
Introduction to PicketLink
JBUG, London

JBoss by Red Hat

Peter Škopek, pskopek@redhat.com, twitter: @pskopek

Apr 30, 2014

Abstract

PicketLink is project offering multiple solutions to identity
management and security for Java applications.

Section 1
Welcome

Welcome

Agenda

1 Welcome

2 PicketLink Overview
Areas of usage

3 Java EE Application Security
Authentication API
Permissions API

4 Identity Management
Overview

5 PicketLink Federation
Overview

6 PicketLink WildFly Subsystems
Federation
Identity Management

Section 2
PicketLink Overview

PicketLink Overview Areas of usage

What is PicketLink?

PicketLink is an Application Security Framework for Java EE
applications. It provides features for authenticating users,
authorizing access to the business methods of your application,
managing your application’s users, groups, roles and permissions.
Areas of usage:

Java EE Application Security

Identity Management

Identity Federation

Social Login

Mobile Applications Security

REST Applications Security

PicketLink Overview Areas of usage

Areas of Usage

PicketLink Overview Areas of usage

Java EE Application Security

Authentication

Authorization and Permissions API

CDI Based Integration

REST Security

PicketLink Overview Areas of usage

Identity Management

Built-in Identity Stores for Databases and LDAP

Rich and Extensible API

Multitenancy

PicketLink Overview Areas of usage

Identity Federation

SAML (v2.0 and v1.1)

OAuth2

XACML v2

OpenID

Security Token Server (STS) for WS-Trust

PicketLink Overview Areas of usage

Social Login

Facebook Connect

Twitter Login

Google+ Login

Section 3
Java EE Application Security

Java EE Application Security Authentication API

PicketLink API

Identity - central PicketLink API bean has following methods:

boolean isLoggedIn();

AuthenticationResult login() throws AuthenticationException;

void logout();

boolean hasPermission(Object resource, String operation);

boolean hasPermission(Class<?>resourceClass, Serializable
identifier, String operation);

Account getAccount();

Please note that Identity bean is marked with @Named annotation,
which means that its methods may be invoked directly from the
view layer (if the view layer, such as JSF, supports it) via an EL
expression.

Java EE Application Security Authentication API

Authentication Example in JSF application
@Named

@RequestScoped

public class AuthController {

@Inject

private FacesContext facesContext;

@Inject

private Conversation conversation;

@Inject

private Identity identity;

public void login() {

AuthenticationResult result = identity.login();

if (AuthenticationResult.FAILED.equals(result)) {

facesContext.addMessage(null, new FacesMessage(

"Authentication was unsuccessful. Please check your username and password "

+ "before trying again."));

}

else {

User user = getCurrentUser();

if (user == null) {

user = createUser(getCurrentUserName());

}

conversation.begin();

}

}

}

Java EE Application Security Authentication API

Authentication Example in JSF application

<h:form rendered="#{not identity.loggedIn}">

<h:panelGrid columns="2" >

<h:outputLabel value="Username" />

<h:inputText value="#{loginCredentials.userId}" />

<h:outputLabel value="Password" />

<h:inputSecret value="#{loginCredentials.password}" />

<h:commandButton value="Log in" action="#{authController.login}" />

</h:panelGrid>

</h:form>

Java EE Application Security Authentication API

Authentication Process

Java EE Application Security Authentication API

Authenticator

It is a bean handling authentication.

@PicketLink

public class SimpleAuthenticator extends BaseAuthenticator {

@Inject DefaultLoginCredentials credentials;

@Override

public void authenticate() {

if ("jsmith".equals(credentials.getUserId()) &&

"abc123".equals(credentials.getPassword())) {

setStatus(AuthenticationStatus.SUCCESS);

setAccount(new User("jsmith"));

} else {

setStatus(AuthenticationStatus.FAILURE);

FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(

"Authentication Failure - The username or password you provided were invalid."));

}

}

}

Java EE Application Security Authentication API

Authenticator

The first thing we can notice about the above code is that the
class is annotated with the @PicketLink annotation.
This annotation indicates that this bean should be used for the
authentication process.
The next thing is that the authenticator class extends something
called BaseAuthenticator. Which is abstract base class provided by
PicketLink which makes it easier for custom authenticator to just
implement authenticate() method.

Java EE Application Security Authentication API

Credentials

Credentials are something that provides evidence of a user’s
identity. PicketLink has extensive support for a variety of
credential types, and also makes it relatively simple to add custom
support for credential types that PicketLink doesn’t support out of
the box itself.

UsernamePasswordCredentials

TOTPCredentials

X509CertificateCredentials

DigestCredentials

Java EE Application Security Authentication API

Custom Authenticator and
DefaultLoginCredentials

The DefaultLoginCredentials bean is provided by PicketLink as a
convenience, and is intended to serve as a general purpose
Credentials implementation suitable for a variety of use cases. It
supports the setting of a userId and credential property, and
provides convenience methods for working with text-based
passwords. It is a request-scoped bean and is also annotated with
@Named so as to make it accessible directly from the view layer.

public class VerySimpleAuthenticator extends BaseAuthenticator {

@Inject DefaultLoginCredentials credentials;

// code snipped

}

Java EE Application Security Permissions API

Permissions API

The Permissions API is a set of extensible authorization features
that provide capabilities for determining access privileges for
application resources.

public interface Permission {

Object getResource();

Class<?> getResourceClass();

Serializable getResourceIdentifier();

IdentityType getAssignee();

String getOperation();

}

Java EE Application Security Permissions API

Permissions API

Each permission instance represents a specific resource permission,
and contains three important pieces of state:

assignee - identity to which the permission is assigned

operation - string value that represents the exact action that
the assigned identity is allowed to perform

reference - to the resource (if known), or a combination of a
resource class and resource identifier. This value represents
the resource to which the permission applies.

Java EE Application Security Permissions API

Checking permissions for the current user

The primary method for accessing the Permissions API is via the
Identity bean, which provides the following two methods for
checking permissions for the currently authenticated user:

boolean hasPermission(Object resource, String operation);

boolean hasPermission(Class<?> resourceClass, Serializable

identifier, String operation);

Java EE Application Security Permissions API

Checking permissions for the current user -
example 1

@Inject Identity identity;

public void deleteAccount(Account account) {

// Check the current user has permission to delete the account

if (identity.hasPermission(account, "DELETE")) {

// Logic to delete Account object goes here

} else {

throw new SecurityException("Insufficient privileges!");

}

}

Java EE Application Security Permissions API

Checking permissions for the current user -
example 2

When you don’t have a reference to the resource object, but you
have it’s identifier value (for example the primary key value of an
entity bean). It is more efficient to not a resource when don’t
actually need it.

@Inject Identity identity;

public void deleteCustomer(Long customerId) {

// Check the current user has permission to delete the customer

if (identity.hasPermission(Customer.class, customerId, "DELETE")) {

// Logic to delete Customer object goes here

} else {

throw new SecurityException("Insufficient privileges!");

}

}

Java EE Application Security Permissions API

Restricting resource operations

For many resource types it makes sense to restrict the set of
resource operations for which permissions might be assigned.
classOperation option can be set to true if the permission applies
to the class itself, and not an instance of a class.

@Entity

@AllowedOperations({

@AllowedOperation(value = "CREATE", classOperation = true),

@AllowedOperation(value = "READ"),

@AllowedOperation(value = "UPDATE"),

@AllowedOperation(value = "DELETE")

})

public class Country implements Serializable {

Java EE Application Security Permissions API

Restricting resource operations on Class

One can check if the current user has permission to actually create
a new Country bean. In this case, the permission check would look
something like this:

@Inject Identity identity;

public void createCountry() {

if (!identity.hasPermission(Country.class, "CREATE")) {

throw new SecurityException(

"Current user has insufficient privileges for this operation.");

}

....

}

Section 4
Identity Management

Identity Management Overview

Overview

PicketLink Identity Management is a fundamental module of
PicketLink, with all other modules building on top of the IDM
component to implement their extended features.

Provides rich and extensible API for managing the identities
(such as users, groups and roles) of your applications and
services

Supports a flexible system for identity partitioning

Provides the core Identity Model API classes (see below) upon
which an application’s identity classes are defined to provide
the security structure for that application

Identity Management Overview

Core Concepts

PartitionManager
is used to manage identity partitions, which are essentially
containers for a set of identity objects

IdentityManager
is used to manage identity objects within the scope of a
partition

RelationshipManager
is used to manage relationships - a relationship is a typed
association between two or more identities

IdentityStore
provides the backend store for identity persistency

JPAIdentityStore
LDAPIdentityStore
FileBasedIdentityStore

Identity Management Overview

Schema

Section 5
PicketLink Federation

PicketLink Federation Overview

PicketLink Federation - Overview

The PicketLink Federation project provides the support for
Federated Identity and Single Sign On type scenarios.

PicketLink provides support for technologies

SAML (v2.0 and v1.1)
OAuth2
XACML v2
OpenID
Security Token Server (STS) for WS-Trust
OAuth2

Integration with following servers is supported

WildFly 8
JBoss AS7
JBoss Application Server v5.0 onwards
Apache Tomcat v5.5 onwards

Section 6
PicketLink WildFly Subsystems

PicketLink WildFly Subsystems

General

The PicketLink Subsystem extends WildFly Application Server to
introduce some new capabilities, providing a infrastructure to
deploy and manage PicketLink deployments and services.

Minimal configuration for deployments. Part of the
configuration is done automatically with some hooks for
customizations.

Minimal dependencies for deployments. All PicketLink
dependencies are automatically set from modules.

Configuration management using JBoss Application Server
Management API. It can be managed in different ways:
HTTP/JSON, CLI, Native DMR, etc.

example located at

docs/examples/configs/standalone-picketlink.xml

PicketLink WildFly Subsystems Federation

Federation Subsystem

A rich domain model supporting the configuration of
PicketLink Federation deployments and Identity Management
services.

No need to provide picketlink.xml deployment descriptor

Cetralized configuration

PicketLink WildFly Subsystems Identity Management

Identity Managemet Subsystem

Subsystem parses the configuration, automatically build a
org.picketlink.idm.PartitionManager and expose it via JNDI for
further access.

Externalize and centralize the IDM configuration for
deployments

Define multiple configuration for identity management services

Expose the PartitionManager via JNDI for further access

If using CDI, inject the PartitionManager instances using the
Resource annotation

If using CDI, use the PicketLink IDM alone without requiring
the base module dependencies

PicketLink WildFly Subsystems Identity Management

Bibliography

PicketLink Documentation Site

http://docs.jboss.org/picketlink/2/latest/reference/html/

Security Assertion Markup Language (SAML) v2.0

https://www.oasis-open.org/standards#samlv2.0

PicketLink Web Site

http://www.picketlink.org/

http://docs.jboss.org/picketlink/2/latest/reference/html/
https://www.oasis-open.org/standards#samlv2.0
http://www.picketlink.org/

The end.
Thanks for listening.

	Welcome
	PicketLink Overview
	Areas of usage

	Java EE Application Security
	Authentication API
	Permissions API

	Identity Management
	Overview

	PicketLink Federation
	Overview

	PicketLink WildFly Subsystems
	Federation
	Identity Management

