
Narayana +
WildFly

JBug Brno
Jan 2015

Mike Musgrove

Agenda

 Transaction Basics
 JTA
 Narayana
 Narayana in WildFly
 WildFly Transaction Sub System Configuration
 Optional WildFly Sub Systems
 Q & A

Narayana

Transaction Basics

Transaction Basics

 A transaction is a group of business logic statements with
certain shared properties. One or more of:

● Atomic, Consistent, Isolated, Durable

 In JEE, JTA transactions are ACID transactions

 Other models may relax some of these properties

 From the user perspective, a transaction is a set of
changes that happens or does not happen

Transaction Management

 A transaction manager or transaction service
● Coordinates transactions to ensure correct and

complete execution
● Provides user and container APIs
● May be distributed
● Drives resource managers

 A resource manager
● Manages data that may be manipulated transactionally
● Provides a data management API to the user (eg JDBC)
● Provides a transaction management API to the

transaction manager (XA)

Failure Handling

 Presumed Abort Strategy
● When in doubt, abort
● any failure prior the commit phase lead to abort

the transaction
 Type of failures:

● Communication and processes (detected by
timeout or exceptions)

 A coordinator or a participant can fail in two ways
● it stops running (crashes)
● it times out waiting for a message it was expecting

 A recovered coordinator or participant uses
information on stable storage to guide its recovery

Failure Recovery in Commit Phase

Coordinator Participant

Prepare

Ready

CommitAck

Prepare

Log prepared

Log Commit

CommitCommit

Log Completed

Log Completed

Ready

CommitAck

Presumed Abort on Timeout

Presumed Abort on
Timeout or Failure Exception

Send again Commit on
Timeout or Failure Exception

Forget the transaction

Forget the Transaction

On Timeout use a Termination
Protocol to decide what to do
Some protocol:
 wait the Coordinator to recover)
 send again Ready

Failure recovery during abort

Presumed Abort on
Timeout or Failure Exception

Prepare

Ready

RollbackAck

Prepare

Log prepared

Rollback

Log Completed

Log Completed

Not Ready

Presumed Abort on Timeout

On Timeout/Failure Exception
 Send again Rollback or
 Forget

Forget the transaction

Forget the Transaction

On Timeout use a Termination
Protocol to decide what to do
Some protocol:
 wait the Coordinator to recover)
 send again Ready

Two Phase Commit Optimizations

 One Phase Commit
● Single resource manager does not require voting

 Read Only
● Unmodified resources don't need phase two

commit/abort
 Last Resource Commit Optimization (LRCO)

● Prepare 2PC, commit LRCO, write log, commit 2PC
● Crash after step 2 before writing the log (heuristic)

 Commit Markable Resource (CMR)
● Fixes the LRCO failure window by committing the

intentions list to the database

Distributed Transactions

 Local transaction: within a single resource manager, no
separate transaction manager.

 Global transaction: one potentially spanning several
logically separate resource managers, coordinated by a
transaction manager (XA/JTA)

 Distributed transaction: a global transaction where
transaction context is propagated on business logic calls
between nodes (JTS, XTS, RTS, BT)

 Interposition
● A useful performance optimization

 Subordinate transactions
● Used by JCA

XA

 XA is the interface between the transaction manager and
resource managers

 JEE users usually don't interact with XA, except in server
configuration

 Widely supported in e.g. JDBC drivers and JCA connectors
● With varying degrees of standards compliance

Narayana

Java Transaction API (JTA)

JTA

 Standard transaction management API for JEE
● Standardizes interactions between components

involved in a distributed transaction (Application,
application server, transaction manager, resource
adapter)

● Influenced by X/Open DTP
● Assumes ACID transactions
● Interacts with JCA, JDBC, JMS, EJB specs

 Transaction Management
● UserTransaction, TransactionManager, Transaction,

Status, Xid, TransactionSynchronizationRegistry
 Resource Management

● Xid, XAResource (hides Connection), Synchronization

UserTransaction

 The application programmer's interface to the transaction
manager

● Provides transaction boundary demarcation
 Lookup through JNDI (or injected)
 begin() / commit() / rollback()

● finally: Be careful not to leave tx uncompleted
 setTimeout(int seconds)

● But no getTimeout()
● Timeouts happen on a background thread

 setRollbackOnly()
 getStatus()

TransactionManager

 The container's interface to the transaction manager
 Same functions as UserTransaction, plus:
 Thread management

● suspend()
● resume()

 Access to the transaction...
● getTransaction()

Transaction

 Represents an individual transaction instance
 Usually for container, not end-user use
 Lifecycle management

● commit / rollback / setRollbackOnly / getStatus
 XAResource Management

● enlistResource
● delistResource

 Synchronization Management
● registerSyncronization

XAResource

 The interface between the transaction manager and the
resource manager

 Provided by the client library (driver) of most transaction
capable resource managers

 The transaction manager deals only with XAResource, not
Connection or other driver/API specific abstractions (cf
JCA)

 Start/end, prepare/commit, recover/forget

Narayana

What is it?

Narayana is...

 A general purpose transaction manager
 Written in Java but usable from other languages: ceylon,

Ruby (via TorqueBox), C/C++, REST, ...
 A JTA implementation
 A JTS implementation, with an optional JTA API
 A Web Services transaction manager
 Usable standalone or embedded
 Embedded in WildFly as a subsystem
 More that just an implementation of the standards

● TxOJ, BA Framework, REST-AT, STM, ...

XA Recovery

 Top down recovery (Transaction manager initiated)
● tx manager drives recovery from its tx logs

 Bottom up recovery ('Resource manager initiated')
● External resources managers have their own logs
● But still driven by Narayana recovery manager

● Xid 'ownership' becomes important
● Can require extra permissions in the RM

 Recovery does not always work
● autonomous/manual forcing of outcome to remove

locks
● Can lead to Heuristics

Narayana

Narayana in WildFly

Topics

 Transaction Subsystem Configuration
 Optional Subsystems
 Bridging
 Debugging
 Demonstration
 Q & A

Narayana

Transaction
Subsystem
Configuration

Sub-System Configuration

 The default profile is good enough for JTA
 JTS needs the full profile to get an ORB
 Statistics:

● /subsystem=transactions/:write-
attribute(name=enable-statistics,value=true)

● /subsystem=transactions/:read-
attribute(name=number-of-<statistic>,include-
defaults=true)

● transactions, inflight-transactions,
● heuristics, committed-transactions,
● aborted-transactions, timed-out-transactions,
● application-rollbacks, resource-rollbacks

Sub-System Configuration

 Transaction timeout value:
● /subsystem=transactions/:write-

attribute(name=default-timeout,value=300)
 Transaction log location and recovery:

● /subsystem=transactions/:write-attribute(name=object-
store-path,value=tx-object-store)

Sub-System Configuration (node id)

 Node-identifier: uniqueness required when 2 TM's:
● access the same RM
● share an object store

 /subsystem=transactions/:write-attribute(name=node-
identifier,value=1)

Sub-System Configuration (JTS)

 If you need to propagate a transaction to another instance
of WildFly you will need to enable JTS.

● /subsystem=transactions/:write-
attribute(name=jts,value=true)

 JTS requires an ORB which needs to be configured to use
transactions. For this you will need the full profile:

● Enable security interceptors:
● /subsystem=jacorb/:write-

attribute(name=security,value=on)
● Enable transactions:

● /subsystem=jacorb/:write-
attribute(name=transactions,value=on)

● Remark: WildFly 9 replaces JacORB with the JDK ORB

Object Store Configuration

 The default is file based (1 file per log record)
 Journaling Store:

● /subsystem=transactions/:write-attribute(name=use-hornetq-
store,value=false)

● /subsystem=transactions/:write-attribute(name=hornetq-store-
enable-async-io,value=false)

 Database Store:
● enable and set JNDI name of which db to use:

● /subsystem=transactions:write-attribute(name=use-jdbc-store,
value=true)

● /subsystem=transactions:write-attribute(name=jdbc-store-
datasource, value=java:jboss/datasources/TransDS)

● Plus options to set the action, communication and state
table names)

Viewing Transaction Logs

 Refresh the management view of the transaction logs:
● /subsystem=transactions/log-store=log-store/:probe

 List all transaction logs:
● ls /subsystem=transactions/log-store=log-store/transactions

 View a single log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-
resource

 View a transaction participant log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource

Viewing Transaction Logs

 Delete a log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:delete

 Try to recover a heuristic:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA::recover

 Re-activate a log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA::refresh

Configure DataSources

 Should be configured with JTA enabled (tells JCA to enlist them
as XAResources) by setting the jta="true" attribute.

 Credentials used by apps and the TM recovery system are
generally different (see recover-credential parameter on the
DataSource).

 Remark: the next EAP release (6.4) we support a reliable
alternative to LRCO referred to as CMR:

● The DS config must have the connectable parameter to
"true". In the txn subsystem definine which resources can be
used via the commit-markable-resources complex attributed
(list of non XA aware datasources that can reliably
participate in an XA transaction.). For each such DS specify
the JNDI name and the table name containing pending XIDs.

 NB: Local DataSources are enlisted using LRCO (there can be only one)

Optional WildFly
Subsystems

WS-AT, REST-AT and Bridging

XTS: XML Transaction Service

 Provides transaction support for Web Service applications.
Implements the WS-Atomic Transaction (WS-AT) and WS-
BusinessActivity (WS-BA) protocols, it allows for
transactions to span multiple Web Services.

 WSAT is available as an optional subsystem (WSBA is not
available yet). It can be enabled using the standalone-
xts.xml configuration:

● cp docs/examples/configs/standalone-xts.xml standalone/configuration
● ./bin/standalone.sh --server-config=standalone-xts.xml&
● ./bin/jboss-cli.sh --connect "/subsystem=xts:read-resource-

description(recursive=true)"

REST-AT: Atomic Transactions

1. POST /transaction-manager HTTP/1.1

2. HTTP 1.1 201 Created Location: /transaction-
coordinator/1234 Link:</transaction-
coordinator/1234/terminator>; rel=”terminator”,
</transaction-coordinator/1234/participant>;
rel=”durable- participant”, </transaction-
coordinator/1234/vparticipant>; rel=”volatile
-participant”

3. REST service request

4. POST /transaction-coordinator/1234/participant

Link:</res-url>; rel=participant,</res-
url/prepare>; rel=prepare,</res-url/commit>;
rel=commit,</res-url/rollback>;
rel=rollback,</res-url/commit-one-phase>;
rel=commit-one-phase

5. PUT /transaction-coordinator/1234/terminator
HTTP/1.1 Content-Type: application/txstatus
txstatus=TransactionCommitted

6. PUT /participant-resource/terminator HTTP/1.1
txstatus=TransactionPrepared

RESTful interface to Narayana

REST-AT: RESTful API to a TM

 Provides a REST based interface to JTA
 Configuration:

● cp docs/examples/configs/standalone-rts.xml standalone/configuration
● ./bin/standalone.sh --server-config=standalone-rts.xml&

 This entry point to the system is via the resource located
at the endpoint: http://<host>:<port>/rest-at-
coordinator/tx/transaction-manager

● ./bin/jboss-cli.sh --connect "/subsystem=rts:read-resource-
description(recursive=true)"

BlackTie (X/Open DTP model)

 Implements the XATMI and TX X/Open DTP standards:
● Concurrent execution of applications on shared resources
● Coordination of transactions across applications
● Components, interfaces, and protocols that define the architecture

and provide portability of applications

 Supports XA-compliant databases for data storage and
retention

 C/C++/Java client library adapter framework for exposing
familiar JEE components (Narayana and Hornetq) via the
familiar ATMI APIs. Transactional queues (further
decoupling clients and servers)

 Allows the creation of EJB-like software modules known as
Application Programs

 Works with EJBs (for transaction inflow/outflow)

Optional WildFly
Subsystems

Bridging Transaction Models

Transaction Bridging

 Existing JEE code understands JTA transactions
 Web Services understand WS-AT transactions
 REST services understand REST-AT
 Interoperability and reuse requires joining these models

together to seamlessly flow a transaction between them
and convert API calls to match the txn APIs provided in
each environment.

 txbridge provides a way to do this
● Interposition plus protocol adapter
● Bi-directional for WS_AT (no WS-BA bridging)
● Inflow only for REST (REST-AT -> JTA)

 Now JPA, JMS etc can be used with JAX-RS and WS-AT
endpoints by enabling the relevant bridges

WildFly
Subsystems

Debugging support

Debugging

 Connect a debug tool such as Intellij by editing
bin/standalone.conf

 Increase log level by editing the the logging subsystem
config in the wildfly config file. The relevant logger
category for transactions is <logger
category="com.arjuna">

Debugging

 Targeted Debugging using Byteman (byteman.jboss.org)
● simplifies tracing and testing of Java programs:

● "The simplest use of Byteman is to install code which
traces what your application is doing. This can be
used for monitoring or debugging live deployments
as well as for instrumenting code under test so that
you can be sure it has operated correctly. By
injecting code at very specific locations you can
avoid the overheads which often arise when you
switch on debug or product trace."

● Enable byteman by using bminstall/bmsubmit or set
JAVA_OPTS in bin/standalone.conf:

● -javaagent:/<BYTEMAN_HOME>/lib/byteman.jar=script:<script
location)

NTA (Narayana Transaction Analyser)

 NTA (https://github.com/jbosstm/transaction-analyser) analyses a
wildfly log and presents a history of transaction related activity in a
easily digestible form. The goal is to simply diagnosis of transaction-
related problems.

 The tool can also be loaded with a suite of plugins that diagnose
common issues:

● Many of your transactions are rolling back, and you don't know why.
● You have a distributed transaction crossing many servers, and

you're finding it difficult to correlate the many log files.
● You have a heuristic transaction, but you don't know which resource

misbehaved.
● A transaction appears to have 'hung', but you don't know why.

WildFly
Transaction
Subsystem

Demonstration

Demonstration: How to configure JTS

 Walkthrough of one of the JTS quickstarts
 Shows how to configure two servers for propagating

transactions during EJB invocations
● https://github.com/wildfly/quickstart/tree/master/jts

 Demonstrate recovery
● https://github.com/wildfly/quickstart/tree/master/jts-distributed-

crash-rec

https://github.com/wildfly/quickstart/tree/master/jts

Links

 Narayana:
● http://narayana.io/docs
● https://github.com/jbosstm/narayana

 BlackTie: http://narayana.io/docs/project/index.html#d0e16296

 RTS: http://narayana.io/docs/project/index.html#d0e15500

 XTS: http://narayana.io/docs/project/index.html#d0e3692

 Bridging:
● http://narayana.io/docs/product/index.html#d0e6287
● http://narayana.io/docs/project/index.html#_interoperating_with_other_trans

action_models

 XATMI and TX X/Open DTP standards:
● http://www.opengroup.org/pubs/catalog/c506.htm
● http://www.opengroup.org/pubs/catalog/u011.htm

Questions?

http://narayana.io/community/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

