ENTERPRISE
MESSAGING AND
JBOSS A-MQ

Jakub Knetl
jknetl@redhat.com

F e Messaging systems
= JMS specification
= JMS API

e JBoss A-MQ

= JBoss A-MQ and Apache ActiveMQ
= Protocols
= topologies

e Apache Artemis

F e data exchange between applications
e Message oriented middleware (MoM)

= Message broker servers as mediator between communicating parties

Consumer sends an
~~_ ackwhen its consumed

Messages awaiung\ <]
dispatch to a consumer @

v,

F e Asynchronous communication
e Loose coupling
e scalability
e reliability
e message routing and transformation

goal is to:

= provide messaging functionality to the java applications
= maximizes portability between messaging products
= define common messaging concepts

JMS is not messaging system!
JMS provides API for messaging products
JMS does not address:

= |oad balancing
= fault tolerance
= administration
= wire protocol
= security

JMS provider
(non) JMS client

= producer/consumer

JMS domains
JMS destinantion
JMS Message

= :

o e Headers /JMS Message \

= key value pairs
= two types (differes only semanticaly):

o default headers [JMS Properties]
o custom properties

[JMS Headers]

JMS payload

_

F Header name meaning
JMSDestination destination on the broker
JMSDeliveryMode persistent or nonperistent delivery mode
JMSExpiration message will not be delivered after expiration
JMSMessagelD Identifiaction of the message
JMSPriority Number O - 9 (0-4 low, 5-9 high priority). Advise only
JMSTimestamp Time when the message is handed to provider for send
JMSCorrelationlID links message to another one
JMSReplyTo Destination for reply
JMSRedelivered Contains true if the message was likely redelivered

F e Custom

= Used for application specific data
e JMS defined

» JMSX prefix in the name (e. g. JMSXAppID,
JMSXConsumerTXID, ...)

e Provider specific

= JMS <vendor_name>
= typically used in non-JMS clients

F e Message filtering based on properties
e Condition based on subset of SQL92

FLIGHT_NUMBER LIKE 'N14%'

PRICE <= 1000 AND COLOR ="'RED'

F e There are several types of message defined in JMS:

= TextMessage

= MapMessage

= BytesMessage
= StreamMessage
= ObjectMessage

F e Communication type:
= Point-to-point (PTP)
= Publish/Subscribe (Pub/Sub)

Destination is a queue

one of multiple consumers gets message

Load is distributed across consumers

Message is stored until some consumers receives it

Receiver

|

Receiver

|

Receiver

|

Destination is a topic

message is delivered to all subscribers

message is thrown away if there is no subscription
Durable subscriber

= if durable subscriber disconnects broker is obliged to store all messages
for later delivery

Publisher (<

F e JMS 1.0 (2001)
= Different APIs for pub/sub and PTP communication
e JMS 1.1 (2002)
= Classic API - unified API for pub/sub and PTP
e JMS 2.0 (2013)
= Classic API
o it is not deprecated and will remain part of JMS indefinitely
= Simplified API
o |less code needed

o AutoCloseable resources -> Java 7 needed
o no checked exceptions

F e ConnectionFactory - administered object
e Connection
e Session
e MessageProducer
e MessageConsumer
e Destination - administered object
e Message

F e determines level of delivery reliability
= Persistent (default)
o provider should persist the message

o message must be delivered once and only once even in case of provider
failure

= Nonpersistent
o provider is instructed not ot presist the message
o message must be delivered at most once

o message is usually lost on provider failure
o better performance

F e Delivery between broker and client is not considered successful until
message is acknowledged.
e acknowledgement modes:

= DUPS_OK_ACKNOWLEDGE
= AUTO_ACKNOWLEDGE
= CLIENT_ACKNOWLEDGE

Session can be transacted

multiple messages handled as atomic unit

transaction is completed by calling commit() or rollback() on session
commit also acknowledges message

Support for distributed transaction is not required by JMS

= :

= but still many providers implement distributed transactions
= JMS recommends support using JTA XAResource API

F e Classic API

= synchronous send

= asynchronous send

= synchronous receive
= asynchronous receive

e Simplified API

PART II
APACHE ACTIVEMQ

Opensource MoM

JMS 1.1 compliant

Supports many protocols and clients
other features:

= High availability
scalibility
management
security

ActiveM0

F e Open-source messaging platform
Messaging system based on Apache ActiveMQ
Runs on OSGI container
Enable easy deployment
Provides web based management console

= JBOSS A-MQ

Development
and tooling

JBoss Developer
Studio including
JBoss Fuse 1DE

RED HAT JBOSS A-MQ

Reliable messaging

Apache ActiveMQ

Container

Apache Karaf + Fuse Fabric

Management
and
monitoring

Jioss Operations
Network

JBoss Fabric
Management
Console

F e XML file

e most of things work out of the box

e Default configuration example

<persistenceAdapter>
F y kaha.DB <kahaDB directory="S{activemq.data}/kahadb"/>
e multi kahaDB </persistenceAdapter>
e |levelDB
e JDBC

<persistenceAdapter>
<jdbcPersistenceAdapter dataSource="#derby-ds"/>
</persistenceAdapter>

<!-- Embedded Derby DataSource Sample Setup -->
<bean id="derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
<property name="databaseName" value="derbydb"/>

<property name="createDatabase" value="create"/>
</bean>

F e Transport connectors
= For client to broker connections
e Network connectors
= For broker to broker connections
e Many transport protocols supported:
= tcp, udp, nio, ssl, http/https, vm

e Openwire
=
r e STOMP

e AMQP
e MQTT

Binary format developed for ActiveMQ purposes
default wire format

very efficient

complex implementation

Native clients for java, c/c++, c#

advanced features:

= flow control
» client load balancing

Streaming text oriented message protocol
very simple

easy to implement

worse performance

Client server publish/subscrbe messaging protocol
ultra lightweight

easy to implement

supports only topics (no PTP messaging)

binary protocol

open standard

support both ptp and pub/sub
advanced features:

= flow control

F e in transport connection section
e Connection type and options are defined by URI

<transportConnectors>
<transportConnector name="mqtt"
uri="mqtt://localhost:1883?wireFormat.maxFrameSize=100000"/>
<transportConnector name="openwire"
uri="tcp://0.0.0.0:616167maximumConnections=1000&wireFormat.maxFrameSize=104857600"
discoveryUri="multicast://default"/>
</transportConnectors>

W;? e typically uses composite URI
o failover

e static

failover:(tcp://primary:61616,tcp://secondary:61616)?randomize=false

e Messaging systems usually processes business critical
data

e broker must be accessible 24/7

e ActiveMQ provides various mechanisms to ensure HA

F e Group of brokers forms logically one broker
e Master broker

= communicates with clients
e Slave brokers
= Passive (all connectors are stopped)

e election mechanisms

e client reconnects in case of failure (failover)

e Message acknowledgment after the message is stored
safely

F e Shared JDBC master/slave
e Shared file system master/slave
e Replicated levelDB master/slave

Shared database as persistence storage required
Election mechanism: Locking tables in database
Acknowledgment: After messaqge is safely stored in
database

Single point of failure

= :

Client 1 Client 2

——————————————————————————

Master
broker

broker1 broker2 broker3

Shared database

———————————————————————————————————————

Usually faster than JDBC

Need file system with reliable locking mechanisms
Persistent storage is located on shared file system

Election mechanism: Locking file
Acknowledgment: after message is stored on shared filesystem

Single point of failure

Client 1

__

Master
broker

Slave
broker

broker1

broker2

.../sharedBrokerDir

Shared file system

Slave
broker

broker3

=

F e Shared nothing |
e No single point of failure 4
e Servers coordinates themselves by exchanging mess Zookeeper
(replication protocol) %Y

e Needs zookeeper server(s)
= For master election only
e replication protocol

= slave brokers connects to the master

= message are replicated to slaves

= message is acknowledged after replicating at least to
guorum of brokers.

Master : Slave
broker

Master Host

connections between broker
message forwarding

enables massive scalability
requires careful configuration

|

Client

|

Client

|

<networkConnectors>
Broker A : <networkConnector uri="static:(tcp://B:61617)"/>
</networkConnectors>

Client

Client

duplex connections
destination filtering
dynamic vs static forwarding
AdvisoryMessages

network consumer priority
networkTTL

concentrator topology
hub and spokes topology
tree topology

mesh topology

complete graph

F e exclusive consumers
e message groups
e wildcards (. * >)
e virtual topic
e DLQ

new Apache MoM

non-blocking architecture => great performance
merges codebase with JBoss HornetQ

JMS 2.0 compliant

Support for:

ActiveMQ clients
AMQP
STOMP
HornetQ clients

THANK YOU!

