SWITCHYARD
EXERCISE

Tom4&s Turek - tturek@redhat.com



WHAT WE WANT TO ACHIEVE?

USE SWITCHYARD TO COMPOSE 3
APPLICATIONS

Order service

1%
(@)
>
o
~
>
<
—
I
——1
] ] ——

)

S

<

®

M5

-

=

o S

R<

[%2]

1%

= 3

<

(@]

™

-/

)
—
<
w
~
>
<
—
~

Shipping service




ENVIRONMENT

RED HAT JBOSS FUSE + JBOSS
DEVELOPER STUDIO WITH INTEGRATION

STACK

INSTALATION GUIDE:
HTTP://WWW.JBOSS.ORG/PRODUCTS/FU

SE/GET-STARTED/



http://www.jboss.org/products/fuse/get-started/

PREPARATION

Clone qgit projects:
> git clone https://github.com/qga/course-sys-int-systems.qgit

> git clone https://github.com/ga/course-sys-int-switchyard-seminar.git

e copy file SWORKSPACE /course-sys-int-switchyard-
seminar/src/resources/keystore.jks to SFUSE_HOME/bin folder

o copy file SWORKSPACE /course-sys-int-switchyard-
seminar/activemqg.xml to SFUSE_HOME/etc folder

e add a user to SFUSE_HOME/etc/users.properties:

shipuser=shippwd,admin,manager,viewer,Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, S

e start/restart JBoss Fuse SFUSE_HOME/bin/fuse

run course-sys-int-system application

> mvn clean camel:run



LAB APPLICATION

project: course-sys-int-switchyard-seminar
Initial branch: switchyard-00

run all tests
> mvn clean verify

run specific test
> mvn clean verify -Dtest=Lab01Test



STEP 1
COMPONENTS, BEAN

Goals: create OrderStatusService and wire it with internal components
Steps:

e create new component named OrderStorageComponent

= add component service use OrderStatusService contract

= assign OrderStatusServiceBean as component implementation
e modify OrderComponent component

= add component reference use OrderStatusService contract
= assign OrderServiceBean as component implementation
= inject OrderStatusService in implementation of component

e wire InventoryReplyComponent with OrderStorageComponent

Test: LabOl1Test



STEP 2
JMS BINDING, JAXB

Goals: Integrate shipping application with OrderComponent
Problem: send orderld via JMS message header
Steps:

e create component ShipmentReplyComponent:

= add component service use ShipmentReplyService contract
= promote ShipmentReplyService via contract
ShipmentService.wsdl#wsdl.porttype(ShipmentReplyServicePortType) and use JMS
binding:
o queue: SHPMNT.RESP
o includes all message headers (Bindings -> Message Composer)

= add component reference use OrderStatusService contract
= assign ShipmentReplyServiceBean as component implementation

e declare JAXB and Java transformators

Test: Lab02Test



STEP 3 -1/2
FILE BINDING, PROPERTIES, COMPOSER

Goals: Integrate inventory application with OrderComponent

Problem: how wire reply message from file service with order status

Steps:

set path to course-sys-int-systems project in service.properties file
add service.properties in switchyard domain configuration

assign File binding to Inventory composite reference:

= directory: S{sys.base}/target/inbox/inventory

= add custom message composer MessageComposer

= includes all context properties (Bindings -> Message Composer)
edit method decompose in class MessageCompose



STEP 3 -2/2

Steps:

« assign File binding to Inventory reply composite service:
- directory: S{sys.base}/target/outbox/inventory
= add custom message composer MessageComposer
= includes all context properties (Bindings -> Message
Composer)
« edit method compose in class MessageCompose
« declare transformations

Test: Lab03Test



STEP 4
REST BINDING, JAVA INTERFACE

Goals: Integrate accounting application with OrderComponent

Steps:

e create AccountingService interface with method:
InvoicelssueReply account(Order order);

e add component reference to OrderComponent use AccountingService contract
e promote AccountingService reference via rest binding:

= RESTful Interface: AccountingResource

= address: https://localhost: 7171

= guthentication type: Basic, user: admin, password: foo, host: localhost, port: 7171

e edit OrderServiceBean

Test: Lab04Test



STEP 5

SOAP BINDING, WSDL

Goals: Promote OrderService as SOAP web service

e Receive : src/test/resources/xml/soap-order.xm/

e Response: src/test/resources/xml/soap-order-response.xml

Steps:

e generate WSDL from JAVA class OrderService
= disable: Use "wrapped" messages

e promote OrderService with generated WSDL as contract
= assing SOAP binding

« JAXB transformation for order

e Create java transformation for response

Test: LabO5Test



STEP 6
DEPLOY APPLICATION

Checkout branch switchyard-06 and compile project:
> git checkout switchyard-06

> mvn clean install -DskipTests

JBoss Fuse console:

> features:addurl mvn:com.redhat.brg.integration/switchyard-seminar/0.0.1-
SNAPSHOT/xml/features

> features:install switchyard-integration-course

Run test 6 on project:

> mvn clean verify -Dtest=Lab06Test



