperties getProperties getProperties
getMethod getMethod getMethod ‘GET’ getMethod
getPathInfo path used to

obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

getPathTranslate
d

path used to
obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

getQueryString query string
information
used to
obtain the
PortletReq
uestDispat
cher

query string
information
used to obtain
the
PortletRequ
estDispatch
er

query string
information
used to
obtain the
PortletReq
uestDispat
cher

query string
information
used to obtain
the
PortletRequ
estDispatch
er

getRemoteUser getRemoteUs
er

getRemoteUser getRemoteUs
er

getRemoteUser

getRequestedSe
ssionId

getRequested
SessionId

getRequestedS
essionId

getRequested
SessionId

getRequestedS
essionId

getRequestURI path and
query string
information
used to
obtain the
PortletReq
uestDispat
cher

path and
query string
information
used to obtain
the
PortletRequ
estDispatch
er

path and
query string
information
used to
obtain the
PortletReq
uestDispat
cher

path and
query string
information
used to obtain
the
PortletRequ
estDispatch
er

getRequestURL null null null null
getServletPath path used to

obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletReq
uestDispat
cher

path used to
obtain the
PortletRequ
estDispatch
er

getSession getPortletSes getPortletSessi getPortletSes getPortletSessi

JavaTM Portlet Specification, version 2.0 (2008-01-11) 140

sion(APPLICA
TION_SCOPE
)

on(APPLICATIO
N_SCOPE)

sion(APPLICA
TION_SCOPE
)

on(APPLICATIO
N_SCOPE)

getUserPrincipal getUserPrinci
pal

getUserPrincipa
l

getUserPrinci
pal

getUserPrincipa
l

isRequestedSessi
onIdFromCookie

N/A N/A N/A N/A

isRequestedSessi
onIdFromUrl

N/A N/A N/A N/A

isRequestedSessi
onIdFromURL

N/A N/A N/A N/A

isRequestedSessi
onIdValid

isRequestedS
essionIdValid

isRequestedSes
sionIdValid

isRequestedS
essionIdValid

isRequestedSes
sionIdValid

isUserInRole isUserInRole isUserInRole isUserInRole isUserInRole
getAttribute getAttribute getAttribute getAttribute getAttribute
getAttributeNam
es

getAttributeN
ames

getAttributeNa
mes

getAttributeN
ames

getAttributeNa
mes

getCharacterEnc
oding

getCharacter
Encoding

null null getCharacterEn
coding

getContentLengt
h

getContentLe
ngth

0 0 getContentLeng
th

getContentType getContentTy
pe

null null getContentTyp
e

getInputStream getPortletInp
utStream

null null getPortletInput
Stream

getLocalAddr null null null null
getLocale getLocale getLocale getLocale getLocale
getLocales getLocales getLocales getLocales getLocales
getLocalName null null null null
getLocalPort 0 0 0 0
getParameter getParameter getParameter getParameter getParameter
getParameterMa
p

getParameter
Map

getParameterM
ap

getParameter
Map

getParameterM
ap

getParameterNa
mes

getParameter
Names

getParameterN
ames

getParameter
Names

getParameterN
ames

getParameterVal
ues

getParameter
Values

getParameterV
alues

getParameter
Values

getParameterV
alues

getProtocol HTTP/1.1 HTTP/1.1 HTTP/1.1 HTTP/1.1
getReader getReader null null getReader
getRealPath null null null null
getRemoteAddr null null null null
getRemoteHost null null null null
getRemotePort 0 0 0 0
getRequestDispa
tcher

N/A N/A N/A N/A

getScheme getScheme getScheme getScheme getScheme
getServerName getServerNa

me
getServerName getServerNa

me
getServerName

getServerPort getServerPort getServerPort getServerPort getServerPort
isSecure isSecure isSecure isSecure isSecure
removeAttribute removeAttrib

ute
removeAttribut
e

removeAttrib
ute

removeAttribut
e

setAttribute setAttribute setAttribute setAttribute setAttribute

JavaTM Portlet Specification, version 2.0 (2008-01-11) 141

setCharacterEnc
oding

setCharacterE
ncoding

no-op no-op setCharacterEn
coding

Note: no-op indicates that this method does not perform any operation and N/A indicates
that such a method is not available in the portlet interface and the functionality defined by
the Servlet Specification must be provided for this call.

 5

HttpServletR
esponse
method

ActionResponse
mapping

EventResponse
mapping

RenderRespons
e mapping

ResourceRespo
nse mapping

addCookie no-op no-op no-op no-op
addDateHea
der

no-op no-op no-op no-op

addHeader no-op no-op no-op no-op
addIntHeade
r

no-op no-op no-op no-op

containsHea
der

false false false false

encodeRedir
ectUrl

null null null null

encodeRedir
ectURL

null null null null

encodeUrl encodeURL encodeURL encodeURL encodeURL
encodeURL encodeURL encodeURL encodeURL encodeURL
sendError no-op no-op no-op no-op
sendRedirect no-op no-op no-op no-op
setDateHead
er

no-op no-op no-op no-op

setHeader no-op no-op no-op no-op
setIntHeader no-op no-op no-op no-op
setStatus no-op no-op no-op no-op
flushBuffer no-op no-op flushBuffer flushBuffer
getBufferSiz
e

0 0 getBufferSize getBufferSize

getCharacter
Encoding

null null getCharacterEn
coding

getCharacterEn
coding

getContentT
ype

null null getContentTyp
e

getContentTyp
e

getLocale null null getLocale getLocale
getOutputStr
eam

null stream null stream getPortletOutpu
tStream

getPortletOutpu
tStream

getWriter null writer null writer getWriter getWriter
isCommitted true true isCommitted isCommitted
reset no-op no-op reset reset
resetBuffer no-op no-op resetBuffer resetBuffer
setBufferSize no-op no-op setBufferSize setBufferSize
setCharacter
Encoding

no-op no-op no-op no-op

JavaTM Portlet Specification, version 2.0 (2008-01-11) 142

setContentL
ength

no-op no-op no-op no-op

setContentT
ype

no-op no-op no-op no-op

setLocale no-op no-op no-op no-op

PLT.19.3.7 Error Handling

If the servlet or JSP that is the target of a request dispatcher throws a runtime exception
or a checked exception of type IOException, it must be propagated to the calling
portlet.ccxxxiii All other exceptions, including a ServletException, must be wrapped with 5
a PortletException. The root cause of the exception must be set to the original
exception before being propagated.ccxxxiv

PLT.19.3.8 Path and Query Information in Included / Forwarded
Servlets

As mentioned in the previous sections the methods of the HttpServletRequest of an 10
included servlet that deal with path and query information (getPathInfo,
getPathTranslated, getQueryString, getRequestURI and getServletPath)
must return the path and query string information used to obtain the
PortletRequestDispatcher object. This is different than in the Servlet API, where
these values are based on the path and query string of the client request. This makes sense 15
from the servlet programming model point of view where you want to run the included /
forwarded code as if it really where running in the servlet issuing the request dispatcher
include or forward call.

On the other hand, the portlet does not have direct access to the path and query
information of the client request as it is one component rendered on the page. Thus the 20
portlet acts as starting point of the include chain and the included / forwarded servlet
must get the path and query string information used to obtain the
PortletRequestDispatcher object. ccxxxv Note that when doing additional includes or
forwards from the included or forwarded servlet it will have the same semantics as in the
plain servlet case: all further included / forwarded servlets or JSPs will get the path and 25
query string information used to obtain the PortletRequestDispatcher object as this is
viewed as the initial path and query information.

PLT.19.4 The forward Method

The forward method of the RequestDispatcher interface may be called by the calling
portlet only when no output has been committed to the response. The request dispatcher 30
forward allows setting the response content type by the servlet or JSP the forward call is
made to. If output data exists in the response buffer that has not been committed, the

JavaTM Portlet Specification, version 2.0 (2008-01-11) 143

content must be cleared before the target servlet’s service method is called. ccxxxvi If the
response has been committed, an IllegalStateException must be thrown. ccxxxvii

Information like cookies, properties, portlet mode, window state, render parameters, or
the portlet title that the portlet may have set before calling the request dispatcher forward
method should still be valid. 5

The path elements of the request object exposed to the target servlet must reflect the path
used to obtain the RequestDispatcher.

Before the forward method of the RequestDispatcher interface returns, the response
content must be sent and committed, and closed by the portlet container. ccxxxviii

When using a RequestDispatcher in a servlet that was target of a forward from a portlet, 10
the servlet must request the RequestDispatcher via the ServletRequest and not the
ServletContext. Using a RequestDispatcher that was retrieved via the ServletContext may
behave in a way that does not comply with this specification.

PLT.19.4.1 Query String

The request dispatching mechanism is responsible for aggregating query string 15
parameters when forwarding or including requests.

PLT.19.4.2 Forwarded Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet that
has been invoked by a portlet using the forward method of RequestDispatcher has
access to the path used to obtain the PortletRequestDispatcher. 20

The following request attributes must be set: ccxxxix

javax.servlet.forward.request_uri

javax.servlet.forward.context_path

javax.servlet.forward.servlet_path

javax.servlet.forward.path_info 25

javax.servlet.forward.query_string

The values of these attributes must be equal to the return values of the
HttpServletRequest methods getRequestURI, getContextPath, getServletPath,

getPathInfo, getQueryString respectively, invoked on the request object passed to
the first servlet object in the forward call chain. ccxl 30

JavaTM Portlet Specification, version 2.0 (2008-01-11) 144

These attributes are accessible from the forwarded servlet via the getAttribute method
on the request object. Note that these attributes must always reflect the information in the
target of the first forward servlet in the situation that multiple forwards and subsequent
includes are called. ccxli

If the forwarded servlet was obtained by using the getNamedDispatcher method, these 5
attributes must not be set. ccxlii

PLT.19.4.3 Request and Response Objects for Forwarded
Servlets/JSPs from within the Action and Event processing Methods

The target servlet of the portlet request dispatcher has access to a limited set of methods
of the request and the response objects when the forward is done from within the 10
processAction or processEvent method in order to keep the action semantic intact.

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getLocalAddress, getLocalName, getRealPath, and
getRequestURL.ccxliii

The following methods of the HttpServletRequest must return ‘0’: getRemotePort 15
and getLocalPort.ccxliv

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and 20
getServletPath.ccxlv

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType, 25
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid, getCookies.ccxlvi

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames, 30
getParameterValues and getParameterMap.ccxlvii

In case of a forward from processAction, the following methods of the
HttpServletRequest must be based on the corresponding methods of the
ActionRequest: getCharacterEncoding, setCharacterEncoding,

getContentType, getInputStream, getContentLength, getMethod and 35
getReader.ccxlviii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 145

In case of a forward from processEvent, the following methods of the
HttpServletRequest must do no operations and/or return null:
getCharacterEncoding, setCharacterEncoding, getContentType,
getInputStream and getReader.ccxlix The getContentLength method of the
HttpServletRequest must return 0.ccl The getMethod method of the 5
HttpServletRequest must be based on the corresponding method of the
ActionRequest triggering this event. ccli

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.cclii. 10

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL
and isRequestedSessionIdFromUrl.ccliii

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’. 15
ccliv

The following methods of the HttpServletResponse must return null:
encodeRedirectURL, encodeRedirectUrl, getCharacterEncoding,
getContentType, getLocale, and getBufferSize.cclv

The following methods of the HttpServletResponse must return an outputstream / 20
writer that ignores any output written to it: getOutputStream and getWriter. cclvi

The following methods of the HttpServletResponse must be equivalent to the methods
of the ActionResponse/EventResponse of similar name: encodeURL and
encodeUrl.cclvii

The following methods of the HttpServletResponse must perform no operations: 25
resetBuffer, reset, setContentType, setContentLength,
setCharacterEncoding, setLocale, sendError, setDateHeader,
addDateHeader, setHeader, addHeader, setIntHeader, addIntHeader,
setStatus, setBufferSize and flushBuffer.cclviii

The sendRedirect method of the HttpServletResponse must be mapped to the 30
ActionResponse.sendRedirect in the processAction call and to a no-op for the
processEvent call.

The addCookie method of the HttpServletResponse must be based on addProperty
method of the ActionResponse/EventResponse interface. cclix

The containsHeader method of the HttpServletResponse must return false. cclx 35

The isCommitted method of the HttpServletResponse must return false.cclxi

JavaTM Portlet Specification, version 2.0 (2008-01-11) 146

PLT.19.4.4 Request and Response Objects for Forwarded
Servlets/JSPs from within the Render Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the forward is done from within the
render method. 5

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getLocalAddress, getLocalName, getRealPath, and
getRequestURL.cclxii

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort.cclxiii

 10

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.cclxiv 15

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId, 20
isRequestedSessionIdValid, getCookies.cclxv

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
getParameterValues and getParameterMap.cclxvi 25

The following methods of the HttpServletRequest must do no operations and return
null: getCharacterEncoding, setCharacterEncoding, getContentType,

getInputStream and getReader.cclxvii The getContentLength method of the
HttpServletRequest must return 0.cclxviii

The following methods of the HttpServletRequest must be based on the properties 30
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.cclxix.

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL 35
and isRequestedSessionIdFromUrl.cclxx

JavaTM Portlet Specification, version 2.0 (2008-01-11) 147

The getMethod method of the HttpServletRequest must always return ‘GET’.cclxxi

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’.
cclxxii

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.cclxxiiiThe following methods of the 5
HttpServletResponse must be equivalent to the methods of the RenderResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,

resetBuffer, reset, getBufferSize, getLocale, isCommitted,

getOutputStream, getWriter, setContentType, encodeURL and encodeUrl.cclxxiv

The following methods of the HttpServletResponse must perform no operations: 10
setContentLength, setLocale, sendError, sendRedirect, and setStatus.cclxxv

The containsHeader method of the HttpServletResponse must return false. cclxxvi

The following methods of the HttpServletResponse must be based on the properties
provided by the setProperties/addProperties method of the RenderResponse
interface: addCookie, setDateHeader, addDateHeader, setHeader, addHeader, 15
setIntHeader, addIntHeader.

 cclxxvii

PLT.19.4.5 Request and Response Objects for Forwarded
Servlets/JSPs from within the ServeResource Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the 20
serveResource method.

The following methods of the HttpServletRequest must return null: getRemoteAddr,
getRemoteHost, getLocalAddress, getLocalName, getRealPath, and
getRequestURL.cclxxviii

The following methods of the HttpServletRequest must return ‘0’: getRemotePort 25
and getLocalPort.cclxxix

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:
getPathInfo, getPathTranslated, getQueryString, getRequestURI and 30
getServletPath.cclxxx

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType, 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 148

getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid, getCookies.cclxxxi

The following methods of the HttpServletRequest must be equivalent to the methods
of the ResourceRequest of similar name: getCharacterEncoding,

setCharacterEncoding, getContentType, getMethod and getReader. cclxxxii The 5
HttpServletRequest getInputStream must be equivalent to the method
getPortletInputStream of the ResourceRequest.

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames, 10
getParameterValues and getParameterMap.cclxxxiii

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getDateHeader and getIntHeader.cclxxxiv.

The following methods of the HttpServletRequest must provide the functionality 15
defined by the Servlet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL
and isRequestedSessionIdFromUrl.cclxxxv

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1’.
cclxxxvi 20

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.cclxxxviiThe following methods of the
HttpServletResponse must be equivalent to the methods of the ResourceResponse of
similar name: getCharacterEncoding, setContentType, setBufferSize,

flushBuffer, resetBuffer, reset, getBufferSize, isCommitted, 25
getOutputStream, getWriter, getLocale, encodeURL and encodeUrl.cclxxxviii

The following methods of the HttpServletResponse must be equivalent to the method
defined in the Servlet Specification for HttpServletResponse: setContentLength,
setCharacterEncoding, and setLocale.

The following methods of the HttpServletRequest must be based on the properties 30
provided by the setProperties/addProperties method of the ResourceResponse
interface: addCookie, setDateHeader, addDateHeader, setHeader, addHeader,
setIntHeader, addIntHeader.

If the portlet want to set a response status code it should do this via setProperty with
the key ResourceResponse.HTTP_STATUS_CODE. 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 149

The following methods of the HttpServletResponse must perform no operations:
sendError, sendRedirect.cclxxxix The containsHeader method of the
HttpServletResponse must return false. ccxc

PLT.19.4.6 Comparison of the different Request Dispatcher
Forwards 5

HttpServletR
equest
method

ActionRequest
mapping

EventRequest
mapping

RenderRequest
mapping

ResourceReque
st mapping

getAuthType getAuthType getAuthType getAuthType getAuthType
getContextP
ath

getContextPath getContextPath getContextPath getContextPath

getCookies getCookies getCookies getCookies getCookies
getDateHead
er

getProperties getProperties getProperties getProperties

getHeader getProperties getProperties getProperties getProperties
getHeaderN
ames

getPropertyNa
mes

getPropertyNa
mes

getPropertyNa
mes

getPropertyNa
mes

getHeaders getProperties getProperties getProperties getProperties
getIntHeade
r

getProperties getProperties getProperties getProperties

getMethod getMethod getMethod of
ActionRequest

‘GET’ getMethod

getPathInfo path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

getPathTran
slated

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

getQueryStri
ng

query string
information
used to obtain
the
PortletRequ
estDispatch
er

query string
information
used to obtain
the
PortletRequ
estDispatch
er

query string
information
used to obtain
the
PortletRequ
estDispatch
er

query string
information
used to obtain
the
PortletRequ
estDispatch
er

getRemoteU
ser

getRemoteUser getRemoteUser getRemoteUser getRemoteUser

getRequeste
dSessionId

getRequestedS
essionId

getRequestedS
essionId

getRequestedS
essionId

getRequestedS
essionId

getRequestU
RI

path and
query string
information
used to obtain
the
PortletRequ

path and
query string
information
used to obtain
the
PortletRequ

path and
query string
information
used to obtain
the
PortletRequ

path and
query string
information
used to obtain
the
PortletRequ

JavaTM Portlet Specification, version 2.0 (2008-01-11) 150

estDispatch
er

estDispatch
er

estDispatch
er

estDispatch
er

getRequestU
RL

null null null null

getServletPa
th

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

path used to
obtain the
PortletRequ
estDispatch
er

getSession getPortletSessi
on(APPLICATIO
N_SCOPE)

getPortletSessi
on(APPLICATIO
N_SCOPE)

getPortletSessi
on(APPLICATIO
N_SCOPE)

getPortletSessi
on(APPLICATIO
N_SCOPE)

getUserPrinc
ipal

getUserPrincipa
l

getUserPrincipa
l

getUserPrincipa
l

getUserPrincipa
l

isRequested
SessionIdFro
mCookie

N/A N/A N/A N/A

isRequested
SessionIdFro
mUrl

N/A N/A N/A N/A

isRequested
SessionIdFro
mURL

N/A N/A N/A N/A

isRequested
SessionIdVal
id

isRequestedSes
sionIdValid

isRequestedSes
sionIdValid

isRequestedSes
sionIdValid

isRequestedSes
sionIdValid

isUserInRole isUserInRole isUserInRole isUserInRole isUserInRole
getAttribute getAttribute getAttribute getAttribute getAttribute
getAttribute
Names

getAttributeNa
mes

getAttributeNa
mes

getAttributeNa
mes

getAttributeNa
mes

getCharacter
Encoding

getCharacterEn
coding

null null getCharacterEn
coding

getContentL
ength

getContentLeng
th

0 0 getContentLeng
th

getContentT
ype

getContentTyp
e

null null getContentTyp
e

getInputStre
am

getPortletInput
Stream

null null getPortletInput
Stream

getLocalAddr null null null null
getLocale getLocale getLocale getLocale getLocale
getLocales getLocales getLocales getLocales getLocales
getLocalNam
e

null null null null

getLocalPort 0 0 0 0
getParamete
r

getParameter getParameter getParameter getParameter

getParamete
rMap

getParameterM
ap

getParameterM
ap

getParameterM
ap

getParameterM
ap

getParamete
rNames

getParameterN
ames

getParameterN
ames

getParameterN
ames

getParameterN
ames

getParamete
rValues

getParameterV
alues

getParameterV
alues

getParameterV
alues

getParameterV
alues

getProtocol HTTP/1.1 HTTP/1.1 HTTP/1.1 HTTP/1.1
getReader getReader null null getReader

JavaTM Portlet Specification, version 2.0 (2008-01-11) 151

getRealPath null null null null
getRemoteA
ddr

null null null null

getRemoteH
ost

null null null null

getRemoteP
ort

0 0 0 0

getRequestD
ispatcher

N/A N/A N/A N/A

getScheme getScheme getScheme getScheme getScheme
getServerNa
me

getServerName getServerName getServerName getServerName

getServerPor
t

getServerPort getServerPort getServerPort getServerPort

isSecure isSecure isSecure isSecure isSecure
removeAttrib
ute

removeAttribut
e

removeAttribut
e

removeAttribut
e

removeAttribut
e

setAttribute setAttribute setAttribute setAttribute setAttribute
setCharacter
Encoding

setCharacterEn
coding

no-op no-op setCharacterEn
coding

Note: no-op indicates that this method does not perform any operation and N/A indicates
that such a method is not available in the portlet interface and the functionality defined by
the Servlet Specification must be provided for this call.

 5

HttpServletR
esponse
method

ActionResponse
mapping

EventResponse
mapping

RenderRespons
e mapping

ResourceRespo
nse mapping

addCookie addProperty addProperty addProperty addProperty
addDateHea
der

no-op no-op addProperties addProperties

addHeader no-op no-op addProperties addProperties
addIntHeade
r

no-op no-op addProperties addProperties

containsHea
der

false false false false

encodeRedir
ectUrl

null null null null

encodeRedir
ectURL

null null null null

encodeUrl encodeURL encodeURL encodeURL encodeURL
encodeURL encodeURL encodeURL encodeURL encodeURL
sendError no-op no-op no-op no-op
sendRedirect sendRedirect no-op no-op no-op
setDateHead no-op no-op setProperties setProperties

JavaTM Portlet Specification, version 2.0 (2008-01-11) 152

er
setHeader no-op no-op setProperties setProperties
setIntHeader no-op no-op setProperties setProperties
setStatus no-op no-op no-op setProperties
flushBuffer no-op no-op flushBuffer flushBuffer
getBufferSiz
e

null null getBufferSize getBufferSize

getCharacter
Encoding

null null getCharacterEn
coding

getCharacterEn
coding

getContentT
ype

null null getContentTyp
e

getContentTyp
e

getLocale null null getLocale getLocale
getOutputStr
eam

null stream null stream getPortletOutpu
tStream

getPortletOutpu
tStream

getWriter null writer null writer getWriter getWriter
isCommitted false false isCommitted isCommitted
reset no-op no-op reset reset
resetBuffer no-op no-op resetBuffer resetBuffer
setBufferSize no-op no-op setBufferSize setBufferSize
setCharacter
Encoding

no-op no-op no-op setCharacterEn
coding

setContentL
ength

no-op no-op no-op setContentLeng
th

setContentT
ype

no-op no-op setContentType setContentType

setLocale no-op no-op no-op setLocale

PLT.19.5 Servlet filters and Request Dispatching

Since the Java Servlet Specification V2.4 you can specify servlet filters for request
dispatcher include calls. Portlet containers must support this capability for included
servlets via the PortletRequestDispatcher. ccxci The servlet filters for the servlets
included via the PortletRequestDispatcher must be defined as described in the Java 5
Servlet Specification. See SRV.6.2.5 in the Java Servlet Specification for more
information.

PLT.19.6 Changing the Default Behavior for Included /
Forwarded Session Scope 10

The default for the session variable named “session” of included / forwarded servlets or
JSPs is that it maps to the portlet session with application scope. Some portlets may
require that the session variable for included / forwarded servlets or JSPs maps instead to
the portlet session scope in order to work correctly. These portlets can indicate this via
setting the container-runtime-option 15
javax.portlet.servletDefaultSessionScope to PORTLET_SCOPE. The default for
javax.portlet.servletDefaultSessionScope is APPLICATION_SCOPE.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 153

Example:

<portlet>

…

 <container-runtime-option>

 <name>javax.portlet.servletDefaultSessionScope</name> 5

 <value>PORTLET_SCOPE</value>

 </container-runtime-option>

 </portlet>

Portlet developers should note that not all portlet container may be able to provide this 10
feature as a portable JavaEE solution does not currently exist. Therefore, relying on this
feature may restrict the numbers of portlet containers the portlet can be executed on.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 154

PLT.20

Portlet Filter

Filters are Java components that allow on the fly transformations of information in both
the request to and the response from a portlet. 5

PLT.20.1 What is a portlet filter?

A filter is a reusable piece of code that can transform the content of portlet requests and
portlet responses. Filters do not generally create a response or respond to a request as
portlets do, rather they modify or adapt the requests, and modify or adapt the response.

Among the types of functionality available to the developer needing to use filters are the 10
following:

• The modification of request data by wrapping the request in customized versions
of the request object.

• The modification of response data by providing customized versions of the
response object. 15

• The interception of an invocation of a portlet after its call.

Portlet filters are modeled after the servlet filters in order to make them easy to
understand for people already familiar with the servlet model and to have one consistent
filter concept in JavaEE.

PLT.20.2 Main Concepts 20

The main concepts of this filtering model are described in this section. The application
developer creates a filter by implementing one of the
javax.portlet.filter.XYZFilter interfaces and providing a public constructor taking
no arguments. The class is packaged in the portlet application WAR along with the static
content and portlets that make up the portlet application. A filter is declared using the 25
<filter> element in the portlet deployment descriptor. A filter or collection of filters can
be configured for invocation by defining <filter-mapping> elements in the portlet
deployment descriptor. This is done by mapping filters to a particular portlet by the
portlet’s logical name, or mapping to a group of portlets using the ‘*’ as a wildcard.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 155

PLT.20.2.1 Filter Lifecycle

After deployment of the portlet application, and before a request causes the portlet
container to access a portlet, the portlet container must locate the list of portlet filters that
must be applied to the portlet as described belowccxcii. The portlet container must ensure
that it has instantiated a filter of the appropriate class for each filter in the list, and called 5
its

init(FilterConfig config) methodccxciii. The filter may throw an exception to
indicate that it cannot function properly. If the exception is of type
UnavailableException, the container may examine the isPermanent attribute of the
exception and may choose to retry the filter at some later time. 10

Only one instance per <filter> declaration in the deployment descriptor is instantiated
per Java Virtual Machine of the portlet container. The container provides the filter
config as declared in the filter’s deployment descriptor, the reference to the
PortletContext for the portlet application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter instance in the 15
list and calls its doFilter method, passing in the PortletRequest and
PortletResponse, and a reference to the FilterChain object it will use.

Depending on the target method of doFilter call the PortletRequest and
PortletResponse must be instances of the following interfacesccxciv:

• ActionRequest and ActionResponse for processAction calls 20
• EventRequest and EventResponse for processEvent calls
• RenderRequest and RenderResponse for render calls
• ResourceRequest and ResourceResponse for serveResource calls

The doFilter method of a filter will typically be implemented following this or some 25
subset of the following pattern:

1. The method examines the request information.
2. The method may wrap the request object passed in to its doFilter method with a

customized implementation of one of the request wrappers
(ActionRequestWrapper, EventRequestWrapper, RenderRequestWrapper, 30
ResourceRequestWrapper) in order to modify request data.

3. The method may wrap the response object passed in to its doFilter method with
a customized implementation of one of the response wrappers (ActionResponse,
EventResponse, RenderResponse, ResourceResponse) to modify response
data. 35

4. The filter may invoke the next component in the filter chain. The next component
may be another filter, or if the filter making the invocation is the last filter

JavaTM Portlet Specification, version 2.0 (2008-01-11) 156

configured in the deployment descriptor for this chain, the next component is the
target method of the portlet. The invocation of the next component is effected by
calling the doFilter method on the FilterChain object, and passing in the
request and response with which it was called or passing in wrapped versions it
may have created. The filter chain’s implementation of the doFilter method, 5
provided by the portlet container, must locate the next component in the filter
chain and invoke its doFilter method, passing in the appropriate request and
response objects. Alternatively, the filter chain can block the request by not
making the call to invoke the next component, leaving the filter responsible for
filling out the response object. 10

5. After invocation of the next filter in the chain, the filter may examine the response
data.

6. Alternatively, the filter may have thrown an exception to indicate an error in
processing. If the filter throws a UnavailableException during its doFilter
processing, the portlet container must not attempt continued processing down the 15
filter chain. It may choose to retry the whole chain at a later time if the exception
is not marked permanent.

7. When the last filter in the chain has been invoked, the next component accessed is
the target method on the portlet at the end of the chain.

8. Before a filter instance can be removed from service by the portlet container, the 20
portlet container must first call the destroy method on the filter to enable the
filter to release any resources and perform other cleanup operations. ccxcv

PLT.20.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or response in order
that it can override behavior to perform a filtering task. In this model, the developer has 25
the ability to override existing methods on the request and response objects. The portlet
should not add additional methods to the wrapper as further downstream wrappers may
not honor these. In order to support this style of filter the container must support the
following requirement. When a filter invokes the doFilter method on the portlet
container’s filter chain implementation, the container must ensure that the request and 30
response object that it passes to the next component in the filter chain, or to the target
portlet if the filter was the last in the chain, is the same object that was passed into the
doFilter method by the calling filter or one of the above mentioned wrappers. ccxcvi

PLT.20.2.3 Filter Environment

A set of initialization parameters can be associated with a filter using the <init-params> 35
element in the portlet deployment descriptor. The names and values of these parameters
are available to the filter at runtime via the getInitParameter and
getInitParameterNames methods on the filter’s FilterConfig object. Additionally, the
FilterConfig affords access to the PortletContext of the portlet application for the
loading of resources, for logging functionality, and for storage of state in the 40
PortletContext’s attribute list.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 157

PLT.20.2.4 Configuration of Filters in a Portlet Application

A filter is defined in the deployment descriptor using the <filter> element. In this
element, the programmer declares the following:

• filter-name: used to map the filter to a portlet
• filter-class: used by the portlet container to identify the filter type 5
• lifecycle: used to determine for which lifecycles the filter should be applied
• init-params: initialization parameters for a filter

Optionally, the programmer can specify a textual description, and a display name for tool
manipulation. The portlet container must instantiate exactly one instance of the Java class
defining the filter per filter declaration in the deployment descriptorccxcvii. Hence, two 10
instances of the same filter class will be instantiated by the portlet container if the
developer makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

<filter>

<filter-name>Log Filter</filter-name> 15

<filter-class>com.acme.LogFilter</filter-class>

<lifecycle>ACTION_PHASE</lifecycle>

</filter>

Once a filter has been declared in the portlet deployment descriptor, the <filter-
mapping> element is used to define portlets in the portlet application to which the filter is 20
to be applied. Filters can be associated with a portlet using the <portlet-name> element.
Each filter mapping matching the portlet should be applied for this portlet, even if that
result in one filter being applied more than once.
For example, the following code example maps the Log Filter filter to the
SamplePortlet portlet: 25

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>SamplePortlet</portlet-name>

</filter-mapping>

Filters can be associated with groups of portlets using the ‘*’ character as a wildcard at 30
the end of a string to indicate that the filter must be applied to any portlet whose name
starts with the characters before the “*” characterccxcviii. Example:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 158

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>*</portlet-name>

</filter-mapping>

Here the Log Filter is applied to all the portlets within the portlet application, because 5
every portlet name matches the ‘*’ pattern.

The order the container uses in building the chain of filters to be applied for a particular
request is as follows: the <portlet-name> matching filter mappings in the same order
that these elements appear in the deployment descriptor. The portlet container is free to
add additional filters at any place in this filter chain, but must not remove filters matching 10
a specific portlet. ccxcix.

It is expected that high performance portlet containers will cache filter chains so that they
do not need to compute them on a per-request basis.

PLT.20.2.5 Defining the Target Lifecycle Method for a Portlet
Filter 15

A portlet filter can be applied to different lifecycle method calls: processAction,
processEvent, render, serveResource

ccc. Thus the filter must define the lifecycle
method for which the filter is written in the <lifecycle> element of the <filter>
element. ccci A filter can be applied to one or more lifecycle methods. The following
constants are valid values for the <lifecycle> element: 20

• ACTION_PHASE requesting that the portlet container processes this filter for the
processAction lifecycle method. The filter implementation must implement the
ActionFilter interface.

• EVENT_PHASE requesting that the portlet container processes this filter for the
processEvent lifecycle method. The filter implementation must implement the 25
EventFilter interface.

• RENDER_PHASE requesting that the portlet container processes this filter for the
render lifecycle method. The filter implementation must implement the
EventFilter interface.

• RESOURCE_PHASE requesting that the portlet container processes this filter for the 30
serveResource lifecycle method. The filter implementation must implement the
ResourceFilter interface.

If the lifecycle declaration and portlet filter type do not match the portlet container is free
to either reject the portlet at deployment time or ignore this filter. 35

JavaTM Portlet Specification, version 2.0 (2008-01-11) 159

Example:

<filter>

<filter-name>Sample Filter</filter-name>

<filter-class>com.acme.SampleFilter</filter-class> 5

<lifecycle>ACTION_PHASE</lifecycle>

<lifecycle>RENDER_PHASE</lifecycle>

</filter>

In this example the portlet filter is applied to the action and render phase. 10

JavaTM Portlet Specification, version 2.0 (2008-01-11) 160

PLT.21

User Information

Commonly, portlets provide content personalized to the user making the request. To do
this effectively they may require access to user attributes such as the name, email, phone 5
or address of the user. Portlet containers provide a mechanism to expose available user
information to portlets.

PLT.21.1 Defining User Attributes

The deployment descriptor of a portlet application must define the user attribute names
the portlets use. The following example shows a section of a deployment descriptor 10
defining a few user attributes:

<portlet-app>
 …
 <user-attribute>
 <description>User Given Name</description> 15
 <name>user.name.given</name>
 </user-attribute>
 <user-attribute>
 <description>User Last Name</description>
 <name>user.name.family</name> 20
 </user-attribute>
 <user-attribute>
 <description>User eMail</description>
 <name>user.home-info.online.email</name>
 </user-attribute> 25
 <user-attribute>
 <description>Company Organization</description>
 <name>user.business-info.postal.organization</name>
 </user-attribute>
 … 30
<portlet-app>

A deployer must map the portlet application’s logical user attributes to the corresponding
user attributes offered by the runtime environment. At runtime, the portlet container uses
this mapping to expose user attributes to the portlets of the portlet application. User
attributes of the runtime environment not mapped as part of the deployment process 35
should not be exposed to portlets.

Refer to PLT.D User Information Attribute Names Appendix for a list of recommended
names.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 161

PLT.21.2 Accessing User Attributes

Portlets can obtain an unmodifiable Map object containing the user attributes of user
associated with the current request from the request attributes. The Map object can be
retrieved using the USER_INFO constant defined in the PortletRequest interface. If the
request is done in the context of an un-authenticated user, calls to the getAttribute 5
method of the request using the USER_INFO constant must return null.cccii. If the user is
authenticated and there are no user attributes available, the Map must be an empty Map.

The Map object must contain a String name value pair for each available user attribute.
The Map object should only contain user attributes that have been mapped during
deployment. 10

An example of a portlet retrieving user attributes would be:

...
Map userInfo = (Map) request.getAttribute(PortletRequest.USER_INFO);
String givenName = (userInfo!=null)
 ? (String) 15
userInfo.get(PortletRequest.P3PUserInfos.USER_NAME_GIVEN) : “”;
String lastName = (userInfo!=null)
 ? (String)
userInfo.get(PortletRequest.P3PUserInfos.USER_NAME_FAMILY) : “”;
... 20

PLT.21.3 Important Note on User Information

The Portlet Specification expert group is aware of the fact that user information is outside
of the scope of this specification. As there is no standard Java standard to access user
information, and until such Java standard is defined, the Portlet Specification will provide
this mechanism that is considered to be the least intrusive from the Portlet API 25
perspective. At a latter time, when a Java standard for user information is defined, the
current mechanism will be deprecated in favor of it.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 163

PLT.22

Caching

Caching content helps improving the Portal response time for users. It also helps reducing
the load on servers.

The Portlet Specification defines an expiration based caching mechanism. This caching 5
mechanism is per portlet. Cached content must not be shared across different user clients
displaying the same portlet for the private cache scope.

Portlet containers are not required to implement expiration caching. Portlet containers
implementing this caching mechanism may disable it, partially or completely, at any time
to free memory resources. 10

PLT.22.1 Expiration Cache

Portlets that want their content to be cached using expiration cache should define the
default duration (in seconds) of the expiration cache in the deployment descriptor. The
portlet container should treat portlets with no default duration in the deployment
descriptor as always expired as default. 15

The following is an example of a portlet definition where the portlet defines that its
content should be cached for 5 minutes (300 seconds) and must not be shared across
users.

 ...
 <portlet> 20
 ...
 <expiration-cache>300</expiration-cache>
 <cache-scope>private</cache-scope>
 ...
 </portlet> 25
 ...

A portlet may programmatically alter the expiration time or caching scope by setting a
property in the RenderResponse or ResourceResponse object using the
EXPIRATION_CACHE or CACHE_SCOPE constant defined in the MimeResponse interface in
forwarded or included servlets/JSPs. Inside the portlet the CacheControl object is 30
available via the MimeResponse for setting the expiration time or caching scope via the
calls setExpirationTime or setScope.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 164

The portlet should set the expiration time or caching scope before writing to the output
stream as otherwise portals / portlet containers may ignore the values.

If the expiration property is set to 0, the returned markup fragment should be treated as
always expired. If the expiration cache property is set to –1, the cache does not expire. If
during a render invocation the expiration cache property is not set, the expiration time 5
defined in the deployment descriptor should be used. If the caching scope is set to
PRIVATE_SCOPE the cached data must not be shared across users. If the caching scope is
set to PUBLIC_SCOPE the cached data may be shared across users. The private scope is the
default scope if no scope is provided in the deployment descriptor or via the
RenderResponse or ResourceResponse. 10

If the content of a portlet is cached, the cache has not expired and the portlet is not the
target of an action or event the request handling methods of the portlet should not be
invoked as part of the client request. Instead, the portlet-container should use the data
from the cache.

If the content of a portlet is cached and the portlet is target of request with an action-type 15
semantic (e.g. an action or event call), the portlet container should discard the cache and
invoke the corresponding request handling methods of the portlet like processAction,or
processEvent.

PLT.22.2 Validation Cache

As an extension of the expiration-based caching mechanism portlets may use validation 20
caching. Validation-based caching allows portlets to return a validation token together
with the markup response and expiration time. The portlet can set the validation token on
the RenderResponse or ResourceResponse via the ETAG property from within
servlets/JSPs or via the CacheControl setETag method from within the portlet. If no
expiration time is set, the content should be viewed by the portlet container as expired. 25

After the content is expired the portlet container should send a render or
serveResource request to the portlet with the validation token (called ETag in HTTP) of
the expired content. The portlet can access the validation token provided by the portlet
container either via the property ETAG of the RenderRequest or ResourceRequest, or
the getETag method of the RenderRequest or ResourceRequest. The portlet can 30
validate if the cached content for the given ETag is still valid or not. If the content is still
valid the portlet should not render any output but either set the property
USE_CACHED_CONTENT RenderResponse or ResourceResponse and a new expiry time,
or setUseCachedContent on the CacheControl of the RenderResponse or
ResourceResponse and set a new expiry time. The portlet should set the validation 35
token, expiry time or caching scope before writing to the output stream as otherwise
portals / portlet containers may ignore the values.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 165

Example:

protected void doView (RenderRequest request, RenderResponse response)

 throws PortletException, java.io.IOException 5

{

 …

 if (request.getETag() != null) { // validation request

 if (markupIsStillValid(request.getETag())) {

 // markup is still valid 10

 response.getCacheControl().setExpirationTime(30);

 response.getCacheControl().setUseCachedContent(true);

 return;

 }

 } 15

 // create new content with new validation tag

 response.getCacheControl().setETag(someID);

 response.getCacheControl().setExpirationTime(60);

 PortletRequestDispatcher rd =
getPortletContext().getPortletRequestDispatcher(“jsp/view.jsp”); 20

 rd.include(request, response);

}

 25

JavaTM Portlet Specification, version 2.0 (2008-01-11) 166

JavaTM Portlet Specification, version 2.0 (2008-01-11) 167

PLT.23

Portlet Applications

A portlet application is a web application, as defined in Servlet Specification, SRV.9
Chapter, containing portlets and a portlet deployment descriptor in addition to servlets,
JSPs, HTML pages, classes and other resources normally found in a web application. A 5
bundled portlet application can run in multiple portlet containers implementations.

PLT.23.1 Relationship with Web Applications

All the portlet application components and resources other than portlets are managed by
the servlet container the portlet container is built upon.

PLT.23.2 Relationship to PortletContext 10

The portlet container must enforce a one to one correspondence between a portlet
application and a PortletContext.ccciii If the application is a distributed application, the
portlet container must create an instance per VM.ccciv A PortletContext object provides
a portlet with its view of the application.

PLT.23.3 Elements of a Portlet Application 15

A portlet application may consist of portlets plus other elements that may be included in
web applications, such as servlets, JSPTM pages, classes, static documents.

Besides the web application specific meta information, the portlet application must
include descriptive meta information about the portlets it contains.

PLT.23.4 Directory Structure 20

A portlet application follows the same directory hierarchy structure as web applications.

In addition it must contain a /WEB-INF/portlet.xml deployment descriptor file.

Portlet classes, utility classes and other resources accessed through the portlet application
classloader must reside within the /WEB-INF/classes directory or within a JAR file in
the /WEB-INF/lib/ directory. 25

JavaTM Portlet Specification, version 2.0 (2008-01-11) 168

PLT.23.5 Portlet Application Classloader

The portlet container must use the same classloader the servlet container uses for the web
application resources for loading the portlets and related resources within the portlet
application.cccv

The portlet container must ensure that requirements defined in the Servlet Specification 5
SRV.9.7.1 and SRV.9.7.2 Sections are fulfilled.cccvi

PLT.23.6 Portlet Application Archive File

Portlet applications are packaged as web application archives (WAR) as defined in the
Servlet Specification SRV.9.6 Chapter.

PLT.23.7 Portlet Application Deployment Descriptor 10

In addition to a web application deployment descriptor, a portlet application contains a
portlet application deployment descriptor. The portlet deployment descriptor contains
configuration information for the portlets contained in the application.

Refer to PLT.21 Packaging and Deployment Descriptor Chapter for more details on the
portlet application deployment descriptor. 15

PLT.23.8 Replacing a Portlet Application

A portlet container should be able to replace a portlet application with a new version
without restarting the container. In addition, the portlet container should provide a robust
method for preserving session data within that portlet application, when the replacement
of the portlet application happens. 20

PLT.23.9 Error Handling

It is left to the portal/portlet-container implementation how to react when a portlet throws
an exception while processing a request. For example, the portal/portlet-container could
render an error page instead of the portal page, render an error message in the portlet
window of the portlet that threw the exception or remove the portlet from the portal page 25
and log an error message for the administrator.

PLT.23.10 Portlet Application Environment

The Portlet Specification leverages the provisions made by the Servlet Specification
SRV.9.11 Section.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 169

PLT.24

Security

Portlet applications are created by Application Developers who license the application to
a Deployer for installation into a runtime environment. Application Developers need to
communicate to Deployers how the security is to be set up for the deployed application.

PLT.24.1 Introduction

A portlet application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of portlet applications will have security requirements.

The portlet container is responsible for informing portlets of the roles users are in when
accessing them. The portlet container does not deal with user authentication. It should
leverage the authentication mechanisms provided by the underlying servlet container
defined in the Servlet Specification, SRV.12.1 Section.

PLT.24.2 Roles

The Portlet Specification shares the same definition as roles of the Servlet Specification,
SRV.12.4 Section.

PLT.24.3 Programmatic Security

Programmatic security consists of the following methods of the Request interface:

• getRemoteUser
• isUserInRole
• getUserPrincipal

The getRemoteUser method returns the user name the client used for authentication. The
isUserInRole method determines if a remote user is in a specified security role. The
getUserPrincipal method determines the principal name of the current user and returns
a java.security.Principal object. These APIs allow portlets to make business logic
decisions based on the information obtained.

The values that the Portlet API getRemoteUser and getUserPrincipal methods return
the same values returned by the equivalent methods of the servlet response object.cccvii
Refer to the Servlet Specification, SRV.12.3 Section for more details on these methods.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 170

The isUserInRole method expects a string parameter with the role-name. A security-
role-ref element must be declared by the portlet in deployment descriptor with a role-
name sub-element containing the role-name to be passed to the method. The security-
role-ref element should contain a role-link sub-element whose value is the name of
the application security role that the user may be mapped into. This mapping is specified
in the web.xml deployment descriptor file. The container uses the mapping of
security-role-ref to security-role when determining the return value of the
call.cccviii

For example, to map the security role reference "FOO" to the security role with
role-name "manager" the syntax would be:

<portlet-app>
 ...
 <portlet>
 ...
 <security-role-ref>
 <role-name>FOO</role-name>
 <role-link>manager</role-link>
 </security-role-ref>
 </portlet>
 ...
 ...
</portlet-app>

In this case, if the portlet called by a user belonging to the "manager" security role made
the API call isUserInRole("FOO"), then the result would be true.

If the security-role-ref element does not define a role-link element, the container
must default to checking the role-name element argument against the list of security-
role elements defined in the web.xml deployment descriptor of the portlet
application.cccix The isUserInRole method references the list to determine whether the
caller is mapped to a security role. The developer must be aware that the use of this
default mechanism may limit the flexibility in changing role-names in the application
without having to recompile the portlet making the call.

PLT.24.4 Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection of
portlets. A constraint consists of the following elements:

• portlet collection
• user data constraint

A portlets collection is a set of portlet names that describe a set of resources to be
protected. All requests targeted to portlets listed in the portlets collection are subject to
the constraint.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 171

A user data constraint describes requirements for the transport layer for the portlets
collection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit).
The container must at least use SSL to respond to requests to resources marked integral
or confidential.

For example, to define that a portlet requires a confidential transport the syntax would be:

<portlet-app>
 ...
 <portlet>
 <portlet-name>accountSummary</portlet-name>
 ...
 </portlet>
 ...
 <security-constraint>
 <display-name>Secure Portlets</display-name>
 <portlet-collection>
 <portlet-name>accountSummary</portlet-name>
 </portlet-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 ...
</portlet-app>

PLT.24.5 Propagation of Security Identity in EJBTM Calls

A security identity, or principal, must always be provided for use in a call to an enterprise
bean.

The default mode in calls to EJBs from portlet applications should be for the security
identity of a user, in the portlet container, to be propagated to the EJBTM container.

Portlet containers, running as part of a J2EE platform, are required to allow users that are
not known to the portlet container to make calls to the the EJBTM container. In these
scenarios, the portlet application may specify a run-as element in the web.xml
deployment descriptor. When it is specified, the container must propagate the security
identity of the caller to the EJB layer in terms of the security role name defined in the
run-as element.cccx The security role name must be one of the security role names
defined for the web.xml deployment descriptor.cccxi Alternatively, portlet application code
may be the sole processor of the signon into the EJBTM container.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 173

JavaTM Portlet Specification, version 2.0 (2008-01-11) 175

PLT.25

Packaging and Deployment Descriptor

The deployment descriptor conveys the elements and configuration information of a
portlet application between Application Developers, Application Assemblers, and
Deployers. Portlet applications are self-contained applications that are intended to work 5
without further resources. Portlet applications are managed by the portlet container.

In the case of portlet applications, there are two deployment descriptors: one to specify
the web application resources (web.xml) and one to specify the portlet resources
(portlet.xml). The web application deployment descriptor is explained in detail in the
Servlet Specification, SRV.13Deployment Descriptor Chapter. 10

For backwards compatibility of portlet applications written to the 1.0 version of the Java
Portlet Specification, portlet containers are also required to support the 1.0 version of the

deployment descriptor. The 1.0 version is defined in the appendix.

PLT.25.1 Portlet and Web Application Deployment Descriptor

In the Portlet Specification there is a clear distinction between web resources, like 15
servlets, JSPs, static markup pages, etc., and portlets. This is due to the fact that, in the
Servlet Specification, the web application deployment descriptor is not extensible. All
web resources that are not portlets must be specified in the web.xml deployment
descriptor. All portlets and portlet related settings must be specified in an additional file
called portlet.xml. The format of this additional file is described in detail below. 20

The following portlet web application properties can be set in the web.xml deployment
descriptor:

• portlet application description using the <description> element
• portlet application name using the <display-name> element
• portlet application security role mapping using the <security-role> element 25
• portlet application locale-character set mapping for serving resources using the

<locale-encoding-mapping-list>.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 176

PLT.25.2 Packaging

All resources, portlets and the deployment descriptors are packaged together in one web
application archive (WAR file). This format is described in Servlet Specification, SRV.9
Web Application Chapter.

In addition to the resources described in the Servlet Specification, SRV.9 Web Application 5
Chapter a portlet application WEB-INF directory consists of:

• The /WEB-INF/portlet.xml deployment descriptor.
• Portlet classes in the /WEB-INF/classes directory.
• Portlet Java ARchive files /WEB-INF/lib/*.jar

PLT.25.2.1 Example Directory Structure 10

The following is a listing of all the files in a sample portlet application:

/images/myButton.gif
/META-INF/MANIFEST.MF
/WEB-INF/web.xml
/WEB-INF/portlet.xml 15
/WEB-INF/lib/myHelpers.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/portlets/MyPortlet.class
/WEB-INF/jsp/myHelp.jsp

Portlet applications that need additional resources that cannot be packaged in the WAR 20
file, like EJBs, may be packaged together with these resources in an EAR file.

PLT.25.2.2 Version Information

If portlet application providers want to provide version information about the portlet
application it is recommended to provide a META-INF/MANIFEST.MF entry in the WAR
file. The ‘Implementation-*’ attributes should be used to define the version 25
information. The version information should follow the format defined by the Java
Product Versioning Specification (http://java.sun.com/j2se/1.4/pdf/versioning.pdf)

Example:

Implementation-Title: myPortletApplication
Implementation-Version: 1.1.2 30
Implementation-Vendor: SunMicrosystems. Inc.

PLT.25.3 Portlet Deployment Descriptor Elements

The following types of configuration and deployment information are required to be
supported in the portlet deployment descriptor for all portlet containers:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 177

• Portlet Application Definition
• Portlet Definition

Security information, which may also appear in the deployment descriptor is not required
to be supported unless the portlet container is part of an implementation of the J2EE
Specification. 5

PLT.25.4 Rules for processing the Portlet Deployment
Descriptor

In this section is a listing of some general rules that portlet containers and developers
must note concerning the processing of the deployment descriptor for a portlet
application: 10

• Portlet containers should ignore all leading whitespace characters before the first
non-whitespace character, and all trailing whitespace characters after the last non-
whitespace character for PCDATA within text nodes of a deployment descriptor.

• Portlet containers and tools that manipulate portlet applications have a wide range
of options for checking the validity of a WAR. This includes checking the validity 15
of the web application and portlet deployment descriptor documents held within.
It is recommended, but not required, that portlet containers and tools validate both
deployment descriptors against the corresponding DTD and XML Schema
definitions for structural correctness. Additionally, it is recommended that they
provide a level of semantic checking. For example, it should be checked that a 20
role referenced in a security constraint has the same name as one of the security
roles defined in the deployment descriptor. In cases of non-conformant portlet
applications, tools and containers should inform the developer with descriptive
error messages. High end application server vendors are encouraged to supply this
kind of validity checking in the form of a tool separate from the container. 25

In elements whose value is an "enumerated type", the value is case sensitive.

PLT.25.5 Portlet Deployment Descriptor

Portlet deployment descriptor schema:

<?xml version="1.0" encoding="UTF-8"?> 30

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="2.0" 35
xml:lang="en">

JavaTM Portlet Specification, version 2.0 (2008-01-11) 178

 <annotation>

 <documentation>

 This is the XML Schema for the Portlet 2.0 deployment descriptor.

 </documentation>

 </annotation> 5

 <annotation>

 <documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the 10

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file's namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file's namespace. In general, relative names are 15

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </documentation>

 </annotation>

 <!-- *** --> 20

 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <element name="portlet-app" type="portlet:portlet-appType">

 <annotation>

 <documentation> 25

 The portlet-app element is the root of the deployment descriptor

 for a portlet application. This element has a required attribute version

JavaTM Portlet Specification, version 2.0 (2008-01-11) 179

 to specify to which version of the schema the deployment descriptor

 conforms. In order to be a valid JSR 286 portlet application the version

 must have the value "2.0".

 </documentation>

 </annotation> 5

 <unique name="portlet-name-uniqueness">

 <annotation>

 <documentation>

 The portlet element contains the name of a portlet.

 This name must be unique within the portlet application. 10

 </documentation>

 </annotation>

 <selector xpath="portlet:portlet"/>

 <field xpath="portlet:portlet-name"/>

 </unique> 15

 <unique name="custom-portlet-mode-uniqueness">

 <annotation>

 <documentation>

 The custom-portlet-mode element contains the portlet-mode.

 This portlet mode must be unique within the portlet application. 20

 </documentation>

 </annotation>

 <selector xpath="portlet:custom-portlet-mode"/>

 <field xpath="portlet:portlet-mode"/>

 </unique> 25

 <unique name="custom-window-state-uniqueness">

 <annotation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 180

 <documentation>

 The custom-window-state element contains the window-state.

 This window state must be unique within the portlet application.

 </documentation>

 </annotation> 5

 <selector xpath="portlet:custom-window-state"/>

 <field xpath="portlet:window-state"/>

 </unique>

 <unique name="user-attribute-name-uniqueness">

 <annotation> 10

 <documentation>

 The user-attribute element contains the name the attribute.

 This name must be unique within the portlet application.

 </documentation>

 </annotation> 15

 <selector xpath="portlet:user-attribute"/>

 <field xpath="portlet:name"/>

 </unique>

 <unique name="filter-name-uniqueness">

 <annotation> 20

 <documentation>

 The filter element contains the name of a filter.

 The name must be unique within the portlet application.

 </documentation>

 </annotation> 25

 <selector xpath="portlet:filter"/>

 <field xpath="portlet:filter-name"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 181

 </unique>

 </element>

 <complexType name="portlet-appType">

 <sequence>

 <element name="portlet" type="portlet:portletType" minOccurs="0" 5

 maxOccurs="unbounded">

 <unique name="init-param-name-uniqueness">

 <annotation>

 <documentation>

 The init-param element contains the name the attribute. 10

 This name must be unique within the portlet.

 </documentation>

 </annotation>

 <selector xpath="portlet:init-param"/>

 <field xpath="portlet:name"/> 15

 </unique>

 <unique name="supports-mime-type-uniqueness">

 <annotation>

 <documentation>

 The supports element contains the supported mime-type. 20

 This mime type must be unique within the portlet.

 </documentation>

 </annotation>

 <selector xpath="portlet:supports"/>

 <field xpath="mime-type"/> 25

 </unique>

 <unique name="preference-name-uniqueness">

JavaTM Portlet Specification, version 2.0 (2008-01-11) 182

 <annotation>

 <documentation>

 The preference element contains the name the preference.

 This name must be unique within the portlet.

 </documentation> 5

 </annotation>

 <selector xpath="portlet:portlet-preferences/portlet:preference"/>

 <field xpath="portlet:name"/>

 </unique>

 <unique name="security-role-ref-name-uniqueness"> 10

 <annotation>

 <documentation>

 The security-role-ref element contains the role-name.

 This role name must be unique within the portlet.

 </documentation> 15

 </annotation>

 <selector xpath="portlet:security-role-ref"/>

 <field xpath="portlet:role-name"/>

 </unique>

 </element> 20

 <element name="custom-portlet-mode"

 type="portlet:custom-portlet-modeType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="custom-window-state"

 type="portlet:custom-window-stateType" minOccurs="0" 25

 maxOccurs="unbounded"/>

 <element name="user-attribute"

JavaTM Portlet Specification, version 2.0 (2008-01-11) 183

 type="portlet:user-attributeType" minOccurs="0" maxOccurs="unbounded"/>

 <element name="security-constraint"

 type="portlet:security-constraintType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="resource-bundle" type="portlet:resource-bundleType" 5

 minOccurs="0"/>

 <element name="filter" type="portlet:filterType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="filter-mapping" type="portlet:filter-mappingType"

 minOccurs="0" maxOccurs="unbounded"/> 10

 <element name="default-namespace" type="xs:anyURI" minOccurs="0"/>

 <element name="event-definition" type="portlet:event-definitionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="public-render-parameter"

 type="portlet:public-render-parameterType" minOccurs="0" 15

 maxOccurs="unbounded"/>

 <element name="listener" type="portlet:listenerType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="container-runtime-option"

 type="portlet:container-runtime-optionType" minOccurs="0" 20

 maxOccurs="unbounded"/>

 </sequence>

 <attribute name="version" type="portlet:string" use="required"/>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType> 25

 <complexType name="cache-scopeType">

 <annotation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 184

 <documentation>

 Caching scope, allowed values are "private" indicating that the content

 should not be shared across users and "public" indicating that the

 content may be shared across users.

 The default value if not present is "private". 5

 Used in: portlet

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/> 10

 </simpleContent>

 </complexType>

 <complexType name="custom-portlet-modeType">

 <annotation>

 <documentation> 15

 A custom portlet mode that one or more portlets in

 this portlet application supports.

 If the portal does not need to provide some management functionality

 for this portlet mode, the portal-managed element needs to be set

 to "false", otherwise to "true". Default is "true". 20

 Used in: portlet-app

 </documentation>

 </annotation>

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0" 25

 maxOccurs="unbounded"/>

 <element name="portlet-mode" type="portlet:portlet-modeType"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 185

 <element name="portal-managed" type="portlet:portal-managedType"

 minOccurs="0"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType> 5

 <complexType name="custom-window-stateType">

 <annotation>

 <documentation>

 A custom window state that one or more portlets in this

 portlet application supports. 10

 Used in: portlet-app

 </documentation>

 </annotation>

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0" 15

 maxOccurs="unbounded"/>

 <element name="window-state" type="portlet:window-stateType"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType> 20

 <complexType name="expiration-cacheType">

 <annotation>

 <documentation>

 Expiration-time defines the time in seconds after which the portlet

 output expires. 25

 -1 indicates that the output never expires.

 Used in: portlet

JavaTM Portlet Specification, version 2.0 (2008-01-11) 186

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="int"/>

 </simpleContent> 5

 </complexType>

 <complexType name="init-paramType">

 <annotation>

 <documentation>

 The init-param element contains a name/value pair as an 10

 initialization param of the portlet

 Used in:portlet

 </documentation>

 </annotation>

 <sequence> 15

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="name" type="portlet:nameType"/>

 <element name="value" type="portlet:valueType"/>

 </sequence> 20

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="keywordsType">

 <annotation>

 <documentation> 25

 Locale specific keywords associated with this portlet.

 The kewords are separated by commas.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 187

 Used in: portlet-info

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/> 5

 </simpleContent>

 </complexType>

 <complexType name="mime-typeType">

 <annotation>

 <documentation> 10

 MIME type name, e.g. "text/html".

 The MIME type may also contain the wildcard

 character '*', like "text/*" or "*/*".

 Used in: supports

 </documentation> 15

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType> 20

 <complexType name="nameType">

 <annotation>

 <documentation>

 The name element contains the name of a parameter.

 Used in: init-param, ... 25

 </documentation>

 </annotation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 188

 <simpleContent>

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType>

 <complexType name="portletType"> 5

 <annotation>

 <documentation>

 The portlet element contains the declarative data of a portlet.

 Used in: portlet-app

 </documentation> 10

 </annotation>

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="portlet-name" type="portlet:portlet-nameType"/> 15

 <element name="display-name" type="portlet:display-nameType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="portlet-class" type="portlet:portlet-classType"/>

 <element name="init-param" type="portlet:init-paramType" minOccurs="0"

 maxOccurs="unbounded"/> 20

 <element name="expiration-cache" type="portlet:expiration-cacheType"

 minOccurs="0"/>

 <element name="cache-scope" type="portlet:cache-scopeType"

 minOccurs="0"/>

 <element name="supports" type="portlet:supportsType" 25

 maxOccurs="unbounded"/>

 <element name="supported-locale" type="portlet:supported-localeType"

JavaTM Portlet Specification, version 2.0 (2008-01-11) 189

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="resource-bundle" type="portlet:resource-bundleType"

 minOccurs="0"/>

 <element name="portlet-info" type="portlet:portlet-infoType"

 minOccurs="0"/> 5

 <element name="portlet-preferences"

 type="portlet:portlet-preferencesType" minOccurs="0"/>

 <element name="security-role-ref" type="portlet:security-role-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="supported-processing-event" 10

 type="portlet:event-definition-referenceType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="supported-publishing-event"

 type="portlet:event-definition-referenceType" minOccurs="0"

 maxOccurs="unbounded"/> 15

 <element name="supported-public-render-parameter" type="portlet:string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="container-runtime-option"

 type="portlet:container-runtime-optionType" minOccurs="0"

 maxOccurs="unbounded"/> 20

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <simpleType name="portlet-classType">

 <annotation> 25

 <documentation>

 The portlet-class element contains the fully

JavaTM Portlet Specification, version 2.0 (2008-01-11) 190

 qualified class name of the portlet.

 Used in: portlet

 </documentation>

 </annotation>

 <restriction base="portlet:fully-qualified-classType"/> 5

 </simpleType>

 <complexType name="container-runtime-optionType">

 <annotation>

 <documentation>

 The container-runtime-option element contains settings 10

 for the portlet container that the portlet expects to be honored

 at runtime. These settings may re-define default portlet container

 behavior, like the javax.portlet.escapeXml setting that disables

 XML encoding of URLs produced by the portlet tag library as

 default. 15

 Names with the javax.portlet prefix are reserved for the Java

 Portlet Specification.

 Used in: portlet-app, portlet

 </documentation>

 </annotation> 20

 <sequence>

 <element name="name" type="portlet:nameType"/>

 <element name="value" type="portlet:valueType" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence> 25

 </complexType>

 <complexType name="filter-mappingType">

JavaTM Portlet Specification, version 2.0 (2008-01-11) 191

 <annotation>

 <documentation>

 Declaration of the filter mappings in this portlet

 application is done by using filter-mappingType.

 The container uses the filter-mapping 5

 declarations to decide which filters to apply to a request,

 and in what order. To determine which filters to

 apply it matches filter-mapping declarations on the

 portlet-name and the lifecyle phase defined in the

 filter element. The order in which filters are invoked 10

 is the order in which filter-mapping declarations

 that match appear in the list of filter-mapping elements.

 Used in: portlet-app

 </documentation>

 </annotation> 15

 <sequence>

 <element name="filter-name" type="portlet:filter-nameType"/>

 <element name="portlet-name" type="portlet:portlet-nameType"

 maxOccurs="unbounded"/>

 </sequence> 20

 </complexType>

 <complexType name="filterType">

 <annotation>

 <documentation>

 The filter element specifies a filter that can transform the 25

 content of portlet requests and portlet responses.

 Filters can access the initialization parameters declared in

JavaTM Portlet Specification, version 2.0 (2008-01-11) 192

 the deployment descriptor at runtime via the FilterConfig

 interface.

 A filter can be restricted to one or more lifecycle phases

 of the portlet. Valid entries for lifecycle are:

 ACTION_PHASE, EVENT_PHASE, RENDER_PHASE, 5

 RESOURCE_PHASE

 Used in: portlet-app

 </documentation>

 </annotation>

 <sequence> 10

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="display-name" type="portlet:display-nameType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="filter-name" type="portlet:filter-nameType"/> 15

 <element name="filter-class" type="portlet:fully-qualified-classType"/>

 <element name="lifecycle" type="portlet:string" maxOccurs="unbounded"/>

 <element name="init-param" type="portlet:init-paramType" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence> 20

 </complexType>

 <complexType name="portlet-collectionType">

 <annotation>

 <documentation>

 The portlet-collectionType is used to identify a subset 25

 of portlets within a portlet application to which a

 security constraint applies.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 193

 Used in: security-constraint

 </documentation>

 </annotation>

 <sequence>

 <element name="portlet-name" type="portlet:portlet-nameType" 5

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="event-definitionType">

 <annotation> 10

 <documentation>

 The event-definitionType is used to declare events the portlet can either

 receive or emit.

 The name must be unique and must be the one the

 portlet is using in its code for referencing this event. 15

 Used in: portlet-app

 </documentation>

 </annotation>

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0" 20

 maxOccurs="unbounded"/>

 <choice>

 <element name="qname" type="xs:QName"/>

 <element name="name" type="xs:NCName"/>

 </choice> 25

 <element name="alias" type="xs:QName" minOccurs="0"

 maxOccurs="unbounded"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 194

 <element name="value-type" type="portlet:fully-qualified-classType"

 minOccurs="0"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType> 5

 <complexType name="event-definition-referenceType">

 <annotation>

 <documentation>

 The event-definition-referenceType is used to reference events

 declared with the event-definition element at application level. 10

 Used in: portlet

 </documentation>

 </annotation>

 <choice>

 <element name="qname" type="xs:QName"/> 15

 <element name="name" type="xs:NCName"/>

 </choice>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="listenerType"> 20

 <annotation>

 <documentation>

 The listenerType is used to declare listeners for this portlet

 application.

 Used in: portlet-app 25

 </documentation>

 </annotation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 195

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="display-name" type="portlet:display-nameType"

 minOccurs="0" maxOccurs="unbounded"/> 5

 <element name="listener-class" type="portlet:fully-qualified-classType"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="portlet-infoType"> 10

 <sequence>

 <element name="title" type="portlet:titleType" minOccurs="0"/>

 <element name="short-title" type="portlet:short-titleType"

 minOccurs="0"/>

 <element name="keywords" type="portlet:keywordsType" minOccurs="0"/> 15

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <simpleType name="portal-managedType">

 <annotation> 20

 <documentation>

 portal-managed indicates if a custom portlet mode

 needs to be managed by the portal or not.

 Per default all custom portlet modes are portal managed.

 Valid values are: 25

 - true for portal-managed

 - false for not portal managed

JavaTM Portlet Specification, version 2.0 (2008-01-11) 196

 Used in: custom-portlet-modes

 </documentation>

 </annotation>

 <restriction base="portlet:string">

 <enumeration value="true"/> 5

 <enumeration value="false"/>

 </restriction>

 </simpleType>

 <complexType name="portlet-modeType">

 <annotation> 10

 <documentation>

 Portlet modes. The specification pre-defines the following values

 as valid portlet mode constants:

 "edit", "help", "view".

 Portlet mode names are not case sensitive. 15

 Used in: custom-portlet-mode, supports

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/> 20

 </simpleContent>

 </complexType>

 <complexType name="portlet-nameType">

 <annotation>

 <documentation> 25

 The portlet-name element contains the canonical name of the

 portlet. Each portlet name is unique within the portlet

JavaTM Portlet Specification, version 2.0 (2008-01-11) 197

 application.

 Used in: portlet, filter-mapping

 </documentation>

 </annotation>

 <simpleContent> 5

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType>

 <complexType name="portlet-preferencesType">

 <annotation> 10

 <documentation>

 Portlet persistent preference store.

 Used in: portlet

 </documentation>

 </annotation> 15

 <sequence>

 <element name="preference" type="portlet:preferenceType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="preferences-validator"

 type="portlet:preferences-validatorType" minOccurs="0"/> 20

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="preferenceType">

 <annotation> 25

 <documentation>

 Persistent preference values that may be used for customization

JavaTM Portlet Specification, version 2.0 (2008-01-11) 198

 and personalization by the portlet.

 Used in: portlet-preferences

 </documentation>

 </annotation>

 <sequence> 5

 <element name="name" type="portlet:nameType"/>

 <element name="value" type="portlet:valueType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>

 </sequence> 10

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <simpleType name="preferences-validatorType">

 <annotation>

 <documentation> 15

 The class specified under preferences-validator implements

 the PreferencesValidator interface to validate the

 preferences settings.

 Used in: portlet-preferences

 </documentation> 20

 </annotation>

 <restriction base="portlet:fully-qualified-classType"/>

 </simpleType>

 <simpleType name="read-onlyType">

 <annotation> 25

 <documentation>

 read-only indicates that a setting cannot

JavaTM Portlet Specification, version 2.0 (2008-01-11) 199

 be changed in any of the standard portlet modes

 ("view","edit" or "help").

 Per default all preferences are modifiable.

 Valid values are:

 - true for read-only 5

 - false for modifiable

 Used in: preferences

 </documentation>

 </annotation>

 <restriction base="portlet:string"> 10

 <enumeration value="true"/>

 <enumeration value="false"/>

 </restriction>

 </simpleType>

 <complexType name="resource-bundleType"> 15

 <annotation>

 <documentation>

 Name of the resource bundle containing the language specific

 portlet informations in different languages (Filename without

 the language specific part (e.g. _en) and the ending (.properties). 20

 Used in: portlet-info

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/> 25

 </simpleContent>

 </complexType>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 200

 <complexType name="role-linkType">

 <annotation>

 <documentation>

 The role-link element is a reference to a defined security role.

 The role-link element must contain the name of one of the 5

 security roles defined in the security-role elements.

 Used in: security-role-ref

 </documentation>

 </annotation>

 <simpleContent> 10

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType>

 <complexType name="security-constraintType">

 <annotation> 15

 <documentation>

 The security-constraintType is used to associate

 intended security constraints with one or more portlets.

 Used in: portlet-app

 </documentation> 20

 </annotation>

 <sequence>

 <element name="display-name" type="portlet:display-nameType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="portlet-collection" 25

 type="portlet:portlet-collectionType"/>

 <element name="user-data-constraint"

JavaTM Portlet Specification, version 2.0 (2008-01-11) 201

 type="portlet:user-data-constraintType"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="security-role-refType"> 5

 <annotation>

 <documentation>

 The security-role-ref element contains the declaration of a

 security role reference in the code of the web application. The

 declaration consists of an optional description, the security 10

 role name used in the code, and an optional link to a security

 role. If the security role is not specified, the Deployer must

 choose an appropriate security role.

 The value of the role name element must be the String used

 as the parameter to the 15

 EJBContext.isCallerInRole(String roleName) method

 or the HttpServletRequest.isUserInRole(String role) method.

 Used in: portlet

 </documentation>

 </annotation> 20

 <sequence>

 <element name="description" type="portlet:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="role-name" type="portlet:role-nameType"/>

 <element name="role-link" type="portlet:role-linkType" minOccurs="0"/> 25

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 202

 </complexType>

 <complexType name="public-render-parameterType">

 <annotation>

 <documentation>

 The public-render-parameters defines a render parameter that is allowed 5

 to be public and thus be shared with other portlets.

 The identifier must be used for referencing this public render parameter

 in the portlet code.

 Used in: portlet-app

 </documentation> 10

 </annotation>

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="identifier" type="portlet:string"/> 15

 <choice>

 <element name="qname" type="xs:QName"/>

 <element name="name" type="xs:NCName"/>

 </choice>

 <element name="alias" type="xs:QName" minOccurs="0" 20

 maxOccurs="unbounded"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

 </complexType>

 <complexType name="short-titleType"> 25

 <annotation>

 <documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 203

 Locale specific short version of the static title.

 Used in: portlet-info

 </documentation>

 </annotation>

 <simpleContent> 5

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType>

 <complexType name="supportsType">

 <annotation> 10

 <documentation>

 Supports indicates the portlet modes a

 portlet supports for a specific content type. All portlets must

 support the view mode.

 Used in: portlet 15

 </documentation>

 </annotation>

 <sequence>

 <element name="mime-type" type="portlet:mime-typeType"/>

 <element name="portlet-mode" type="portlet:portlet-modeType" 20

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="window-state" type="portlet:window-stateType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/> 25

 </complexType>

 <complexType name="supported-localeType">

JavaTM Portlet Specification, version 2.0 (2008-01-11) 204

 <annotation>

 <documentation>

 Indicated the locales the portlet supports.

 Used in: portlet

 </documentation> 5

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType> 10

 <complexType name="titleType">

 <annotation>

 <documentation>

 Locale specific static title for this portlet.

 Used in: portlet-info 15

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/>

 </simpleContent> 20

 </complexType>

 <simpleType name="transport-guaranteeType">

 <annotation>

 <documentation>

 The transport-guaranteeType specifies that 25

 the communication between client and portlet should

 be NONE, INTEGRAL, or CONFIDENTIAL.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 205

 NONE means that the portlet does not

 require any transport guarantees. A value of

 INTEGRAL means that the portlet requires that the

 data sent between the client and portlet be sent in

 such a way that it can't be changed in transit. 5

 CONFIDENTIAL means that the portlet requires

 that the data be transmitted in a fashion that

 prevents other entities from observing the contents

 of the transmission.

 In most cases, the presence of the INTEGRAL or 10

 CONFIDENTIAL flag will indicate that the use

 of SSL is required.

 Used in: user-data-constraint

 </documentation>

 </annotation> 15

 <restriction base="portlet:string">

 <enumeration value="NONE"/>

 <enumeration value="INTEGRAL"/>

 <enumeration value="CONFIDENTIAL"/>

 </restriction> 20

 </simpleType>

 <complexType name="user-attributeType">

 <annotation>

 <documentation>

 User attribute defines a user specific attribute that the 25

 portlet application needs. The portlet within this application

 can access this attribute via the request parameter USER_INFO

JavaTM Portlet Specification, version 2.0 (2008-01-11) 206

 map.

 Used in: portlet-app

 </documentation>

 </annotation>

 <sequence> 5

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="name" type="portlet:nameType"/>

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/> 10

 </complexType>

 <complexType name="user-data-constraintType">

 <annotation>

 <documentation>

 The user-data-constraintType is used to indicate how 15

 data communicated between the client and portlet should be

 protected.

 Used in: security-constraint

 </documentation>

 </annotation> 20

 <sequence>

 <element name="description" type="portlet:descriptionType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="transport-guarantee"

 type="portlet:transport-guaranteeType"/> 25

 </sequence>

 <attribute name="id" type="portlet:string" use="optional"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 207

 </complexType>

 <complexType name="valueType">

 <annotation>

 <documentation>

 The value element contains the value of a parameter. 5

 Used in: init-param

 </documentation>

 </annotation>

 <simpleContent>

 <extension base="portlet:string"/> 10

 </simpleContent>

 </complexType>

 <complexType name="window-stateType">

 <annotation>

 <documentation> 15

 Portlet window state. Window state names are not case sensitive.

 Used in: custom-window-state

 </documentation>

 </annotation>

 <simpleContent> 20

 <extension base="portlet:string"/>

 </simpleContent>

 </complexType>

 <!--- everything below is copied from j2ee_1_4.xsd -->

 <complexType name="descriptionType"> 25

 <annotation>

 <documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 208

 The description element is used to provide text describing the

 parent element. The description element should include any

 information that the portlet application war file producer wants

 to provide to the consumer of the portlet application war file

 (i.e., to the Deployer). Typically, the tools used by the 5

 portlet application war file consumer will display the

 description when processing the parent element that contains the

 description. It has an optional attribute xml:lang to indicate

 which language is used in the description according to

 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default 10

 value of this attribute is English(“en”).

 Used in: init-param, portlet, portlet-app, security-role

 </documentation>

 </annotation>

 <simpleContent> 15

 <extension base="portlet:string">

 <attribute ref="xml:lang"/>

 </extension>

 </simpleContent>

 </complexType> 20

 <complexType name="display-nameType">

 <annotation>

 <documentation>

 The display-name type contains a short name that is intended

 to be displayed by tools. It is used by display-name 25

 elements. The display name need not be unique.

 Example:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 209

 ...

 <display-name xml:lang="en">Employee Self Service</display-name>

 It has an optional attribute xml:lang to indicate

 which language is used in the description according to 5

 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default

 value of this attribute is English(“en”).

 </documentation>

 </annotation>

 <simpleContent> 10

 <extension base="portlet:string">

 <attribute ref="xml:lang"/>

 </extension>

 </simpleContent>

 </complexType> 15

 <simpleType name="fully-qualified-classType">

 <annotation>

 <documentation>

 The elements that use this type designate the name of a

 Java class or interface. 20

 </documentation>

 </annotation>

 <restriction base="portlet:string"/>

 </simpleType>

 <simpleType name="role-nameType"> 25

 <annotation>

 <documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 210

 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for an NMTOKEN.

 </documentation>

 </annotation> 5

 <restriction base="NMTOKEN"/>

 </simpleType>

 <simpleType name="string">

 <annotation>

 <documentation> 10

 This is a special string datatype that is defined by JavaEE

 as a base type for defining collapsed strings. When

 schemas require trailing/leading space elimination as

 well as collapsing the existing whitespace, this base

 type may be used. 15

 </documentation>

 </annotation>

 <restriction base="string">

 <whiteSpace value="collapse"/>

 </restriction> 20

 </simpleType>

 <simpleType name="filter-nameType">

 <annotation>

 <documentation>

 The logical name of the filter is declare 25

 by using filter-nameType. This name is used to map the

 filter. Each filter name is unique within the portlet

JavaTM Portlet Specification, version 2.0 (2008-01-11) 211

 application.

 Used in: filter, filter-mapping

 </documentation>

 </annotation>

 <restriction base="portlet:string"/> 5

 </simpleType>

</schema>

 10

JavaTM Portlet Specification, version 2.0 (2008-01-11) 212

PLT.25.6 Pictures of the structure of a Deployment Descriptor

Figure 3: Part one of the portlet element

JavaTM Portlet Specification, version 2.0 (2008-01-11) 213

Figure 4:
Part 2 of the portlet element

JavaTM Portlet Specification, version 2.0 (2008-01-11) 214

Figure 5: Part 1 of the portlet-app element

JavaTM Portlet Specification, version 2.0 (2008-01-11) 215

Figure 6: Part 2 of the portlet-app element

JavaTM Portlet Specification, version 2.0 (2008-01-11) 216

PLT.25.7 Uniqueness of Deployment Descriptor Values

The following deployment descriptor values must be unique in the scope of the portlet
application definition:

• portlet <portlet-name> 5
• custom-portlet-mode <portlet-mode>
• custom-window-state <window-state>
• user-attribute <name>
• event-definition <name> and <qname>
• public-render-parameter <name> and <qname> 10
• filter <filter-name>

The following deployment descriptor values must be unique in the scope of the portlet
definition:

• init-param <name>
• supports <mime-type> 15
• preference <name>
• security-role-ref <role-name>
• <supported-processing-event>
• <supported-publishing-event>
• <supported-public-render-parameter> 20

PLT.25.8 Localization

The portlet deployment descriptor allows for localization on two levels:

• Localize values needed at deployment time
• Advertise supported locales at run-time

Both are described in the following sections. 25

PLT.25.8.1 Localization of Deployment Descriptor Values

Localization of deployment descriptor values allows the deployment tool to provide
localized deployment messages to the deployer. The following deployment descriptor
elements may exist multiple times with different locale information in the xml:lang
attribute: 30

• all <description> elements
• portlet <display-name>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 217

The default value for the xml:lang attribute is English (“en”). Portlet-container
implementations using localized values of these elements should treat the English (“en”)
values as the default fallback value for all other locales.

The preferred method for localization of values in the deployment descriptor is providing
a resource bundle via the <resource-bundle> element on the portlet application level 5
(see Resource Bundle section below).

PLT.25.8.2 Locales Supported by the Portlet

The portlet should always declare the locales it is going to support at run-time using the
<supported-locale> element in the deployment descriptor.

The supported locales declared in the deployment descriptor should follow the 10
lang_COUNTRY_variant format as defined by RFC 1766
(http://www.faqs.org/rfcs/rfc1766.html).

The supported locales are meta information intended to be used by the portal application.

PLT.25.9 Deployment Descriptor Example
<?xml version="1.0" encoding="UTF-8"?> 15
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"> 20
 <portlet>
 <description xml:lang="en">Portlet displaying the time in different time
zones</description>
 <description xml:lang="de">Dieses Portlet zeigt die Zeit in verschiedenen
Zeitzonen an. </description> 25
 <portlet-name>TimeZoneClock</portlet-name>
 <display-name xml:lang="en">Time Zone Clock Portlet</display-name>
 <display-name xml:lang="de">ZeitzonenPortlet</display-name>
 <portlet-class>com.myco.samplets.util.zoneclock.ZoneClock</portlet-class>
 <expiration-cache>60</expiration-cache> 30
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>config</portlet-mode>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode> 35
 </supports>
 <supports>
 <mime-type>text/wml</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode> 40
 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>Time Zone Clock</title>
 <short-title>TimeZone</short-title> 45
 <keywords>Time, Zone, World, Clock</keywords>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>time-server</name> 50
 <value>http://timeserver.myco.com</value>
 <read-only>true</read-only>

http://www.faqs.org/rfcs/rfc1766.html

JavaTM Portlet Specification, version 2.0 (2008-01-11) 218

 </preference>
 <preference>
 <name>port</name>
 <value>404</value>
 <read-only>true</read-only> 5
 </preference>
 <preference>
 <name>time-format</name>
 <value>HH</value>
 <value>mm</value> 10
 <value>ss</value>
 </preference>
 </portlet-preferences>
 <security-role-ref>
 <role-name>trustedUser</role-name> 15
 <role-link>auth-user</role-link>
 </security-role-ref>
 </portlet>
 <custom-portlet-mode>
 <description xml:lang="en">Pre-defined custom portlet mode 20
CONFIG</description>
 <portlet-mode>CONFIG</portlet-mode>
 </custom-portlet-mode>
 <custom-window-state>
 <description xml:lang="en">Occupies 50% of the portal page</description> 25
 <window-state>half-page</window-state>
 </custom-window-state>
 <user-attribute>
 <description xml:lang="en">Pre-defined attribute for the telephone number of
the user at work.</description> 30
 <name>workInfo/telephone</name>
 </user-attribute>
 <security-constraint>
 <portlet-collection>
 <portlet-name>TimeZoneClock</portlet-name> 35
 </portlet-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint> 40
</portlet-app>

PLT.25.10 Resource Bundles

As an alternative to embedding all localized values in the deployment descriptor the
portlet can provide a separate resource bundle containing the localized values. Providing
localized values via resource bundles is the preferred way, as it allows the separation of 45
deployment descriptor values from localized values.

For language specific portlet application level information the fully qualified class name
of the resource bundle can be set in the deployment descriptor using the resource-
bundle element on the portlet application level. The Java Portlet Specification defines
the following constants for the application level resource bundle: 50

javax.portlet.app.
custom-portlet-mode.
<portlet-mode>.description

Description of custom portlet mode <portlet-mode>.

javax.portlet.app.
custom-window-state.
<window-state>.description

Description of the custom window state <window-
state>.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 219

javax.portlet.app.
user-attribute.<name>.description

Description of the user attribute <name>.

javax.portlet.app.
event-definition.
<name>.description

Description of the event <name>. <name> uses the
string representation of the Java QName class with

{namespace}localpart. If the namespace is
missing the defined default namespace is assumed.

Note that the resource bundle name needs to comply
with the java.util.Property.store method, i.e.
the “:” must be escaped.

javax.portlet.app.
event-definition.<name>.
display-name

Name under which this event is displayed to users or
to tools. The display name need not be unique.
<name> uses the string representation of the Java
QName class with

{namespace}localpart. If the namespace is
missing the defined default namespace is assumed.

Note that the resource bundle name needs to comply
with the java.util.Property.store method, i.e.
the “:” must be escaped.

javax.portlet.app.
public-render-parameter.
<name>.description

Description of the public render parameter <name>.

javax.portlet.app.
public-render-parameter.
<name>.display-name

Name under which this public render parameter is
displayed to users or to tools. The display name need
not be unique.

To provide language specific portlet information, like title and keywords, resource
bundles can be used. The fully qualified class name of the resource bundle can be set in
the portlet definition in the deployment descriptor using the resource-bundle 5
element.

The Java Portlet Specification defines the following constants for the portlet level
resource bundle:

javax.portlet.title The title that should be displayed in the titlebar of
this portlet. Only one title per locale is allowed. Note
that this title may be overrided by the portal or
programmatically by the portlet.

javax.portlet.short-title A short version of the title that may be used for

JavaTM Portlet Specification, version 2.0 (2008-01-11) 220

devices with limited display capabilities. Only one
short title per locale is allowed.

javax.portlet.keywords Keywords describing the functionality of the portlet.
Portals that allow users to search for portlets based
on keywords may use these keywords. Multiple
keywords per locale are allowed, but must be
separated by commas ‘,’.

javax.portlet.description Description of the portlet.
javax.portlet.display-name Name under which this portlet is displayed at

deployment time or to tools. The display name need
not be unique.

javax.portlet.app.custom-portlet-
mode.<name>.decoration-name

Decoration name for the portlet managed custom
portlet mode <name>.

PLT.25.11 Resource Bundle Example

This section shows the resource bundles for the world population clock portlet from the
deployment descriptor example. The first resource bundle is for English and the second
for German locales.

English Resource Bundle 5

filename: clock_en.properties
Portlet Info resource bundle example
javax.portlet.title=World Population Clock
javax.portlet.short-title=WorldPopClock 10
javax.portlet.keywords=World,Population,Clock

German Resource Bundle

filename: clock_de.properties 15
Portlet Info resource bundle example
javax.portlet.title=Weltbevölkerungsuhr
javax.portlet.short-title=Weltuhr
javax.portlet.keywords=Welt,Bevölkerung,Uhr
 20

JavaTM Portlet Specification, version 2.0 (2008-01-11) 221

PLT.26

Portlet Tag Library

The portlet tag library enables JSPs that are included from portlets to have direct access
to portlet specific elements such as the request, like RenderRequest or
ResourceRequest and response, like ActionResponse or RenderResponse. It also 5
provides JSPs with access to portlet functionality such as creation of portlet URLs.

The portlet-container must provide an implementation of the portlet tag library.cccxii
Portlet developers may indicate an alternate implementation using the mechanism defined
in the JSP.7.3.9 Well-Know URIs Section of the JSP Specification.

JSP pages using the tag library must declare this in a taglib like this (using the suggested 10
prefix value):

<%@ taglib uri=”http://java.sun.com/portlet_2_0” prefix=”portlet”
%>

Since Java Portlet Specification V2.0 JSP V2.0 is supported and thus the Portlet Tag 15
Library implementation should support the JSP 2.0 Expression Language (EL) for the
tags in the Portlet Tag Library.

In order to support Java Portlet Specification V1.0 portlets that references the V1.0 tag
library via

<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %> 20

the portlet container must also support the V1.0 tag library defined in JSR 168.

PLT.26.1 defineObjects Tag

The defineObjects tag must define the following variables in the JSP page:cccxiii

• RenderRequest renderRequest when included from within the render method,
null or not defined otherwise 25

• ResourceRequest resourceRequest when included from within the
serveResource method, null or not defined otherwise

• ActionRequest actionRequest when included from within the processAction
method, null or not defined otherwise

JavaTM Portlet Specification, version 2.0 (2008-01-11) 222

• EventRequest eventRequest when included from within the processEvent
method, null or not defined otherwise

• RenderResponse renderResponse when included from within the render
method, null or not defined otherwise

• ResourceResponse resourceResponse when included from within the 5
serveResource method, null or not defined otherwise

• ActionResponse actionResponse when included from within the
processAction method, null or not defined otherwise

• EventResponse eventResponse when included from within the
processEvent method, null or not defined otherwise 10

• PortletConfig portletConfig

• PortletSession portletSession, providing access to the portletSession, does
not create a new session, only returns an existing session or null if no session
exists.

• Map<String, Object> portletSessionScope, providing access to the 15
portletSession attributes as a Map equivalent to the
PortletSession.getAttributeMap() call, does not create a new session, only
returns an existing session. If no session attributes exist this method returns an
empty Map.

• PortletPreferences portletPreferences, providing access to the portlet 20
preferences.

• Map<String, String[]> portletPreferencesValues, providing access to the
portlet preferences as a Map, equivalent to the PortletPreferences.getMap()
call. If no portlet preferences exist this method returns an empty Map.

These variables must reference the same Portlet API objects stored in the request object 25
of the JSP as defined in the PLT.19.3.2 Included Request Attributes Section.

A JSP using the defineObjects tag may use these variables from scriptlets throughout
the page.

The defineObjects tag must not define any attribute and it must not contain any body
content.cccxiv 30

An example of a JSP using the defineObjects tag could be:

 <portlet:defineObjects/>

 <%=renderResponse.getCacheControl().setExpirationTime(10)%>

After using the defineObjects tag, the JSP invokes the getCacheControl() method of 35
the renderResponse to set the expiration time of the response to 10 seconds.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 223

PLT.26.2 actionURL Tag

The portlet actionURL tag creates a URL that must point to the current portlet and must
trigger an action request with the supplied parameters.cccxv

Parameters may be added to the URL by including the param tag between the actionURL
start and end tags. 5

The following non-required attributes are defined for this tag:

• windowState (Type: String, non-required) – indicates the window state that the
portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.cccxvi Reasons for a 10
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current
request.cccxvii The window state attribute is not case sensitive. 15

• portletMode (Type: String, non-required) – indicates the portlet mode that the
portlet must have when this link is executed, if no error condition ocurred.cccxviii
The following portlet modes are predefined: edit, help, and view. If the
specified portlet mode is illegal for the current request, a JspException must be
thrown. cccxixReasons for a portlet mode being illegal may include that the portal 20
does not support this mode, the portlet has not declared in its deployment
descriptor that it supports this mode for the current markup, or the current user is
not allowed to switch to this mode. If a portlet mode is not set for a URL, it must
stay the same as the mode of the current request. cccxxThe portlet mode attribute is
not case sensitive. 25

• var (Type: String, non-required) – name of the exported scoped variable for the
action URL. The exported scoped variable must be a String. By default, the
result of the URL processing is written to the current JspWriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.cccxxi 30

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.cccxxii

• secure (Type: String, non-required) – indicates if the resulting URL should be a 35
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown.cccxxiii If the security is not set for a URL, it must
stay the same as the security setting of the current request.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 224

• copyCurrentRenderParameters (Type: boolean, non-required) – if set to true
requests that the private render parameters of the portlet of the current request
must be attached to this URL. cccxxiv It is equivalent to setting each of the current
private render parameters via the <portlet:param> tag. If additional
<portlet:param> tags are specified parameters with the same name as an 5
existing render parameter will get merged and the value defined in additional
<portlet:param> tags must be pre-pended. cccxxv
The default for this attribute is false.

• escapeXml (Type: boolean, non-required) – determines whether characters
<,>,&,’,” in the resulting output should be converted to their corresponding 10
character entity codes (‘<’ gets converted to ‘<’, ‘>’ gets converted to ‘>’
‘&’ gets converted to ‘&’, ‘‘’ gets converted to ‘'’, ‘”’ gets converted
to ‘"’). cccxxvi Default value is true.

• name (Type: String, non-required) – specifies the name of the action that can be
used by GenericPortlet to dispatch to methods annotated with ProcessAction. 15
Setting this name will result in adding a parameter to this action URL with the
name javax.portlet.action.

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

• If an illegal window state is specified in the windowState attribute. 20
• If an illegal portlet mode is specified in the portletMode attribute.
• If an illegal security setting is specified in the secure attribute.

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

• If this tag is used in markup provided by a serveResource call that was directly 25
or indirectly triggered via a resource URL of type FULL or PORTLET.

An example of a JSP using the actionURL tag could be:

<portlet:actionURL copyCurrentRenderParameters=”true”
windowState=”maximized” portletMode=”edit” name=”editStocks”> 30
 <portlet:param name=”page” value=”1”/>
</portlet:actionURL>

The example creates a URL that brings the portlet into EDIT mode and MAXIMIZED
window state to edit the stocks quote list.

PLT.26.3 renderURL Tag 35

The portlet renderURL tag creates a URL that must point to the current portlet and must
trigger a render request with the supplied parameters.cccxxvii

JavaTM Portlet Specification, version 2.0 (2008-01-11) 225

Parameters may be added by including the param tag between the renderURL start and
end tags.

The following non-required attributes are defined for this tag:

• windowState (Type: String, non-required) – indicates the window state that the
portlet should have when this link is executed. The following window states are 5
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.cccxxviii Reasons for a
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not 10
set for a URL, it should stay the same as the window state of the current
request.cccxxix The window state attribute is not case sensitive.

• portletMode (Type: String, non-required) – indicates the portlet mode that the
portlet must have when this link is executed, if not error condition ocurred.cccxxx
The following portlet modes are predefined: edit, help, and view. If the 15
specified portlet mode is illegal for the current request, a JspException must be
thrown.cccxxxi Reasons for a portlet mode being illegal may include that the portal
does not support this mode, the portlet has not declared in its deployment
descriptor that it supports this mode for the current markup, or the current user is
not allowed to switch to this mode. If a portlet mode is not set for a URL, it must 20
stay the same as the mode of the current request.cccxxxii The portlet mode attribute
is not case sensitive.

• var (Type: String, non-required) – name of the exported scoped variable for the
render URL. The exported scoped variable must be a String. By default, the
result of the URL processing is written to the current JspWriter. If the result is 25
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.cccxxxiii

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an 30
iteration loop, the new value overwrites the old one.cccxxxiv

• secure (Type: String, non-required) – indicates if the resulting URL should be a
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the 35
same as the security setting of the current request.cccxxxv

• copyCurrentRenderParameters (Type: boolean, non-required) – if set to true
requests that the private render parameters of the portlet of the current request
must attached to this URL. cccxxxvi It is equivalent to setting each of the current
private render parameters via the <portlet:param> tag. If additional 40
<portlet:param> tags are specified parameters with the same name as an
existing render parameter will get merged and the value defined in additional

JavaTM Portlet Specification, version 2.0 (2008-01-11) 226

<portlet:param> tags must be pre-pended. cccxxxvii
The default for this attribute is false.

• escapeXml (Type: boolean, non-required) – deterrmines whether characters
<,>,&,’,” in the resulting output should be converted to their corresponding
character entity codes (‘<’ gets converted to ‘<’, ‘>’ gets converted to ‘>’ 5
‘&’ gets converted to ‘&’, ‘‘’ gets converted to ‘'’, ‘”’ gets converted
to ‘"’). cccxxxviii Default value is true

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

• If an illegal window state is specified in the windowState attribute. 10
• If an illegal portlet mode is specified in the portletMode attribute.
• If an illegal security setting is specified in the secure attribute.

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

• If this tag is used in markup provided by a serveResource call that was directly 15
or indirectly triggered via a resource URL of type FULL or PORTLET.

An example of a JSP using the renderURL tag could be:

<portlet:renderURL portletMode=”view” windowState=”normal”>
 <portlet:param name=”showQuote” value=”myCompany”/> 20
 <portlet:param name=”showQuote” value=”someOtherCompany”/>
</portlet:renderURL>

The example creates a URL to provide a link that shows the stock quote of myCompany
and someOtherCompany and changes the portlet mode to TTVIEWTT and the window state to
TTNORMALTT. 25

PLT.26.4 resourceURL Tag

The portlet resourceURL tag creates a URL that must point to the current portlet and
must trigger a serveResource request with the supplied parameters.cccxxxix

The resourceURL must preserve the current portlet mode, window state and render
parameters. cccxl 30

Parameters may be added by including the param tag between the resourceURL start and
end tags. If such a parameter has the same name as a render parameter in this URL, the
render parameter value must be the last value in the attribute value array. cccxli

The following non-required attributes are defined for this tag:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 227

• var (Type: String, non-required) – name of the exported scoped variable for the
resource URL. The exported scoped variable must be a String. By default, the
result of the URL processing is written to the current JspWriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.cccxlii 5

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.cccxliii

• secure (Type: String, non-required) – indicates if the resulting URL should be a 10
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.cccxliv

• escapeXml (Type: boolean, non-required) – determines whether characters 15
<,>,&,’,” in the resulting output should be converted to their corresponding
character entity codes (‘<’ gets converted to ‘<’, ‘>’ gets converted to ‘>’
‘&’ gets converted to ‘&’, ‘‘’ gets converted to ‘'’, ‘”’ gets converted
to ‘"’). cccxlv Default value is true

• id (type:String, non-required) – sets the ID for this resource. The ID can be 20
retrieved in the serveResource call from the request via the getResourceID
method.

• cacheability (type: String, non-required) – defines the cacheability of the markup
returned by this resource URL. Valid values are: “FULL”, “PORTLET”, and “PAGE”.
See Section PLT 13.6 for more details on the semantic of these constants. 25
If cacheability is not set the default is PAGE cachability.

A JspException with the PortletException that caused this error as root cause is
thrown in the following case:

• If an illegal security setting is specified in the secure attribute.

 30

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

• If this tag is used in markup provided by a serveResource call that was directly
or indirectly triggered via a resource URL of a weaker cacheability type.

 35

An example of a JSP using the resourceURL tag could be:

JavaTM Portlet Specification, version 2.0 (2008-01-11) 228

<portlet:resourceURL id=”icons/mypict.gif” var=”iconsURL”/>
<img src="<%=iconsURL%>” >

The example creates a URL to provide a link that renders the icon named mypict.gif
via the default GenericPortlet resource serving mechanism. 5

PLT.26.5 namespace Tag

This tag produces a unique value for the current portlet and must match the value of
PortletResponse.getNamespace method. cccxlvi

This tag should be used for named elements in the portlet output (such as Javascript
functions and variables). The namespacing ensures that the given name is uniquely 10
associated with this portlet and avoids name conflicts with other elements on the portal
page or with other portlets on the page.

The namespace tag must not allow any body content.

An example of a JSP using the namespace tag could be:

<A HREF=”javascript:<portlet:namespace/>doFoo()”>Foo 15

The example prefixes a JavaScript function with the name ‘doFoo’, ensuring uniqueness
on the portal page.

PLT.26.6 param Tag

This tag defines a parameter that may be added to an actionURL, renderURL or
resourceURL.cccxlvii 20

The param tag must not contain any body content.cccxlviii

If the param tag has an empty value the specified parameter name must be removed from
the URL. cccxlix In the case of a resource URL an empty value does not alter the render
parameters automatically added by the portlet container to resource URLs.

If the same name of a parameter occurs more than once within an actionURL, 25
renderURL or resourceURL the values must be delivered as parameter value array with
the values in the order of the declaration within the URL tag. cccl

The following required attributes are defined for this tag:

• name (Type: String, required) – the name of the parameter to add to the URL. If
name is null or empty, no action is performed. 30

• value (Type: String, required) – the value of the parameter to add to the URL. If
value is null, it is processed as an empty value.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 229

An example of a JSP using the param tag could be:

<portlet:param name=”myParam” value=”someValue”/>

PLT.26.7 property Tag

This tag defines a property that may be added to an actionURL, renderURL or
resourceURL and is equivalent to the API call addProperty(). 5

The property tag should not contain any body content.

If the same name of a property occurs more than once within an actionURL, renderURL
or resourceURL the values should be delivered as properties value array with the values
in the order of the declaration within the URL tag.

The following required attributes are defined for this tag: 10

• name (Type: String, required) – the name of the property to add to the URL. If
name is null or empty, no action is performed.

• value (Type: String, required) – the value of the property to add to the URL. If
value is null, it is processed as an empty value.

An example of a JSP using the param tag could be: 15

<portlet:actionURL>
 <portlet:property name=”myProperty” value=”someValue”/>

</portlet:actionURL>

PLT.26.8 Changing the Default Behavior for escapeXml

In the Java Portlet Specification V1.0 the behavior in regards to XML escaping URLs 20
written by the tag library was undefined and thus portlets may have been coded with the
assumption that the URLs where not XML escaped. In order to be able to run these
portlets on a Java Portlet Specification V 2.0 container the specification provides the
javax.portlet.escapeXml container runtime option. The value of this setting can either
be true for XML escaping URLs per default, or false for not XML escaping URLs per 25
default.

Portlet that require that the default behavior for URLs written to the output stream via the
portlet tag library should therefore define the following container runtime option in the
portlet deployment descriptor:

<portlet> 30

…

 <container-runtime-option>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 230

 <name>javax.portlet.escapeXml</name>

 <value>false</value>

 </container-runtime-option>

 </portlet>

 5

If the portlet has defined the javax.portlet.escapeXml container runtime option the
portlet container should honor this setting as otherwise the portlet may not work
correctly.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 231

PLT.27

Leveraging JAXB for Event payloads

The Java Portlet Specification 2.0 leverages the Java Architecture for

XML Binding (JAXB) 2.0 for defining event payload data that may be transported across 5
the network via remote protocols such as Web Services for Remote Portlets (WSRP) 2.0
specification.

The event payload must be defined using the JAXB annotations in the Java object and
defining the Java object class name in the deployment descript via the value-type
element. The event payload must have a valid JAXB binding, or be in the list of Java 10
primitive types / standard classes of the JAXB 2.0 specification section 8.5.1 or 8.5.2, and
implement java.io.Serializable, otherwise a
java.lang.IllegalArgumentException must be thrown. The primitive type
xsd:anyURI must be mapped to java.net.URI and not java.lang.String, which is the
default in JAXB, in order to not loose semantics. 15

JavaTM Portlet Specification, version 2.0 (2008-01-11) 232

PLT.28

Technology Compatibility Kit Requirements

This chapter defines a set of requirements a portlet container implementation must meet
in order to run the portlet Technology Compatibility Kit (TCK). 5

These requirements are only needed for the purpose of determining whether a portlet
container implementation complies with the Portlet Specification or not.

PLT.28.1 TCK Test Components

Based on the Portlet Specification (this document) and the Portlet API, a set of testable
assertions have been extracted and identified. The portlet TCK treats each testable 10
assertion as a unique test case.

All test cases are run from a Java Test Harness. The Java Test Harness collects the results
of all the tests and makes a report on the overall test.

Each portlet TCK test case has two components:

• Test portlet applications: These are portlet applications containing portlets, 15
servlets or JSPs coded to verify an assertion. These test portlet applications are
deployed in the portlet container being tested for compliance.

• Test client: It is a standalone java program that sends HTTP requests to portlet
container where test portlet applications of the test case have been deployed for
compliance testing. 20

The portlet TCK assumes that the test portlet applications are deployed in the portlet
container before the test run is executed.

The test client looks for expected and unexpected sub strings in the HTTP response to
decide whether a test has failed or passed. The test client reports the result of the test
client to the Java Test Harness. 25

JavaTM Portlet Specification, version 2.0 (2008-01-11) 233

PLT.28.2 TCK Requirements

In TCK, every test is written as a set of one or more portlets. A test client is written for
each test, the test client must interact with a portal page containing the portlets that are
part of the test. To accomplish this, TCK needs to obtain the initial URL for the portal
page of each test case. All the portlets in the portal page obtained with the initial URL 5
must be in VIEW portlet mode and in NORMAL window state. Subsequent requests to
the test are done using URLs generated by PortletURI that are part of the returned portal
pages. These subsequent requests must be treated as directed to same portal page
composed of the same portlets.

Portal/portlet-containers must disable all caching mechanisms when running the TCK test 10
cases.

Since aggregation of portlets in a portal page and the URLs used to interact with the
portlets are vendor specific, TCK provides two alternative mechanisms in the framework
to get the URLs to portal pages for the test cases: declarative configuration or
programmatic configuration. A vendor must support at least one of these mechanisms to 15
run the conformance tests.

PLT.28.2.1 Declarative configuration of the portal page for a TCK test

TCK publishes an XML file containing the portlets for each test case. Vendors must refer
to this file for establishing a portal page for every test. Vendors must provide an XML
file with a full URL for the portal page for each test. A call to this URL must generate a 20
portal page with the content of all the portlets defined for the corresponding test case. If
redirected to another URL, the new URL must use the same host name and port number
as specified in the file. Refer to TCK User guide for details on declarative configuration.

A snippet of the TCK provided XML file for declarative configuration would look like:

<test_case> 25
 <test_name>PortletRequest_GetAttributeTest</test_name>
 <test_portlet>
 <app_name>PortletRequestWebApp</app_name>
 <portlet_name>GetAttributeTestPortlet</portlet_name>
 </test_portlet> 30
 <test_portlet>
 <app_name>PortletRequestWebApp</app_name>
 <portlet_name>GetAttributeTest_1_Portlet</portlet_name>
 <test_portlet>
</test_case> 35

The corresponding snippet for the vendor’s provided XML file might look like:

<test_case_url>
 <test_name>PortletRequest_GetAttributeTest</test_name>
 <test_url>http://foo:8080/portal?pageName=TestCase1</test_url>
</test_case_url> 40

JavaTM Portlet Specification, version 2.0 (2008-01-11) 234

PLT.28.2.1.1 Schema for XML file provided with Portlet TCK

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestCases.xsd-->
<xs:schema
 targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCK_1_0.xsd" 5
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCK_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="pct_test_cases">
 <xs:annotation> 10
 <xs:documentation>Test Cases defined in Portlet Compatibility
Kit</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence> 15
 <xs:element ref="pct:test_case" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="test_case"> 20
 <xs:annotation>
 <xs:documentation>Test Case</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence> 25
 <xs:element ref="pct:test_name"/>
 <xs:element ref="pct:test_portlet" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element> 30
 <xs:element name="test_portlet">
 <xs:annotation>
 <xs:documentation>A test Portlet</xs:documentation>
 </xs:annotation>
 <xs:complexType> 35
 <xs:sequence>
 <xs:element ref="pct:portlet_name"/>
 <xs:element ref="pct:app_name"/>
 </xs:sequence>
 </xs:complexType> 40
 </xs:element>
 <xs:element name="test_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Unique name for a test case</xs:documentation>
 </xs:annotation> 45
 </xs:element>
 <xs:element name="app_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Name of the portlet application a portlet belongs
to.</xs:documentation> 50
 </xs:annotation>
 </xs:element>
 <xs:element name="portlet_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Name of the portlet</xs:documentation> 55
 </xs:annotation>
 </xs:element>
</xs:schema>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 235

PLT.28.2.1.2 Schema for XML file that provided by vendors

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestURLs.xsd - Schema that must be followed by the vendors to write
the file that has mapping from a portlet TCK -->
<!-- test case to a url. --> 5
<xs:schema
 targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCKVendor_1_0.xsd"
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCKVendor_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified"> 10
 <xs:element name="test_case_urls">
 <xs:annotation>
 <xs:documentation>Mapping of Test Cases defined in Portlet Compatibility
Kit to vendor specific URLs</xs:documentation>
 </xs:annotation> 15
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="pct:test_case_url" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType> 20
 </xs:element>
 <xs:element name="test_case_url">
 <xs:annotation>
 <xs:documentation>Test Case to URL map entry </xs:documentation>
 </xs:annotation> 25
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="pct:test_name"/>
 <xs:element ref="pct:test_url"/>
 </xs:sequence> 30
 </xs:complexType>
 </xs:element>
 <xs:element name="test_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Unique name for a test case from the 35
portletTCKTestCases.xml published by TCK</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="test_url" type="xs:string">
 <xs:annotation> 40
 <xs:documentation>Complete URL that would result in a page containing
contents of portlets defined for this test case.</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema> 45

PLT.28.2.2 Programmatic configuration of the portal page for a test

For programmatic configuration, a vendor must provide a full URL as a configuration
parameter to the TCK. The TCK will call this URL with a set of parameters indicating
the set of portlets that must appear in a portal page for the given test. Upon receiving this
request, the vendor provided URL could dynamically create a portal page with the 50
required portlets. Calls to this vendor provided URL are always HTTP GET requests. The
parameter names on the URL are multiple occurrences of "portletName". Values of this
paramater must be a string consisting of the test case application name and portlet name
delimited by a “/”. The response of this call must be a portal page with the required
portlets or a redirection to another URL where the portal page will be served. If 55
redirected, the new URL must use the same host and port number as original URL.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 236

A vendor provided URL would look like:

VendorPortalURL=http://foo:8080/portal/tckservlet

For a test case involving one portlet, TCK would call this URL with the following
parameters:

http://foo:8080/portal/tckservlet?portletName=PortletRequestWebApp5
/GetAttributeTestPortlet

PLT.28.2.3 Test Portlets Content

The test cases portlets encode information for the test client within their content. As
different vendor implementations may generate different output surrounding the content
produced by the portlets, the portlets delimit the information for the test clients using a 10
special element tag, portlet-tck.

PLT.28.2.4 Test Cases that Require User Identity

Some of the Portlet TCK require an authenticated user. The TCK configuration file
indicates the name and password of the authenticated user and the authentication
mechanism TCK will use. 15

Portlet TCK provides two mechanisms to send the user credentials: HTTP Basic
authentication and a Java interface provided by the TCK. If TCK framework is
configured to use HTTP Basic authentication, an Authorization HTTP header -using
the configured user and password values- is constructed and sent with each test case
request. If TCK framework is configured to use the Java interface mechanism, the value 20
obtained from the specified interface implementation will be sent as a Cookie HTTP
header with request of the test case.

Additionally, a portal vendor may indicate that certain test cases, not required by TCK, to
be executed in the context of an authenticated user. This is useful for vendor
implementations that require an authenticated user for certain functionality to work. A 25
vendor can specify the names of these test cases in a configuration file. TCK will consult
this file to decide if user authentication is needed for each test case. Refer to TCK User
Guide to get details on the specific configuration properties.

.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 237

PLT.A

Custom Portlet Modes

Portals may provide support for custom portlet modes. Similarly, portlets may use custom
portlet modes. This appendix describes a list of custom portlet modes and their intended
functionality. Portals and portlets should use these custom portlet mode names if they 5
provide support for the described functionality.

Portlets should use the getSupportedPortletModes method of the PortalContext
interface to retrieve the portlet modes the portal supports.

PLT.A.1 About Portlet Mode

The about portlet mode should be used by the portlet to display information on the 10
portlets purpose, origin, version etc.

Portlet developers should implement the about portlet mode functionality by using the
@RenderMode(name=”about”) annotation supported by the GenericPortlet class.

In the deployment descriptor the support for the about portlet mode must be declared
using 15

<portlet-app>
 ...
 <portlet>
 ...
 <supports> 20
 ...
 <portlet-mode>about</portlet-mode>
 </supports>
 ...
 </portlet> 25
 ...
 <custom-portlet-mode>
 <portlet-mode>about</portlet-mode>
 </custom-portlet-mode>
 ... 30
 </portlet-app>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 238

PLT.A.2 Config Portlet Mode

The config portlet mode should be used by the portlet to display one or more
configuration views that let administrators configure portlet preferences that are marked
non-modifiable in the deployment descriptor. This requires that the user must have
administrator rights. Therefore, only the portal can create links for changing the portlet 5
mode into config.

Portlet developers should implement the config portlet mode functionality by using the
@RenderMode(name=”config”) annotation supported by the GenericPortlet class.

The CONFIG mode of portlets operates typically on shared state that is common to many
portlets of the same portlet definition. When a portlet modifies this shared state via the 10
PortletPreferences, for all affected portlet entities, in the doView method the
PortletPreferences must give access to the modified state.

In the deployment descriptor the support for the config portlet mode must be declared
using

<portlet-app> 15
 ...
 <portlet>
 ...
 <supports>
 ... 20
 <portlet-mode>config</portlet-mode>
 </supports>
 ...
 </portlet>
 ... 25
 <custom-portlet-mode>
 <portlet-mode>config</portlet-mode>
 </custom-portlet-mode>
 ...
 </portlet-app> 30

PLT.A.3 Edit_defaults Portlet Mode

The edit_defaults portlet mode signifies that the portlet should render a screen to set
the default values for the modifiable preferences that are typically changed in the EDIT
screen. Calling this mode requires that the user must have administrator rights. Therefore,
only the portal can create links for changing the portlet mode into edit_defaults. 35

Portlet developers should implement the edit_defaults portlet mode functionality by
using the @RenderMode(name=”edit_defaults”) annotation supported by the
GenericPortlet class.

In the deployment descriptor the support for the edit_defaults portlet mode must be
declared using 40

JavaTM Portlet Specification, version 2.0 (2008-01-11) 239

<portlet-app>
 ...
 <portlet>
 ...
 <supports> 5
 ...
 <portlet-mode> edit_defaults </portlet-mode>
 </supports>
 ...
 </portlet> 10
 ...
 <custom-portlet-mode>
 <portlet-mode> edit_defaults </portlet-mode>
 </custom-portlet-mode>
 ... 15
 </portlet-app>

PLT.A.4 Preview Portlet Mode

The preview portlet mode should be used by the portlet to render output without the need
of having back-end connections or user specific data available. It may be used at page
design time and in portlet development tools. 20

Portlet developers should implement the preview portlet mode functionality by using the
@RenderMode(name=”preview”) annotation supported by the GenericPortlet class.

In the deployment descriptor the support for the preview portlet mode must be declared
using

<portlet-app> 25
 ...
 <portlet>
 ...
 <supports>
 ... 30
 <portlet-mode> preview </portlet-mode>
 </supports>
 ...
 </portlet>
 ... 35
 <custom-portlet-mode>
 <portlet-mode> preview </portlet-mode>
 </custom-portlet-mode>
 ...
 </portlet-app> 40

JavaTM Portlet Specification, version 2.0 (2008-01-11) 240

PLT.A.5 Print Portlet Mode

The printportlet mode signifies that the portlet should render a view that can be printed.

Portlet developers should implement the printportlet mode functionality by using the
@RenderMode(name=”print”) annotation supported by the GenericPortlet class.

In the deployment descriptor the support for the printportlet mode must be declared 5
using

<portlet-app>
 ...
 <portlet>
 ... 10
 <supports>
 ...
 <portlet-mode>print</portlet-mode>
 </supports>
 ... 15
 </portlet>
 ...
 <custom-portlet-mode>
 <portlet-mode>print</portlet-mode>
 </custom-portlet-mode> 20
 ...
 </portlet-app>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 241

PLT.B

Markup Fragments

Portlets generate markup fragments that are aggregated in a portal page document.
Because of this, there are some rules and limitations in the markup elements generated by
portlets. Portlets should conform to these rules and limitations when generating content. 5

The disallowed tags indicated below are those tags that impact content generated by other
portlets or may even break the entire portal page. Inclusion of such a tag invalidates the
whole markup fragment.

Portlets generating HTML fragments must not use the following tags: base, body,
frame, frameset, head, html and title. Using the iframe tag is not forbidden, but 10
portlets using iframes should not expect portal/portlet context for the content of
iframes

Portlets generating XHTML and XHTML-Basic fragments must not use the following
tags: base, body, iframe, head, html and title.

HTML, XHTML and XHTML-Basic specifications disallow the use of certain elements 15
outside of the <head> element in the document. However, some browser
implementations support some of these tags in other sections of the document. For
example: current versions of Internet Explorer and Netscape Navigator both support the
style tag anywhere within the document. Portlet developers should decide carefully the
use of following markup elements that fit this description: link, meta and style. 20

JavaTM Portlet Specification, version 2.0 (2008-01-11) 243

PLT.C

CSS Style Definitions

To achieve a common look and feel throughout the portal page, all portlets in the portal
page should use a common CSS style sheet when generating content.

This appendix defines styles for a variety of logical units in the markup. It follows the 5
style being considered by the OASIS Web Services for Remote Portlets Technical
Committee.

PLT.C.1 Links (Anchor)

A custom CSS class is not defined for the <a> tag. The entity should use the default
classes when embedding anchor tags. 10

PLT.C.2 Fonts

The font style definitions affect the font attributes only (font face, size, color, style, etc).

Style Description Example

portlet-font Font attributes for the “normal” fragment font. Used
for the display of non-accentuated information.

Normal
Text

portlet-font-dim Font attributes similar to the .portlet.font but the
color is lighter. Dim Text

If an portlet developer wants a certain font type to be larger or smaller, they should
indicate this using a relative size. For example: 15

<div class="portlet-font" style="font-size:larger">Important
information</div>

<div class="portlet-font-dim" style="font-size:80%">Small and
dim</div> 20

JavaTM Portlet Specification, version 2.0 (2008-01-11) 244

PLT.C.3 Messages

Message style definitions affect the rendering of a paragraph (alignment, borders,
background color, etc) as well as text attributes.

Style Description Example

portlet-msg-status Status of the current
operation. Progress: 80%

portlet-msg-info Help messages, general
additional information, etc. Info about

portlet-msg-error Error messages. Portlet not available

portlet-msg-alert Warning messages. Timeout occurred, try again
later

portlet-msg-success Verification of the successful
completion of a task.

Operation completed
successfully

PLT.C.4 Sections

Section style definitions affect the rendering of markup sections such as table, div and 5
span (alignment, borders, background color, etc) as well as their text attributes.

Style Description
portlet-section-header Table or section header
portlet-section-body Normal text in a table cell
portlet-section-alternate Text in every other row in the cell
portlet-section-selected Text in a selected cell range
portlet-section-subheader Text of a subheading
portlet-section-footer Table or section footnote

portlet-section-text
Text that belongs to the table but does not fall in one of
the other categories (e.g. explanatory or help text that is
associated with the section).

JavaTM Portlet Specification, version 2.0 (2008-01-11) 245

PLT.C.5 Tables

Table style definitions affect the rendering (i.e. alignment, borders, background color,
etc.) as well as their text attributes.

Style Description
portlet-table-header Table header
portlet-table-body Normal text in a table cell
portlet-table-alternate Text in every other row in the table
portlet-table-selected Text in a selected cell range
portlet-table-subheader Text of a subheading
portlet-table-footer Table footer

portlet-table-text
Text that belongs to the table but does not fall in one of the other
categories (e.g. explanatory or help text that is associated with
the table).

PLT.C.6 Forms 5

Form styles define the look-and-feel of the elements in an HTML form.

Style Description

portlet-form-label Text used for the descriptive label of the whole form
(not the labels for fields.

portlet-form-input-field Text of the user-input in an input field.
portlet-form-button Text on a button

portlet-icon-label Text that appears beside a context dependent action
icon.

portlet-dlg-icon-label Text that appears beside a “standard” icon (e.g. Ok, or
Cancel)

portlet-form-field-label Text for a separator of fields (e.g. checkboxes, etc.)
portlet-form-field Text for a field (not input field, e.g. checkboxes, etc)

portlet-form-field-label Text that appears beside a form field (e.g. input fields,
checkboxes, etc.)

portlet-form-field Text for a field which is not input field (e.g. checkboxes,
etc)

JavaTM Portlet Specification, version 2.0 (2008-01-11) 246

PLT.C.7 Menus

Menu styles define the look-and-feel of the text and background of a menu structure. This
structure may be embedded in the aggregated page or may appear as a context sensitive
popup menu. 5

JavaTM Portlet Specification, version 2.0 (2008-01-11) 247

Style Description

portlet-menu General menu settings such as background
color, margins, etc

portlet-menu-item Normal, unselected menu item.
portlet-menu-item-selected Selected menu item.

portlet-menu-item-hover Normal, unselected menu item when the
mouse hovers over it.

portlet-menu-item-hover-selected Selected menu item when the mouse hovers
over it.

portlet-menu-cascade-item Normal, unselected menu item that has sub-
menus.

portlet-menu-cascade-item-selected Selected sub-menu item that has sub-menus.

portlet-menu-cascade General sub-menu settings such as
background color, margins, etc

portlet-menu-cascade-item A normal, unselected sub-menu item
portlet-menu-cascade-item-selected Selected sub-menu item

portlet-menu-cascade-item-hover Normal, unselected sub-menu item when the
mouse hovers over it

portlet-menu-cascade-item-hover-
selected

Selected sub-menu item when the mouse
hovers over it

portlet-menu-separator Separator between menu items
portlet-menu-cascade-separator Separator between sub-menu items

portlet-menu-content Content for a normal, unselected menu or
sub-menu item

portlet-menu-content-selected Content for an selected menu or sub-menu
item

portlet-menu-content-hover Content for an unselected menu or sub-menu
item when the mouse hovers over it

portlet-menu-content-hover-selected Content for a selected menu or sub-menu
item when the mouse hovers over it

portlet-menu-indicator Indicator that a menu item has an associated
sub-menu

portlet-menu-indicator-selected Indicator when the associated menu item is
selected

portlet-menu-indicator-hover Indicator when the associated menu item has
the mouse hover over it

portlet-menu-indicator-hover-selected Indicator when the associated menu item is
selected and has the mouse hover over it

portlet-menu-description Descriptive text for the menu (e.g. in a help
context below the menu)

portlet-menu-caption Menu caption

JavaTM Portlet Specification, version 2.0 (2008-01-11) 248

JavaTM Portlet Specification, version 2.0 (2008-01-11) 249

PLT.D

User Information Attribute Names

This appendix defines a set of attribute names for user information and their intended
meaning. To allow portals an automated mapping of commonly used user information
attributes portlet programmers should use these attribute names. These attribute names 5
are derived from the Platform for Privacy Preferences 1.0 (P3P 1.0) Specification by the
W3C (http://www.w3c.org/TR/P3P). The same attribute names are also being considered
by the OASIS Web Services for Remote Portlets Technical Committee.

Attribute Name
user.bdate.ymd.year
user.bdate.ymd.month
user.bdate.ymd.day
user.bdate.hms.hour
user.bdate.hms.minute
user.bdate.hms.second
user.bdate.fractionsecond
user.bdate.timezone
user.gender
user.employer
user.department
user.jobtitle
user.name.prefix
user.name.given
user.name.family
user.name.middle
user.name.suffix
user.name.nickName
user.login.id
user.home-info.postal.name
user.home-info.postal.street
user.home-info.postal.city
user.home-info.postal.stateprov
user.home-info.postal.postalcode
user.home-info.postal.country
user.home-info.postal.organization
user.home-info.telecom.telephone.intcode
user.home-info.telecom.telephone.loccode
user.home-info.telecom.telephone.number
user.home-info.telecom.telephone.ext
user.home-info.telecom.telephone.comment
user.home-info.telecom.fax.intcode
user.home-info.telecom.fax.loccode
user.home-info.telecom.fax.number

JavaTM Portlet Specification, version 2.0 (2008-01-11) 250

user.home-info.telecom.fax.ext
user.home-info.telecom.fax.comment
user.home-info.telecom.mobile.intcode
user.home-info.telecom.mobile.loccode
user.home-info.telecom.mobile.number
user.home-info.telecom.mobile.ext
user.home-info.telecom.mobile.comment
user.home-info.telecom.pager.intcode
user.home-info.telecom.pager.loccode
user.home-info.telecom.pager.number
user.home-info.telecom.pager.ext
user.home-info.telecom.pager.comment
user.home-info.online.email
user.home-info.online.uri
user.business-info.postal.name
user.business-info.postal.street
user.business-info.postal.city
user.business-info.postal.stateprov
user.business-info.postal.postalcode
user.business-info.postal.country
user.business-info.postal.organization
user.business-info.telecom.telephone.intcode
user.business-info.telecom.telephone.loccode
user.business-info.telecom.telephone.number
user.business-info.telecom.telephone.ext
user.business-info.telecom.telephone.comment
user.business-info.telecom.fax.intcode
user.business-info.telecom.fax.loccode
user.business-info.telecom.fax.number
user.business-info.telecom.fax.ext
user.business-info.telecom.fax.comment
user.business-info.telecom.mobile.intcode
user.business-info.telecom.mobile.loccode
user.business-info.telecom.mobile.number
user.business-info.telecom.mobile.ext
user.business-info.telecom.mobile.comment
user.business-info.telecom.pager.intcode
user.business-info.telecom.pager.loccode
user.business-info.telecom.pager.number
user.business-info.telecom.pager.ext
user.business-info.telecom.pager.comment
user.business-info.online.email
user.business-info.online.uri

The P3P user attribute constants can be accessed in the portlet via the P3PUserInfos
enum on the PortletRequest.

PLT.D.1 Example

Below is an example of how these attributes may be used in the deployment descriptor: 5

<portlet-app>
 ...
 <user-attribute>
 <name> user.name.prefix</name>
 </user-attribute> 10

JavaTM Portlet Specification, version 2.0 (2008-01-11) 251

 <user-attribute>
 <name> user.name.given</name>
 </user-attribute>
 <user-attribute>
 <name> user.name.family</name> 5
 </user-attribute>
 <user-attribute>
 <name> user.home-info.postal.city</name>
 </user-attribute>
 ... 10
</portlet-app>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 252

PLT.E

 Deployment Descriptor Version 1.0

This appendix defines the deployment descriptor for version 1.0. All portlet containers

are required to support portlet applications using the 1.0 deployment descriptor.

PLT.E.1.1 Deployment Descriptor of Version 1.0
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0" xml:lang="en">
 <annotation>
 <documentation>
 This is the XML Schema for the Portlet 1.0 deployment descriptor.
 </documentation>
 </annotation>
 <annotation>
 <documentation>
 The following conventions apply to all J2EE
 deployment descriptor elements unless indicated otherwise.
 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.
 </documentation>
 </annotation>
 <!-- *** -->
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <element name="portlet-app" type="portlet:portlet-appType">
 <annotation>
 <documentation>
 The portlet-app element is the root of the deployment descriptor
 for a portlet application. This element has a required attribute version
 to specify to which version of the schema the deployment descriptor
 conforms.
 </documentation>
 </annotation>
 <unique name="portlet-name-uniqueness">
 <annotation>
 <documentation>
 The portlet element contains the name of a portlet.
 This name must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet"/>
 <field xpath="portlet:portlet-name"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 253

 </unique>
 <unique name="custom-portlet-mode-uniqueness">
 <annotation>
 <documentation>
 The custom-portlet-mode element contains the portlet-mode.
 This portlet mode must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:custom-portlet-mode"/>
 <field xpath="portlet:portlet-mode"/>
 </unique>
 <unique name="custom-window-state-uniqueness">
 <annotation>
 <documentation>
 The custom-window-state element contains the window-state.
 This window state must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:custom-window-state"/>
 <field xpath="portlet:window-state"/>
 </unique>
 <unique name="user-attribute-name-uniqueness">
 <annotation>
 <documentation>
 The user-attribute element contains the name the attribute.
 This name must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:user-attribute"/>
 <field xpath="portlet:name"/>
 </unique>
 </element>
 <complexType name="portlet-appType">
 <sequence>
 <element name="portlet" type="portlet:portletType" minOccurs="0"
maxOccurs="unbounded">
 <unique name="init-param-name-uniqueness">
 <annotation>
 <documentation>
 The init-param element contains the name the attribute.
 This name must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:init-param"/>
 <field xpath="portlet:name"/>
 </unique>
 <unique name="supports-mime-type-uniqueness">
 <annotation>
 <documentation>
 The supports element contains the supported mime-type.
 This mime type must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:supports"/>
 <field xpath="mime-type"/>
 </unique>
 <unique name="preference-name-uniqueness">
 <annotation>
 <documentation>
 The preference element contains the name the preference.
 This name must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet-preferences/portlet:preference"/>
 <field xpath="portlet:name"/>
 </unique>
 <unique name="security-role-ref-name-uniqueness">
 <annotation>
 <documentation>
 The security-role-ref element contains the role-name.
 This role name must be unique within the portlet.
 </documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 254

 </annotation>
 <selector xpath="portlet:security-role-ref"/>
 <field xpath="portlet:role-name"/>
 </unique>
 </element>
 <element name="custom-portlet-mode" type="portlet:custom-portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="custom-window-state" type="portlet:custom-window-stateType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="user-attribute" type="portlet:user-attributeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="security-constraint" type="portlet:security-constraintType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="version" type="string" use="required"/>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="custom-portlet-modeType">
 <annotation>
 <documentation>
 A custom portlet mode that one or more portlets in
 this portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-mode" type="portlet:portlet-modeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="custom-window-stateType">
 <annotation>
 <documentation>
 A custom window state that one or more portlets in this
 portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="window-state" type="portlet:window-stateType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="expiration-cacheType">
 <annotation>
 <documentation>
 Expriation-cache defines expiration-based caching for this
 portlet. The parameter indicates
 the time in seconds after which the portlet output expires.
 -1 indicates that the output never expires.
 Used in: portlet
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="int"/>
 </simpleContent>
 </complexType>
 <complexType name="init-paramType">
 <annotation>
 <documentation>
 The init-param element contains a name/value pair as an
 initialization param of the portlet
 Used in:portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 255

 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="keywordsType">
 <annotation>
 <documentation>
 Locale specific keywords associated with this portlet.
 The kewords are separated by commas.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="mime-typeType">
 <annotation>
 <documentation>
 MIME type name, e.g. "text/html".
 The MIME type may also contain the wildcard
 character '*', like "text/*" or "*/*".
 Used in: supports
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="nameType">
 <annotation>
 <documentation>
 The name element contains the name of a parameter.
 Used in: init-param, ...
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portletType">
 <annotation>
 <documentation>
 The portlet element contains the declarative data of a portlet.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-name" type="portlet:portlet-nameType"/>
 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-class" type="portlet:portlet-classType"/>
 <element name="init-param" type="portlet:init-paramType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="expiration-cache" type="portlet:expiration-cacheType"
minOccurs="0"/>
 <element name="supports" type="portlet:supportsType"
maxOccurs="unbounded"/>
 <element name="supported-locale" type="portlet:supported-localeType"
minOccurs="0" maxOccurs="unbounded"/>
 <choice>
 <sequence>
 <element name="resource-bundle" type="portlet:resource-bundleType"/>
 <element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/>
 </sequence>
 <element name="portlet-info" type="portlet:portlet-infoType"/>
 </choice>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 256

 <element name="portlet-preferences" type="portlet:portlet-preferencesType"
minOccurs="0"/>
 <element name="security-role-ref" type="portlet:security-role-refType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="portlet-classType">
 <annotation>
 <documentation>
 The portlet-class element contains the fully
 qualified class name of the portlet.
 Used in: portlet
 </documentation>
 </annotation>
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>
 <complexType name="portlet-collectionType">
 <annotation>
 <documentation>
 The portlet-collectionType is used to identify a subset
 of portlets within a portlet application to which a
 security constraint applies.
 Used in: security-constraint
 </documentation>
 </annotation>
 <sequence>
 <element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="portlet-infoType">
 <sequence>
 <element name="title" type="portlet:titleType"/>
 <element name="short-title" type="portlet:short-titleType" minOccurs="0"/>
 <element name="keywords" type="portlet:keywordsType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="portlet-modeType">
 <annotation>
 <documentation>
 Portlet modes. The specification pre-defines the following values
 as valid portlet mode constants:
 "edit", "help", "view".
 Portlet mode names are not case sensitive.
 Used in: custom-portlet-mode, supports
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portlet-nameType">
 <annotation>
 <documentation>
 The portlet-name element contains the canonical name of the
 portlet. Each portlet name is unique within the portlet
 application.
 Used in: portlet, portlet-mapping
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portlet-preferencesType">
 <annotation>
 <documentation>
 Portlet persistent preference store.
 Used in: portlet
 </documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 257

 </annotation>
 <sequence>
 <element name="preference" type="portlet:preferenceType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="preferences-validator" type="portlet:preferences-
validatorType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="preferenceType">
 <annotation>
 <documentation>
 Persistent preference values that may be used for customization
 and personalization by the portlet.
 Used in: portlet-preferences
 </documentation>
 </annotation>
 <sequence>
 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="preferences-validatorType">
 <annotation>
 <documentation>
 The class specified under preferences-validator implements
 the PreferencesValidator interface to validate the
 preferences settings.
 Used in: portlet-preferences
 </documentation>
 </annotation>
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>
 <simpleType name="read-onlyType">
 <annotation>
 <documentation>
 read-only indicates that a setting cannot
 be changed in any of the standard portlet modes
 ("view","edit" or "help").
 Per default all preferences are modifiable.
 Valid values are:
 - true for read-only
 - false for modifiable
 Used in: preferences
 </documentation>
 </annotation>
 <restriction base="portlet:string">
 <enumeration value="true"/>
 <enumeration value="false"/>
 </restriction>
 </simpleType>
 <complexType name="resource-bundleType">
 <annotation>
 <documentation>
 Filename of the resource bundle containing the language specific
 portlet informations in different languages.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="role-linkType">
 <annotation>
 <documentation>
 The role-link element is a reference to a defined security role.
 The role-link element must contain the name of one of the
 security roles defined in the security-role elements.

JavaTM Portlet Specification, version 2.0 (2008-01-11) 258

 Used in: security-role-ref
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="security-constraintType">
 <annotation>
 <documentation>
 The security-constraintType is used to associate
 intended security constraints with one or more portlets.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-collection" type="portlet:portlet-collectionType"/>
 <element name="user-data-constraint" type="portlet:user-data-
constraintType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="security-role-refType">
 <annotation>
 <documentation>
 The security-role-ref element contains the declaration of a
 security role reference in the code of the web application. The
 declaration consists of an optional description, the security
 role name used in the code, and an optional link to a security
 role. If the security role is not specified, the Deployer must
 choose an appropriate security role.
 The value of the role name element must be the String used
 as the parameter to the
 EJBContext.isCallerInRole(String roleName) method
 or the HttpServletRequest.isUserInRole(String role) method.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="role-name" type="portlet:role-nameType"/>
 <element name="role-link" type="portlet:role-linkType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="short-titleType">
 <annotation>
 <documentation>
 Locale specific short version of the static title.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="supportsType">
 <annotation>
 <documentation>
 Supports indicates the portlet modes a
 portlet supports for a specific content type. All portlets must
 support the view mode.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="mime-type" type="portlet:mime-typeType"/>
 <element name="portlet-mode" type="portlet:portlet-modeType" minOccurs="0"
maxOccurs="unbounded"/>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 259

 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="supported-localeType">
 <annotation>
 <documentation>
 Indicated the locales the portlet supports.
 Used in: portlet
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="titleType">
 <annotation>
 <documentation>
 Locale specific static title for this portlet.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <simpleType name="transport-guaranteeType">
 <annotation>
 <documentation>
 The transport-guaranteeType specifies that
 the communication between client and portlet should
 be NONE, INTEGRAL, or CONFIDENTIAL.
 NONE means that the portlet does not
 require any transport guarantees. A value of
 INTEGRAL means that the portlet requires that the
 data sent between the client and portlet be sent in
 such a way that it can't be changed in transit.
 CONFIDENTIAL means that the portlet requires
 that the data be transmitted in a fashion that
 prevents other entities from observing the contents
 of the transmission.
 In most cases, the presence of the INTEGRAL or
 CONFIDENTIAL flag will indicate that the use
 of SSL is required.
 Used in: user-data-constraint
 </documentation>
 </annotation>
 <restriction base="portlet:string">
 <enumeration value="NONE"/>
 <enumeration value="INTEGRAL"/>
 <enumeration value="CONFIDENTIAL"/>
 </restriction>
 </simpleType>
 <complexType name="user-attributeType">
 <annotation>
 <documentation>
 User attribute defines a user specific attribute that the
 portlet application needs. The portlet within this application
 can access this attribute via the request parameter USER_INFO
 map.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="name" type="portlet:nameType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="user-data-constraintType">
 <annotation>
 <documentation>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 260

 The user-data-constraintType is used to indicate how
 data communicated between the client and portlet should be
 protected.
 Used in: security-constraint
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="transport-guarantee" type="portlet:transport-
guaranteeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="valueType">
 <annotation>
 <documentation>
 The value element contains the value of a parameter.
 Used in: init-param
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="window-stateType">
 <annotation>
 <documentation>
 Portlet window state. Window state names are not case sensitive.
 Used in: custom-window-state
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <!--- everything below is copied from j2ee_1_4.xsd -->
 <complexType name="descriptionType">
 <annotation>
 <documentation>
 The description element is used to provide text describing the
 parent element. The description element should include any
 information that the portlet application war file producer wants
 to provide to the consumer of the portlet application war file
 (i.e., to the Deployer). Typically, the tools used by the
 portlet application war file consumer will display the
 description when processing the parent element that contains the
 description. It has an optional attribute xml:lang to indicate
 which language is used in the description according to
 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”).
 Used in: init-param, portlet, portlet-app, security-role
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="display-nameType">
 <annotation>
 <documentation>
 The display-name type contains a short name that is intended
 to be displayed by tools. It is used by display-name
 elements. The display name need not be unique.
 Example:
 ...
 <display-name xml:lang="en">Employee Self Service</display-name>

 It has an optional attribute xml:lang to indicate
 which language is used in the description according to

JavaTM Portlet Specification, version 2.0 (2008-01-11) 261

 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”).
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="portlet:string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 <simpleType name="fully-qualified-classType">
 <annotation>
 <documentation>
 The elements that use this type designate the name of a
 Java class or interface.
 </documentation>
 </annotation>
 <restriction base="portlet:string"/>
 </simpleType>
 <simpleType name="role-nameType">
 <annotation>
 <documentation>
 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for an NMTOKEN.
 </documentation>
 </annotation>
 <restriction base="NMTOKEN"/>
 </simpleType>
 <simpleType name="string">
 <annotation>
 <documentation>
 This is a special string datatype that is defined by J2EE
 as a base type for defining collapsed strings. When
 schemas require trailing/leading space elimination as
 well as collapsing the existing whitespace, this base
 type may be used.
 </documentation>
 </annotation>
 <restriction base="string">
 <whiteSpace value="collapse"/>
 </restriction>
 </simpleType>
</schema>

JavaTM Portlet Specification, version 2.0 (2008-01-11) 262

PLT.F

TCK Assertions

The following is the list of assertions that have been identified in the Portlet Specification
for the purposes of the compliance test.

Assertions marked as Testable=false are not verifiable.

i SPEC:1 Testable=true Section=PLT.2.5

ii SPEC:2 Testable=false Section=PLT.5.1

iii SPEC:3 Testable=false Section=PLT.5.1

iv SPEC:4 Testable=false Section=PLT.5.2.1

v SPEC:5 Testable=true Section=PLT.5.2.2

vi SPEC:6 Testable=true Section=PLT.5.2.2.1

vii SPEC:7 Testable=true Section=PLT.5.2.2.1

viii SPEC:8 Testable=true Section=PLT.5.2.2.1

ix SPEC:9 Testable=true Section=PLT.5.2.2.1

x SPEC:10 Testable=false Section=PLT.5.2.3

xi SPEC:11 Testable= false Section=PLT.5.2.3

xii SPEC:12 Testable=false Section=PLT.5.2.3

xiii SPEC:13 Testable= false Section=PLT.5.2.3

xiv SPEC:14 Testable=true Section=PLT 5.4

JavaTM Portlet Specification, version 2.0 (2008-01-11) 263

xv SPEC:15 Testable=true Section=PLT 5.4

xvi SPEC:16 Testable=true Section=PLT 5.4

xvii SPEC:17 Testable=true Section=PLT 5.4

xviii SPEC:18 Testable= true Section=PLT.5.4.1

xix SPEC:19 Testable= true Section=PLT.5.4.5.4

xx SPEC:20 Testable= true Section=PLT.5.4.5.4

xxi SPEC:21 Testable= true Section=PLT.5.4.5.4

xxii SPEC:22 Testable=true Section=PLT 5.4.5.4

xxiii SPEC:23 Testable= true Section=PLT.5.4.7

xxiv SPEC:24 Testable=false Section=PLT.5.4.7

xxv SPEC:25 Testable= true Section=PLT.5.4.7

xxvi SPEC:26 Testable= true Section=PLT.6.2

xxvii SPEC:27 Testable= true Section=PLT.6.2

xxviii SPEC:28 Testable= true Section=PLT.6.3

xxix SPEC:29 Testable= true Section=PLT.6.4

xxx SPEC:30 Testable= true Section=PLT.6.5

xxxi SPEC:31 Testable= true Section=PLT.6.5

xxxii SPEC:32 Testable= true Section=PLT.6.6

xxxiii SPEC:33 Testable= true Section=PLT.6.6

xxxiv SPEC:34 Testable= true Section=PLT.6.7

xxxv SPEC:35 Testable= true Section=PLT.7.1

xxxvi SPEC:36 Testable= true Section=PLT.7.1

xxxvii SPEC:37 Testable= true Section=PLT.7.1.1

xxxviii SPEC:38 Testable= true Section=PLT.7.1.1

JavaTM Portlet Specification, version 2.0 (2008-01-11) 264

xxxix SPEC:39 Testable= true Section=PLT.7.1.1

xl SPEC:40 Testable= true Section=PLT.7.1.1

xli SPEC:41 Testable= true Section=PLT.7.1.2

xlii SPEC:42 Testable= true Section=PLT.7.1.2

xliii SPEC:43 Testable= true Section=PLT.7.1.2

xliv SPEC:44 Testable= true Section=PLT.7.1.2

xlv SPEC:45 Testable= true Section=PLT.7.1.2

xlvi SPEC:46 Testable= true Section=PLT.7.1.3

xlvii SPEC:47 Testable= true Section=PLT.7.2.1

xlviii SPEC:48 Testable= true Section=PLT.7.2.1

xlix SPEC:49 Testable= true Section=PLT.7.2.1

l SPEC:50 Testable= true Section=PLT.7.2.1

li SPEC:51 Testable= true Section=PLT.7.2.2

lii SPEC:52 Testable=true Section=PLT.8.5

liii SPEC:53 Testable=true Section=PLT.8.6

liv SPEC:54 Testable=true Section=PLT.8.6

lv SPEC:55 Testable=false Section=PLT.8.6

lvi SPEC:56 Testable=true Section=PLT.9.4

lvii SPEC:57 Testable=true Section=PLT.9.5

lviii SPEC:58 Testable=false Section=PLT.9.5

lix SPEC:59 Testable=false Section=PLT.10.1

lx SPEC:60 Testable=false Section=PLT.10.1

lxi SPEC:61 Testable=true Section=PLT.10.3

lxii SPEC:62 Testable=true Section=PLT.10.3

JavaTM Portlet Specification, version 2.0 (2008-01-11) 265

lxiii SPEC:63 Testable=true Section=PLT.10.3

lxiv SPEC:64 Testable=true Section=PLT.10.3

lxv SPEC:65 Testable=true Section=PLT.10.3(servlet spec)

lxvi SPEC:66 Testable=true Section=PLT.10.4.4

lxvii SPEC:67 Testable=true Section=PLT.11.1.1

lxviii SPEC:68 Testable= true Section=PLT.11.1.1

lxix SPEC:69 Testable=true Section=PLT.11.1.1

lxx SPEC:70 Testable=true Section=PLT.11.1.1

lxxi SPEC:71 Testable=true Section=PLT.11.1.1

lxxii SPEC:72 Testable=true Section=PLT.11.1.1

lxxiii SPEC:73 Testable=true Section=PLT.11.1.1

lxxiv SPEC:74 Testable= true Section=PLT.11.1.1.2

lxxv SPEC:75 Testable= true Section=PLT.11.1.1.2

lxxvi SPEC:76 Testable=true Section=PLT.11.1.1.2

lxxvii SPEC:77 Testable=true Section=PLT.11.1.1.3

lxxviii SPEC:78 Testable=true Section=PLT.11.1.1.3

lxxix SPEC:79 Testable= true Section=PLT.11.1.1.3

lxxx SPEC:80 Testable=true Section=PLT.11.1.1.3

lxxxi SPEC:81 Testable= false Section=PLT.11.1.2

lxxxii SPEC:82 Testable= true Section=PLT.11.1.2

lxxxiii SPEC:83 Testable= true Section=PLT.11.1.2

lxxxiv SPEC:84 Testable= true Section=PLT.11.1.2

lxxxv SPEC:85 Testable= true Section=PLT.11.1.2

lxxxvi SPEC:86 Testable= true Section=PLT.11.1.2

JavaTM Portlet Specification, version 2.0 (2008-01-11) 266

lxxxvii SPEC:87 Testable=false Section=PLT.11.1.3

lxxxviii SPEC:88 Testable=true Section=PLT.11.1.4.1

lxxxix SPEC:89 Testable=true Section=PLT.11.1.4.2

xc SPEC:90 Testable=true Section=PLT.11.1.4.4

xci SPEC:91 Testable= true Section=PLT.11.1.6

xcii SPEC:92 Testable=true Section=PLT.11.1.6

xciii SPEC:93 Testable=true Section=PLT.11.1.7

xciv SPEC:94 Testable=true Section=PLT.11.1.8

xcv SPEC:95 Testable=true Section=PLT.11.1.8

xcvi SPEC:96 Testable=true Section=PLT.11.1.8

xcvii SPEC:97 Testable=true Section=PLT.11.1.12

xcviii SPEC:98 Testable=true Section=PLT.11.2.1

xcix SPEC:99 Testable=true Section=PLT.11.2.1

c SPEC:100 Testable= true Section=PLT.12.1.3

ci SPEC:101 Testable= true Section=PLT.12.1.3

cii SPEC:102 Testable=true Section=PLT.12.1.3

ciii SPEC:103 Testable= true Section=PLT.12.2.1

civ SPEC:104 Testable=true Section=PLT.12.2.2

cv SPEC:105 Testable=true Section=PLT.12.2.2

cvi SPEC:106 Testable=true Section=PLT.12.3.1

cvii SPEC:107 Testable=true Section=PLT.12.3.1

cviii SPEC:108 Testable=true Section=PLT.12.3.1

cix SPEC:109 Testable=true Section=PLT.12.3.1

cx SPEC:110 Testable=true Section=PLT.12.3.1

JavaTM Portlet Specification, version 2.0 (2008-01-11) 267

cxi SPEC:111 Testable=true Section=PLT.12.2.1

cxii SPEC:112 Testable=true Section=PLT.12.5.1

cxiii SPEC:113 Testable= true Section=PLT.12.5.1

cxiv SPEC:114 Testable= true Section=PLT.12.5.2

cxv SPEC:115 Testable=true Section=PLT.12.5.5

cxvi SPEC:116 Testable=true Section=PLT.12.5.5

cxvii SPEC:117 Testable=true Section=PLT.12.5.5

cxviii SPEC:118 Testable=true Section=PLT.12.5.5

cxix SPEC:119 Testable=true Section=PLT.12.5.5

cxx SPEC:120 Testable=true Section=PLT.12.5.5

cxxi SPEC:121 Testable=false Section=PLT.12.6.1

cxxii SPEC:122 Testable=true Section=PLT.13.1.4

cxxiii SPEC:123 Testable=true Section=PLT.13.1.5

cxxiv SPEC:124 Testable=true Section=PLT.13.1.5

cxxv SPEC:125 Testable=true Section=PLT.13.1.6

cxxvi SPEC:126 Testable=true Section=PLT.13.1.6

cxxvii SPEC:128 Testable=true Section=PLT.13.1.6

cxxviii SPEC:129 Testable=true Section=PLT.13.1.6

cxxix SPEC:130 Testable=true Section=PLT.13.1.7

cxxx SPEC:131 Testable=true Section=PLT.13.1.7

cxxxi SPEC:132 Testable=true Section=PLT.13.1.7

cxxxii SPEC:133 Testable=true Section=PLT.13.1.7

cxxxiii EVENT:134 Testable= true Section=PLT.15.2.2

cxxxiv EVENT:135 Testable= true Section=PLT.15.2.2

JavaTM Portlet Specification, version 2.0 (2008-01-11) 268

cxxxv SPEC:137 Testable= true Section=PLT.15.2.3

cxxxvi SPEC:138 Testable= true Section=PLT.15.2.3

cxxxvii SPEC:139 Testable= true Section=PLT.15.2.3

cxxxviii SPEC:140 Testable= true Section=PLT.15.2.3

cxxxix SPEC:141 Testable= true Section=PLT.15.2.3

cxl SPEC:142 Testable= true Section=PLT.15.2.4.1

cxli EVENT:143 Testable= true Section=PLT.15.2.4.1

cxlii SPEC:144 Testable= true Section=PLT.15.2.4

cxliii EVENT:145 Testable= true Section=PLT.15.2.5

cxliv EVENT:146 Testable= true Section=PLT.15.2.5

cxlv EVENT:147 Testable= true Section=PLT.15.2.5

cxlvi EVENT:148 Testable= true Section=PLT.15.2.6

cxlvii EVENT:149 Testable= true Section=PLT.15.2.6

cxlviii SPEC:150 Testable= true Section=PLT.17.1

cxlix SPEC:151 Testable= true Section=PLT.17.1

cl SPEC:152 Testable=true Section=PLT.17.1

cli SPEC:153 Testable=true Section=PLT.17.1

clii SPEC:154 Testable=true Section=PLT.17.1

cliii SPEC:155 Testable=true Section=PLT.17.1

cliv SPEC:156 Testable=true Section=PLT.17.1

clv SPEC:157 Testable= true Section=PLT.17.1(change)

clvi SPEC:158 Testable=true Section=PLT.17.1

clvii SPEC:159 Testable=true Section=PLT.17.3

clviii SPEC:160 Testable=true Section=PLT.17.3

JavaTM Portlet Specification, version 2.0 (2008-01-11) 269

clix SPEC:161 Testable=true Section=PLT.17.4

clx SPEC:162 Testable=true Section=PLT.17.4

clxi SPEC:163 Testable=true Section=PLT.17.4

clxii SPEC:164 Testable=true Section=PLT.18.1

clxiii SPEC:165 Testable=true Section=PLT.18.1

clxiv SPEC:166 Testable=true Section=PLT.18.2

clxv SPEC:167 Testable=true Section=PLT.18.2

clxvi SPEC:168 Testable=true Section=PLT.18.3

clxvii SPEC:169 Testable=true Section=PLT.18.3

clxviii SPEC:170 Testable=true Section=PLT.18.3

clxix SPEC:171 Testable=true Section=PLT.18.4

clxx SPEC:172 Testable=true Section=PLT.18.4

clxxi SPEC:173 Testable=true Section=PLT.18.4

clxxii SPEC:174 Testable=true Section=PLT.18.4

clxxiii SPEC:175 Testable=true Section=PLT.18.4.1

clxxiv SPEC:176 Testable=true Section=PLT.18.4.1

clxxv SPEC:177 Testable=true Section=PLT.18.4.1

clxxvi SPEC:178 Testable=true Section=PLT.18.9(servlet spec)

clxxvii SPEC:179 Testable=true Section=PLT.19.1

clxxviii SPEC:180 Testable=true Section=PLT.19.1

clxxix SPEC:181 Testable= true Section=PLT.19.1.1

clxxx SPEC:182 Testable=true Section=PLT.19.2

clxxxi SPEC:183 Testable=true Section=PLT.19.2

clxxxii SPEC:184 Testable=true Section=PLT.19.3

JavaTM Portlet Specification, version 2.0 (2008-01-11) 270

clxxxiii SPEC:185 Testable=true Section=PLT.19.3.1

clxxxiv SPEC:186 Testable=true Section=PLT.16.3.2

clxxxv SPEC:187 Testable=true Section=PLT.19.3.3

clxxxvi SPEC:188 Testable=true Section=PLT.19.3.3

clxxxvii SPEC:189 Testable=true Section=PLT.19.3.3

clxxxviii SPEC:190 Testable=true Section= PLT.19.3.3

clxxxix SPEC:191 Testable=true Section=PLT.19.3.3

cxc SPEC:192 Testable=true Section=PLT.19.3.3

cxci SPEC:193 Testable=true Section=PLT.19.3.3

cxcii SPEC:194 Testable=true Section=PLT.19.3.3

cxciii SPEC:195 Testable=true Section=PLT.19.3.3

cxciv SPEC:196 Testable=true Section= PLT.19.3.3

cxcv SPEC:197 Testable=true Section= PLT.19.3.3

cxcvi SPEC:198 Testable=true Section= PLT.19.3.3

cxcvii SPEC:199 Testable=true Section= PLT.19.3.3

cxcviii SPEC:200 Testable=true Section= PLT.19.3.3

cxcix SPEC:201 Testable=true Section= PLT.19.3.3

cc SPEC:202 Testable=true Section= PLT.19.3.3

cci SPEC:203 Testable=false(impl) Section= PLT.19.3.3

ccii SPEC:204 Testable=true Section= PLT.19.3.3

cciii SPEC:205 Testable=true Section= PLT.19.3.3

cciv SPEC:206 Testable=true Section=PLT.19.3.4

ccv SPEC:207 Testable=true Section=PLT.19.3.4

ccvi SPEC:208 Testable=true Section=PLT.19.3.4

JavaTM Portlet Specification, version 2.0 (2008-01-11) 271

ccvii SPEC:209 Testable=true Section= PLT.19.3.4

ccviii SPEC:210 Testable=true Section=PLT.19.3.4

ccix SPEC:211 Testable=true Section=PLT.19.3.4

ccx SPEC:212 Testable=true Section=PLT.19.3.4

ccxi SPEC:213 Testable=true Section= PLT.19.3.4

ccxii SPEC:214 Testable=true Section= PLT.19.3.4

ccxiii SPEC:215 Testable=true Section= PLT.19.3.4

ccxiv SPEC:216 Testable=true Section= PLT.19.3.4

ccxv SPEC:217 Testable=true Section= PLT.19.3.4

ccxvi SPEC:218 Testable=true Section= PLT.19.3.4

ccxvii SPEC:219 Testable=false(impl) Section= PLT.19.3.4

ccxviii SPEC:220 Testable=true Section= PLT.19.3.4

ccxix SPEC:221 Testable=true Section= PLT.19.3.4

ccxx SPEC:222 Testable=true Section=PLT.19.3.5

ccxxi SPEC:223 Testable=true Section=PLT.19.3.5

ccxxii SPEC:224 Testable=true Section=PLT.19.3.5

ccxxiii SPEC:225 Testable=true Section= PLT.19.3.5

ccxxiv SPEC:226 Testable=true Section= PLT.19.3.5

ccxxv SPEC:227 Testable=true Section=PLT.19.3.5

ccxxvi SPEC:228 Testable=true Section= PLT.19.3.5

ccxxvii SPEC:229 Testable=true Section= PLT.19.3.5

ccxxviii SPEC:230 Testable=true Section= PLT.19.3.5

ccxxix SPEC:231 Testable=true Section= PLT.19.3.5

ccxxx SPEC:232 Testable=true Section= PLT.19.3.5

JavaTM Portlet Specification, version 2.0 (2008-01-11) 272

ccxxxi SPEC:233 Testable=false(impl) Section= PLT.19.3.5

ccxxxii SPEC:234 Testable=true Section= PLT.19.3.5

ccxxxiii SPEC:235 Testable=true Section=PLT.19.3.7

ccxxxiv SPEC:236 Testable=true Section=PLT.19.3.7

ccxxxv SPEC:237 Testable=true Section=PLT.19.3.8

ccxxxvi SPEC:238 Testable=true Section= PLT.19.4

ccxxxvii SPEC:239 Testable=true Section= PLT.19.4

ccxxxviii SPEC:240 Testable=true Section= PLT.19.4

ccxxxix SPEC:241 Testable=true Section= PLT.19.4.2

ccxl SPEC:242 Testable=true Section= PLT.19.4.2

ccxli SPEC:243 Testable=true Section= PLT.19.4.2

ccxlii SPEC:244 Testable=true Section= PLT.19.4.2

ccxliii SPEC:245 Testable=true Section=PLT.19.4.3

ccxliv SPEC:246 Testable=true Section=PLT.19.4.3

ccxlv SPEC:247 Testable=true Section=PLT.19.4.3

ccxlvi SPEC:248 Testable=true Section= PLT.19.4.3

ccxlvii SPEC:249 Testable=true Section=PLT.19.4.3

ccxlviii SPEC:250 Testable=true Section=PLT.19.4.3

ccxlix SPEC:251 Testable=true Section=PLT.19.4.3

ccl SPEC:252 Testable=true Section=PLT.19.4.3

ccli SPEC:253 Testable=true Section=PLT.19.4.3

cclii SPEC:254 Testable=true Section= PLT.19.4.3

ccliii SPEC:255 Testable=true Section= PLT.19.4.3

ccliv SPEC:256 Testable=true Section= PLT.19.4.3

JavaTM Portlet Specification, version 2.0 (2008-01-11) 273

cclv SPEC:257 Testable=true Section= PLT.19.4.3

cclvi SPEC:258 Testable=true Section= PLT.19.4.3

cclvii SPEC:259 Testable=true Section= PLT.19.4.3

cclviii SPEC:260 Testable=false(impl) Section= PLT.19.4.3

cclix SPEC:261 Testable=false(impl) Section= PLT.19.4.3

cclx SPEC:262 Testable=true Section= PLT.19.4.3

cclxi SPEC:263 Testable=true Section= PLT.19.4.3

cclxii SPEC:264 Testable=true Section=PLT.19.4.4

cclxiii SPEC:265 Testable=true Section=PLT.19.4.4

cclxiv SPEC:266 Testable=true Section=PLT.19.4.4

cclxv SPEC:267 Testable=true Section= PLT.19.4.4

cclxvi SPEC:268 Testable=true Section=PLT.19.4.4

cclxvii SPEC:269 Testable=true Section=PLT.19.4.4

cclxviii SPEC:270 Testable=true Section=PLT.19.4.4

cclxix SPEC:271 Testable=true Section= PLT.19.4.4

cclxx SPEC:272 Testable=true Section= PLT.19.4.4

cclxxi SPEC:273 Testable=true Section= PLT.19.4.4

cclxxii SPEC:274 Testable=true Section= PLT.19.4.4

cclxxiii SPEC:275 Testable=true Section= PLT.19.4.4

cclxxiv SPEC:276 Testable=true Section= PLT.19.4.4

cclxxv SPEC:277 Testable=false(impl) Section= PLT.19.4.4

cclxxvi SPEC:278 Testable=false(impl) Section= PLT.19.4.4

cclxxvii SPEC:279 Testable=true Section= PLT.19.4.4

cclxxviii SPEC:280 Testable=true Section=PLT.19.4.5

JavaTM Portlet Specification, version 2.0 (2008-01-11) 274

cclxxix SPEC:281 Testable=true Section=PLT.19.4.5

cclxxx SPEC:282 Testable=true Section=PLT.19.4.5

cclxxxi SPEC:283 Testable=true Section= PLT.19.4.5

cclxxxii SPEC:284 Testable=true Section= PLT.19.4.5

cclxxxiii SPEC:285 Testable=true Section=PLT.19.4.5

cclxxxiv SPEC:286 Testable=true Section= PLT.19.4.5

cclxxxv SPEC:287 Testable=true Section= PLT.19.4.5

cclxxxvi SPEC:288 Testable=true Section= PLT.19.4.5

cclxxxvii SPEC:289 Testable=true Section= PLT.19.4.5

cclxxxviii SPEC:290 Testable=true Section= PLT.19.4.5

cclxxxix SPEC:291 Testable=false(impl) Section= PLT.19.4.5

ccxc SPEC:292 Testable=false(impl) Section= PLT.19.4.5

ccxci SPEC:293 Testable=true Section=PLT.19.5

ccxcii SPEC:294 Testable=true Section=PLT.20.2.1

ccxciii SPEC:295 Testable=true Section=PLT.20.2.1

ccxciv SPEC:296 Testable=true Section=PLT.20.2.1

ccxcv SPEC:297 Testable=true Section=PLT.20.2.1

ccxcvi SPEC:298 Testable=true Section=PLT.20.2.2

ccxcvii SPEC:299 Testable=true Section=PLT.20.2.4

ccxcviii SPEC:300 Testable=true Section=PLT.20.2.4

ccxcix SPEC:301 Testable=true Section=PLT.20.2.4

ccc SPEC:302 Testable=true Section=PLT.20.2.5

ccci SPEC:303 Testable=true Section=PLT.20.2.5

cccii SPEC:305 Testable=false(impl) Section=PLT.21.2

JavaTM Portlet Specification, version 2.0 (2008-01-11) 275

ccciiiSPEC:306 Testable= false Section= PLT.23.2

ccciv SPEC:307 Testable= false Section= PLT.23.2

cccv SPEC:308 Testable=false Section= PLT.23.5

cccvi SPEC:309 Testable=true Section=PLT.23.5(servlet spec)

cccvii SPEC:310 Testable=true Section= PLT.24.2

cccviii SPEC:311 Testable=true Section= PLT.24.2

cccix SPEC:312 Testable=true Section= PLT.24.2

cccx SPEC:313 Testable=true Section= PLT.24.4

cccxi SPEC:314 Testable=true Section= PLT.24.4

cccxii SPEC:315 Testable= true Section=PLT.26

cccxiii SPEC:316 Testable=true Section= PLT.26.1

cccxiv SPEC:317 Testable=false Section= PLT.26.1

cccxv SPEC:318 Testable=true Section= PLT.26.2

cccxvi SPEC:319 Testable=true Section= PLT.26.2

cccxvii SPEC:320 Testable=true Section= PLT.26.2

cccxviii SPEC:321 Testable=true Section= PLT.26.2

cccxix SPEC:322 Testable=true Section= PLT.26.2

cccxx SPEC:323 Testable=true Section= PLT.26.2

cccxxi SPEC:324 Testable=true Section= PLT.26.2

cccxxii SPEC:325 Testable= true Section=PLT.26.2

cccxxiii SPEC:326 Testable=false Section= PLT.26.2

cccxxiv SPEC:327 Testable=false Section= PLT.26.2

cccxxv SPEC:328 Testable=false Section= PLT.26.2

cccxxvi SPEC:329 Testable=false Section= PLT.26.2

JavaTM Portlet Specification, version 2.0 (2008-01-11) 276

cccxxvii SPEC:330 Testable=true Section= PLT.26.3

cccxxviii SPEC:331 Testable=true Section= PLT.26.3

cccxxix SPEC:332 Testable=true Section= PLT.26.3

cccxxx SPEC:333 Testable=true Section= PLT.26.3

cccxxxi SPEC:334 Testable=true Section= PLT.26.3

cccxxxii SPEC:335 Testable=true Section= PLT.26.3

cccxxxiii SPEC:336 Testable=true Section= PLT.26.3

cccxxxiv SPEC:337 Testable= true Section=PLT.26.3

cccxxxv SPEC:338 Testable=false Section= PLT.26.3

cccxxxvi SPEC:339 Testable=false Section= PLT.26.3

cccxxxvii SPEC:340 Testable=false Section= PLT.26.3

cccxxxviii SPEC:341 Testable=false Section= PLT.26.3

cccxxxix SPEC:342 Testable=true Section= PLT.26.4

cccxl SPEC:343 Testable=true Section= PLT.26.4

cccxli SPEC:344 Testable=true Section= PLT.26.4

cccxlii SPEC:345 Testable=true Section= PLT.26.4

cccxliii SPEC:346 Testable= true Section=PLT.26.4

cccxliv SPEC:347 Testable=false Section= PLT.26.4

cccxlv SPEC:348 Testable=false Section= PLT.26.4

cccxlvi SPEC:349 Testable=true Section= PLT.26.5

cccxlvii SPEC:350 Testable=true Section= PLT.26.6

cccxlviii SPEC:351 Testable=false Section= PLT.26.6

cccxlix SPEC:352 Testable=true Section= PLT.26.6

cccl SPEC:353 Testable=true Section= PLT.26.6

	Preface
	Additional Sources
	Who Should Read This Specification
	API Reference
	Other Java™ Platform Specifications
	Other Important References
	Terminology
	Providing Feedback
	Acknowledgements V 2.0
	Acknowledgements V 1.0

	Overview
	What is a Portal?
	What is a Portlet?
	What is a Portlet Container?
	An Example
	Compatibility
	Major changes introduced with V 2.0
	Clarifications that may make V1.0 Portlets Non-compliant
	Changes to the Programming Model
	List of all Changes in the Specification
	List of all API changes

	Relationship with Java 2 Platform, Standard and Enterprise E

	Relationship with the Servlet Specification
	Bridging from Portlets to Servlets/JSPs
	Using Servlet Application Lifecycle Events
	Relationship Between the Servlet Container and the Portlet C

	Portlet Concepts
	Portlets
	Embedding Portlets as Elements of a Portal Page
	Portal Page Creation
	Portal Page Request Sequence

	Portlets and Web Frameworks

	The Portlet Interface and Additional Life Cycle Interfaces
	Number of Portlet Instances
	Portlet Life Cycle
	Loading and Instantiation
	Initialization
	Error Conditions on Initialization
	Tools Considerations

	End of Service

	Portlet Customization Levels
	Portlet Definition and Portlet Entity
	Portlet Window

	Request Handling
	Action Request
	Event Request
	Render Request
	Resource Request
	GenericPortlet
	Action Dispatching
	Event Dispatching
	Resource Serving Dispatching
	Rendering Dispatching

	Multithreading Issues During Request Handling
	Exceptions During Request Handling
	Thread Safety

	Portlet Config
	Initialization Parameters
	Portlet Resource Bundle
	Default Event Namespace
	Public Render Parameter Names
	Publishing Event QNames
	Processing Event QNames
	Supported Locales
	Supported Container Runtime Options

	Portlet URLs
	Portlet URLs
	BaseURL interface
	URL Properties

	Including a Portlet Mode or a Window State
	Portlet URL security

	Portlet URL listeners
	PortletURLGenerationListener Interface
	Registering Portlet URL Listeners

	Portlet Modes
	VIEW Portlet Mode
	EDIT Portlet Mode
	HELP Portlet Mode
	Custom Portlet Modes
	GenericPortlet Render Handling
	Defining Portlet Modes Support
	Setting next possible Portlet Modes

	Window States
	NORMAL Window State
	MAXIMIZED Window State
	MINIMIZED Window State
	Custom Window States
	Defining Window State Support

	Portlet Context
	Scope of the Portlet Context
	Portlet Context functionality
	Relationship with the Servlet Context
	Correspondence between ServletContext and PortletContext met

	Portlet Container Runtime Options
	Runtime Option javax.portlet.escapeXml
	Runtime Option javax.portlet.renderHeaders
	Runtime Option javax.portlet.servletDefaultSessionScope
	Runtime Option javax.portlet.actionScopedRequestAttributes
	Action Scope ID Render Parameter
	Lifetime of Action-scoped Request Attributes
	ServeResource Calls
	Examples
	Semantics for Portlet Containers

	Portlet Requests
	PortletRequest Interface
	Request Parameters
	Form and Query Parameters
	Action and Event Request Parameters
	Render Request Parameters
	Resource Request Parameters

	Public Render Parameters
	Extra Request Parameters
	Request Attributes
	The User Information Request Attribute
	The CC/PP Request Attribute
	The Render Part Request Attribute for Setting Headers in the
	The Lifecycle Phase Request Attribute
	Action-scoped Request Attributes

	Request Properties
	Cookies

	Request Context Path
	Security Attributes
	Response Content Types
	Internationalization
	Portlet Mode
	Window State
	Access to the Portlet Window ID

	ClientDataRequest Interface
	Retrieving Uploaded Data

	ActionRequest Interface
	ResourceRequest Interface
	EventRequest Interface
	RenderRequest Interface
	Lifetime of the Request Objects

	Portlet Responses
	PortletResponse Interface
	Response Properties
	Encoding of URLs
	Namespacing
	Setting Cookies

	StateAwareResponse Interface
	Render Parameters
	Portlet Modes and Window State Changes
	Publishing Events

	ActionResponse Interface
	Redirections

	EventResponse Interface
	MimeResponse Interface
	Content Type
	Output Stream and Writer Objects
	Access to Response Headers
	Setting Markup Head Elements
	Buffering
	Predefined MimeResponse Properties
	Cache properties
	Namespaced Response Property

	RenderResponse Interface
	Portlet Title
	Next possible portlet modes

	ResourceResponse Interface
	Setting the Response Character Set

	Lifetime of Response Objects

	Resource Serving
	ResourceServingPortlet Interface
	Access to Render Parameters, Portlet Mode, and Window State
	Access to Request and Response Headers
	Getting the HTTP Method
	Access to the Resource ID
	Resource URLs
	Caching of Resources
	Generic Portlet Support

	Serving Fragments through Portlets
	Serving Fragments via serveResource Method

	Coordination between portlets
	Public Render Parameters
	Portlet Events
	EventPortlet Interface
	Receiving Events
	Sending Events
	Event declaration
	Declaration in the deployment descriptor
	Events not declared in the Deployment Descriptor

	Event processing
	Exceptions during event processing
	GenericPortlet support

	Predefined Container Events

	Portal Context
	Support for Markup Head Elements

	Portlet Preferences
	PortletPreferences Interface
	Preference Attributes Scopes
	Preference Attributes definition
	Localizing Preference Attributes

	Validating Preference values

	Sessions
	Creating a Session
	Session Scope
	Binding Attributes into a Session
	Relationship with the Web Application HttpSession
	HttpSession Method Mapping

	Writing to the Portlet Session
	Process action and process event phase
	Rendering phase

	Reserved HttpSession Attribute Names
	Session Timeouts
	Last Accessed Times
	Important Session Semantics

	Dispatching Requests to Servlets and JSPs
	Obtaining a PortletRequestDispatcher
	Query Strings in Request Dispatcher Paths

	Using a Request Dispatcher
	The Include Method
	Included Request Parameters
	Included Request Attributes
	Request and Response Objects for Included Servlets/JSPs from
	Request and Response Objects for Included Servlets/JSPs from
	Request and Response Objects for Included Servlets/JSPs from
	Comparison of the different Request Dispatcher Includes
	Error Handling
	Path and Query Information in Included / Forwarded Servlets

	The forward Method
	Query String
	Forwarded Request Parameters
	Request and Response Objects for Forwarded Servlets/JSPs fro
	Request and Response Objects for Forwarded Servlets/JSPs fro
	Request and Response Objects for Forwarded Servlets/JSPs fro
	Comparison of the different Request Dispatcher Forwards

	Servlet filters and Request Dispatching
	Changing the Default Behavior for Included / Forwarded Sessi

	Portlet Filter
	What is a portlet filter?
	Main Concepts
	Filter Lifecycle
	Wrapping Requests and Responses
	Filter Environment
	Configuration of Filters in a Portlet Application
	Defining the Target Lifecycle Method for a Portlet Filter

	User Information
	Defining User Attributes
	Accessing User Attributes
	Important Note on User Information

	Caching
	Expiration Cache
	Validation Cache

	Portlet Applications
	Relationship with Web Applications
	Relationship to PortletContext
	Elements of a Portlet Application
	Directory Structure
	Portlet Application Classloader
	Portlet Application Archive File
	Portlet Application Deployment Descriptor
	Replacing a Portlet Application
	Error Handling
	Portlet Application Environment

	Security
	Introduction
	Roles
	Programmatic Security
	Specifying Security Constraints
	Propagation of Security Identity in EJBTM Calls

	Packaging and Deployment Descriptor
	Portlet and Web Application Deployment Descriptor
	Packaging
	Example Directory Structure
	Version Information

	Portlet Deployment Descriptor Elements
	Rules for processing the Portlet Deployment Descriptor
	Portlet Deployment Descriptor
	Pictures of the structure of a Deployment Descriptor
	Uniqueness of Deployment Descriptor Values
	Localization
	Localization of Deployment Descriptor Values
	Locales Supported by the Portlet

	Deployment Descriptor Example
	Resource Bundles
	Resource Bundle Example

	Portlet Tag Library
	defineObjects Tag
	actionURL Tag
	renderURL Tag
	resourceURL Tag
	namespace Tag
	param Tag
	property Tag
	Changing the Default Behavior for escapeXml

	Leveraging JAXB for Event payloads
	Technology Compatibility Kit Requirements
	TCK Test Components
	TCK Requirements
	Declarative configuration of the portal page for a TCK test
	Schema for XML file provided with Portlet TCK
	Schema for XML file that provided by vendors

	Programmatic configuration of the portal page for a test
	Test Portlets Content
	Test Cases that Require User Identity
	Custom Portlet Modes
	About Portlet Mode
	Config Portlet Mode
	Edit_defaults Portlet Mode
	Preview Portlet Mode
	Print Portlet Mode

	Markup Fragments
	CSS Style Definitions
	Links (Anchor)
	Fonts
	Messages
	Sections
	Tables
	Forms
	Menus

	User Information Attribute Names
	Example

	Deployment Descriptor Version 1.0
	Deployment Descriptor of Version 1.0

	TCK Assertions

