
Narayana + 
WildFly

JBug Brno
Jan 2015

Mike Musgrove



Agenda

 Transaction Basics
 JTA
 Narayana
 Narayana in WildFly
 WildFly Transaction Sub System Configuration
 Optional WildFly Sub Systems
 Q & A



Narayana

Transaction Basics



Transaction Basics

 A transaction is a group of business logic statements with 
certain shared properties. One or more of:

● Atomic, Consistent, Isolated, Durable

 In JEE, JTA transactions are ACID transactions

 Other models may relax some of these properties

 From the user perspective, a transaction is a set of 
changes that happens or does not happen



Transaction Management

 A transaction manager or transaction service
● Coordinates transactions to ensure correct and 

complete execution
● Provides user and container APIs
● May be distributed
● Drives resource managers

 A resource manager
● Manages data that may be manipulated transactionally
● Provides a data management API to the user (eg JDBC)
● Provides a transaction management API to the 

transaction manager (XA)



Failure Handling

 Presumed Abort Strategy
● When in doubt, abort
● any failure prior the commit phase lead to abort 

the transaction
 Type of failures: 

● Communication and processes (detected by 
timeout or exceptions)

 A coordinator or a participant can fail in two ways
● it stops running (crashes)
● it times out waiting for a message it was expecting

 A recovered coordinator or participant uses 
information on stable storage to guide its recovery



Failure Recovery in Commit Phase
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Failure recovery during abort
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Two Phase Commit Optimizations

 One Phase Commit
● Single resource manager does not require voting

 Read Only
● Unmodified resources don't need phase two 

commit/abort
 Last Resource Commit Optimization (LRCO)

● Prepare 2PC, commit LRCO, write log, commit 2PC
● Crash after step 2 before writing the log (heuristic)

 Commit Markable Resource (CMR)
● Fixes the LRCO failure window by committing the 

intentions list to the database



Distributed Transactions

 Local transaction: within a single resource manager, no 
separate transaction manager.

 Global transaction: one potentially spanning several 
logically separate resource managers, coordinated by a 
transaction manager (XA/JTA)

 Distributed transaction: a global transaction where 
transaction context is propagated on business logic calls 
between nodes (JTS, XTS, RTS, BT)

 Interposition
● A useful performance optimization

 Subordinate transactions
● Used by JCA



XA

 XA is the interface between the transaction manager and 
resource managers

 JEE users usually don't interact with XA, except in server 
configuration

 Widely supported in e.g. JDBC drivers and JCA connectors
● With varying degrees of standards compliance
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JTA

 Standard transaction management API for JEE
● Standardizes interactions between components 

involved in a distributed transaction (Application, 
application server, transaction manager, resource 
adapter)

● Influenced by X/Open DTP
● Assumes ACID transactions
● Interacts with JCA, JDBC, JMS, EJB specs

 Transaction Management
● UserTransaction, TransactionManager, Transaction, 

Status, Xid, TransactionSynchronizationRegistry
 Resource Management

● Xid, XAResource (hides Connection), Synchronization



UserTransaction

 The application programmer's interface to the transaction 
manager

● Provides transaction boundary demarcation
 Lookup through JNDI (or injected)
 begin() / commit() / rollback()

● finally: Be careful not to leave tx uncompleted
 setTimeout(int seconds)

● But no getTimeout()
● Timeouts happen on a background thread

 setRollbackOnly()
 getStatus()



TransactionManager

 The container's interface to the transaction manager
 Same functions as UserTransaction, plus:
 Thread management

● suspend()
● resume()

 Access to the transaction...
● getTransaction()



Transaction

 Represents an individual transaction instance
 Usually for container, not end-user use
 Lifecycle management

● commit / rollback / setRollbackOnly / getStatus
 XAResource Management

● enlistResource
● delistResource

 Synchronization Management
● registerSyncronization



XAResource

 The interface between the transaction manager and the 
resource manager

 Provided by the client library (driver) of most transaction 
capable resource managers

 The transaction manager deals only with XAResource, not 
Connection or other driver/API specific abstractions (cf 
JCA)

 Start/end, prepare/commit, recover/forget
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Narayana is...

 A general purpose transaction manager
 Written in Java but usable from other languages: ceylon, 

Ruby (via TorqueBox), C/C++, REST, ...
 A JTA implementation
 A JTS implementation, with an optional JTA API
 A Web Services transaction manager
 Usable standalone or embedded
 Embedded in WildFly as a subsystem
 More that just an implementation of the standards

● TxOJ, BA Framework, REST-AT, STM, ...



XA Recovery

 Top down recovery (Transaction manager initiated)
● tx manager drives recovery from its tx logs

 Bottom up recovery ('Resource manager initiated')
● External resources managers have their own logs
● But still driven by Narayana recovery manager

● Xid 'ownership' becomes important
● Can require extra permissions in the RM

 Recovery does not always work
● autonomous/manual forcing of outcome to remove 

locks
● Can lead to Heuristics
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 Demonstration
 Q & A



Narayana

Transaction 
Subsystem 
Configuration



Sub-System Configuration

 The default profile is good enough for JTA
 JTS needs the full profile to get an ORB
 Statistics:

● /subsystem=transactions/:write-
attribute(name=enable-statistics,value=true)

● /subsystem=transactions/:read-
attribute(name=number-of-<statistic>,include-
defaults=true)

● transactions, inflight-transactions,
● heuristics, committed-transactions,
● aborted-transactions, timed-out-transactions, 
● application-rollbacks, resource-rollbacks



Sub-System Configuration

 Transaction timeout value:
● /subsystem=transactions/:write-

attribute(name=default-timeout,value=300)
 Transaction log location and recovery:

● /subsystem=transactions/:write-attribute(name=object-
store-path,value=tx-object-store)



Sub-System Configuration (node id)

 Node-identifier: uniqueness required when 2 TM's:
● access the same RM
● share an object store

 /subsystem=transactions/:write-attribute(name=node-
identifier,value=1)



Sub-System Configuration (JTS)

 If you need to propagate a transaction to another instance 
of WildFly you will need to enable JTS.

● /subsystem=transactions/:write-
attribute(name=jts,value=true)

 JTS requires an ORB which needs to be configured to use 
transactions. For this you will need the full profile:

● Enable security interceptors:
● /subsystem=jacorb/:write-

attribute(name=security,value=on)
● Enable transactions:

● /subsystem=jacorb/:write-
attribute(name=transactions,value=on)

● Remark: WildFly 9 replaces JacORB with the JDK ORB



Object Store Configuration

 The default is file based (1 file per log record)
 Journaling Store:

● /subsystem=transactions/:write-attribute(name=use-hornetq-
store,value=false)

● /subsystem=transactions/:write-attribute(name=hornetq-store-
enable-async-io,value=false)

 Database Store:
● enable and set JNDI name of which db to use:

● /subsystem=transactions:write-attribute(name=use-jdbc-store, 
value=true)

● /subsystem=transactions:write-attribute(name=jdbc-store-
datasource, value=java:jboss/datasources/TransDS)

● Plus options to set the action, communication and state 
table names)



Viewing Transaction Logs

 Refresh the management view of the transaction logs:
● /subsystem=transactions/log-store=log-store/:probe

 List all transaction logs:
● ls /subsystem=transactions/log-store=log-store/transactions

 View a single log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-
resource

 View a transaction participant log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource



Viewing Transaction Logs

 Delete a log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:delete

 Try to recover a heuristic:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA::recover

 Re-activate a log:
● /subsystem=transactions/log-store=log-

store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA::refresh



Configure DataSources

 Should be configured with JTA enabled (tells JCA to enlist them 
as XAResources) by setting the jta="true" attribute.

 Credentials used by apps and the TM recovery system are 
generally different (see recover-credential parameter on the 
DataSource).

 Remark: the next EAP release (6.4) we support a reliable 
alternative to LRCO referred to as CMR:

● The DS config must have the connectable parameter to 
"true". In the txn subsystem definine which resources can be 
used via the commit-markable-resources complex attributed 
(list of non XA aware datasources that can reliably 
participate in an XA transaction.). For each such DS specify 
the JNDI name and the table name containing pending XIDs.

 NB: Local DataSources are enlisted using LRCO (there can be only one)
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XTS: XML Transaction Service

 Provides transaction support for Web Service applications. 
Implements the WS-Atomic Transaction (WS-AT) and WS-
BusinessActivity (WS-BA) protocols, it allows for 
transactions to span multiple Web Services.

 WSAT is available as an optional subsystem (WSBA is not 
available yet). It can be enabled using the standalone-
xts.xml configuration:

● cp docs/examples/configs/standalone-xts.xml standalone/configuration
● ./bin/standalone.sh --server-config=standalone-xts.xml&
● ./bin/jboss-cli.sh --connect "/subsystem=xts:read-resource-

description(recursive=true)"



REST-AT: Atomic Transactions

1. POST /transaction-manager HTTP/1.1

2. HTTP 1.1 201 Created Location: /transaction-
coordinator/1234 Link:</transaction-
coordinator/1234/terminator>; rel=”terminator”, 
</transaction-coordinator/1234/participant>; 
rel=”durable- participant”, </transaction-
coordinator/1234/vparticipant>; rel=”volatile 
-participant” 

3. REST service request

4. POST /transaction-coordinator/1234/participant

Link:</res-url>; rel=participant,</res-
url/prepare>; rel=prepare,</res-url/commit>; 
rel=commit,</res-url/rollback>; 
rel=rollback,</res-url/commit-one-phase>; 
rel=commit-one-phase

5. PUT /transaction-coordinator/1234/terminator 
HTTP/1.1   Content-Type: application/txstatus   
txstatus=TransactionCommitted

6. PUT /participant-resource/terminator HTTP/1.1  
txstatus=TransactionPrepared

RESTful interface to Narayana



REST-AT: RESTful API to a TM

 Provides a REST based interface to JTA
 Configuration:

● cp docs/examples/configs/standalone-rts.xml standalone/configuration
● ./bin/standalone.sh --server-config=standalone-rts.xml&

 This entry point to the system is via the resource located 
at the endpoint:  http://<host>:<port>/rest-at-
coordinator/tx/transaction-manager

● ./bin/jboss-cli.sh --connect "/subsystem=rts:read-resource-
description(recursive=true)"



BlackTie (X/Open DTP model)

 Implements the XATMI and TX X/Open DTP standards:
● Concurrent execution of applications on shared resources
● Coordination of transactions across applications
● Components, interfaces, and protocols that define the architecture 

and provide portability of applications

 Supports XA-compliant databases for data storage and 
retention

 C/C++/Java client library adapter framework for exposing 
familiar JEE components (Narayana and Hornetq) via the 
familiar ATMI APIs. Transactional queues (further 
decoupling clients and servers)

 Allows the creation of EJB-like software modules known as 
Application Programs

 Works with EJBs (for transaction inflow/outflow)
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Transaction Bridging

 Existing JEE code understands JTA transactions
 Web Services understand WS-AT transactions
 REST services understand REST-AT
 Interoperability and reuse requires joining these models 

together to seamlessly flow a transaction between them 
and convert API calls to match the txn APIs provided in 
each environment.  

 txbridge provides a way to do this
● Interposition plus protocol adapter
● Bi-directional for WS_AT (no WS-BA bridging)
● Inflow only for REST (REST-AT -> JTA)

 Now JPA, JMS etc can be used with JAX-RS and WS-AT 
endpoints by enabling the relevant bridges
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Debugging

 Connect a debug tool such as Intellij by editing 
bin/standalone.conf

 Increase log level by editing the the logging subsystem 
config in the wildfly config file. The relevant logger 
category for transactions is <logger 
category="com.arjuna">



Debugging

 Targeted Debugging using Byteman (byteman.jboss.org)
● simplifies tracing and testing of Java programs:

● "The simplest use of Byteman is to install code which 
traces what your application is doing. This can be 
used for monitoring or debugging live deployments 
as well as for instrumenting code under test so that 
you can be sure it has operated correctly. By 
injecting code at very specific locations you can 
avoid the overheads which often arise when you 
switch on debug or product trace."

● Enable byteman by using bminstall/bmsubmit or set 
JAVA_OPTS in bin/standalone.conf:

● -javaagent:/<BYTEMAN_HOME>/lib/byteman.jar=script:<script 
location)



NTA (Narayana Transaction Analyser)

 NTA (https://github.com/jbosstm/transaction-analyser) analyses a 
wildfly log and presents a history of transaction related activity in a 
easily digestible form. The goal is to simply diagnosis of transaction-
related problems.

 The tool can also be loaded with a suite of plugins that diagnose 
common issues:

● Many of your transactions are rolling back, and you don't know why.
● You have a distributed transaction crossing many servers, and 

you're finding it difficult to correlate the many log files.
● You have a heuristic transaction, but you don't know which resource 

misbehaved.
● A transaction appears to have 'hung', but you don't know why.
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Demonstration: How to configure JTS

 Walkthrough of one of the JTS quickstarts
 Shows how to configure two servers for propagating 

transactions during EJB invocations
● https://github.com/wildfly/quickstart/tree/master/jts

 Demonstrate recovery 
● https://github.com/wildfly/quickstart/tree/master/jts-distributed-

crash-rec

https://github.com/wildfly/quickstart/tree/master/jts


Links

 Narayana:
● http://narayana.io/docs
● https://github.com/jbosstm/narayana

 BlackTie: http://narayana.io/docs/project/index.html#d0e16296 

 RTS: http://narayana.io/docs/project/index.html#d0e15500

 XTS: http://narayana.io/docs/project/index.html#d0e3692 

 Bridging:
● http://narayana.io/docs/product/index.html#d0e6287
● http://narayana.io/docs/project/index.html#_interoperating_with_other_trans

action_models

 XATMI and TX X/Open DTP standards:
● http://www.opengroup.org/pubs/catalog/c506.htm
● http://www.opengroup.org/pubs/catalog/u011.htm



Questions?

http://narayana.io/community/
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