
SOA Development Workshop
Lab Instructions

© 2010 Red Hat, Inc.

 1

Table of Contents

Table of Contents
Lab1 Installation..3
Lab2 Scenarios...5
Lab3 Choreography..8
Lab4 Service Modeling..12
Lab5 Service Design..14
Lab6 ESB Services...15
Lab7 Transformations..17
Lab8 Entity Service..20
Lab9 Task Service..22
Lab10 Orchestrated Service...24

 2

Lab1 Installation

Pre-requisites: use JDK 1.6, version 16 or later.

1) Create a folder soa-workshop. Copy soa-cd from CD / flash drive to a soa-workshop. Create a folder
in soa-workshop named software.

Install SOA-P with Riftsaw

2) Install SOA-P 5.0. Open soa-cd and unzip soa-5.0.0.GA.zip into soa-workshop/software. Open soa-
workshop/software/jboss-soa-p.5.0.0/jboss-as/server/default/conf/props/soa-users.properties and
uncomment #admin=admin.

3) Upgrade JBossWS. Unzip jbossws-native-bin-dist.zip
Copy ant.properties.examples to ant.properties. Modify the target container location for jboss510.home
in ant.properties. Run ant deploy-jboss510.

4) Deploy Riftsaw. Unzip riftsaw-2.0-0.zip. Copy, re-name, and edit deployment.properties. Run ant
deploy (defaults to HSQL, otherwise -Ddatabase=”db-name”).

5) Start server. Open command prompt and cd to jboss-soa-p-5.0.0.GA/jboss-as/bin and type ./run.sh -c
default. Point browser to http://localhost:8080/ and then http://localhost:8080/bpel-console.

Install Eclipse / JBossTools

6) Inside software create a folder named named workspace.

7) Install Eclipse 3.5 SR1 (for Windows, Linux, or Mac) into software (note - Mac must be 32-bit
Cocoa). Start Eclipse. Select soa-workshop/software/workspace for the workspace.

8) Use Eclipse Preferences to add Java 1.6 JRE (if not there by default) as the default JRE.

9) Add JBossTools - Add JBoss Tools 3.1 from the archive site provided in soa-cd. Re-start Eclipse.

10) Use Eclipse Preferences to add create a new server of type JBoss Enterprise Application Platform
5.0.

11) Open the Servers view: Window -> Open View -> Other -> Servers. In the Server View, right click
New Server, and select JBoss Enterprise Middleware, JBoss Enterprise Application Platform 5.0. Name
is SOA-P Server.

12) In the Servers view (lower left), double click on SOA-P server to open its editor. Click on Open
launch configuration and check that it is using the default configuration. Also check that the
deployment is to server/default/deploy, and check the deploy compressed archives.

 3

13) Check the the BPEL Editor has been added by using File -> New Other -> BPEL. If you don't see a
"BPEL 2.0" category in the new wizard, then exit Eclipse and restart it.

Install Savara Tools

14) Unzip savara-tools-eclipse-1.0-xxx into software. Use Update site (Help -> Software Updates ->
Add Site and use the local site contained in savara-tools-eclipse-1.0-M1/eclipse.

15) Restart JBDS. Open the Choreography perspective. Try to create a new Choreography model using
the File menu. If this is not available, exit Eclipse and restart it.

Install Repository

16) Copy drools-guvnor.war into server/default/deploy. Start server (if not already started), logon to
Guvnor, don't install samples.

17) Use the Import / Export capability to import service_repository.xml.

 4

Lab2 Scenarios

Goal: Create a a scenario diagram for the successful policy quote.

Business Requirements:

The business process as expressed by the business analyst is as follows:

The Driver initiates the process by sending in a request for a policy quote to the InsuranceAgency's
new PolicyQuoteService. This request contains the type of policy (AUTO) and year of the vehicle
along with the driver's name, social security number (SSN), their age, and their drivers license number
(DLNumber). The InsuranceAgency uses the ssn and dlNumber to retrieve the driver's number of
tickets and accidents from the DMV (via an existing DrivingRecordService). If the number of tickets is
greater than 4, then the InsuranceAgency sends the Driver a response stating they are not qualified. If
the number of tickets is less than or equal to 4, then the InsuranceAgency sends a request to the
CreditAgency's CreditCheckService to obtain a credit score. The InsuranceAgency then calculates a
quote based on the number of tickets, age of the driver, credit score, and number of accidents, persists
the quote for possible future reference, and responds back to the Driver with the quote.

Note that the DMV's DrivingRecordService and the CreditAgency's CreditCheckService already exist
with published WSDLs. Also note that the DrivingRecordService getDrivingRecord operation is one
way. The DMV requires the client of this service host a callback service to send the
DrivingRecordResponse.

From this description we can deduce a number of tasks that need to be performed as part of a new
PolicyQuote process. These tasks include:

- receivePolicyQuote
- sendDrivingRecordRequest
- receiveDrivingRecordResponse
- sendCreditCheckRequest
- calculatePolicyQuote
- createPolicyQuote

Also note that the sample-data folder contains messages that conform to specific XSD's. While we
could start with simple message examples, and then refine the examples once we have completed
information modeling, and then go back and modify the choreography to use the new messages, we
will eliminate the need for this iteration in order to save time.

Choreography modeling is an iterative process. We know there are some external services we need to
interact with, but have not yet identified the service boundaries for our calculatePolicyQuote and
createPolicyQuote tasks. So we will ignore these last two tasks for the initial Choreography model.

 5

Create Project

1) Create a new project in Eclipse (File -> New -> General -> Project). Name the project it
policyquote-models. Copy in the samples-data folder from labs. They contain sample messages for
PolicyQuoteRequest, PolicyQuoteResponse, PolicyQuoteInelligible, DrivingRecordRequest,
DrivingRecordResponse, CreditCheckRequest, and CreditCheckResponse, as well as a few other
samples we will use later.

Create Roles, Relationships, and Base Types

2) Create a new Choreography in the policyquote-models project. (File -> New -> Other ->
Choreography -> Choreography Description). Name it PolicyQuote.cdm. Provide Author and
Description.

3) In the Roles and Relationships editor, use the Role icon to add five roles: Driver,
PolicyQuoteProcessService, DrivingRecordService, CreditCheckService, and
DrivingRecordCallbackService. Name the associated Behaviors: Driver, PolicyQuoteProvider,
DrivingRecordProvider, CreditScoreProvider, and DrivingRecordReceipt.

4) Use the Relationship tool to draw relationships from Driver to PolicyQuoteProcessService (name it
DriverPolicyQuote), PolicyQuoteProcessService to DrivingRecordService
(PolicyQuoteDrivingRecord), PolicyQuoteProcessService to
CreditCheckService(PolicyQuoteCreditScore), and DrivingRecordService to
DrivingRecordCallbackService (DrivingRecordDrivingRecordCallback).

5) Rename the ChannelTypes in the BaseTypes view to remove the Service and Type at the end of the
name. E.g., PolicyQuoteProcessChannel instead of PolicyQuoteProcessServiceChannelType. This is
just to make the name shorter.

6) At this stage, there should be errors associated with the choreography: "Reference 'Reference Token'
must be specified". Double-click one of the errors, this will navigate to the ChannelType that has
reported the validation problem. Select the Properties view to see the property that has the error. This
problem can be resolved by creating a token defining the type of the endpoint reference. By pressing
the New, next to the Reference Token property, it will create a default token (e.g. named Token0).

7) Next navigate to the Base Types tab, and expand the nodes under the Tokens node. Currently only a
single child node will be defined, associated with the newly created channel type's reference token.
When the new token has been selected, its properties will be displayed in the Properties view. First set
the name property to "URIToken", which will result in the description field also being filled in. Second,
press the new button to create an InformationType entity for the token. This will be named after the
token: URITokenType.

8) The final step in resolving this issue is to define the XSD element or type associated with the newly
created information type. Expand the Information Types node, and selecting the URITokenType and
specifying the element or type property, such as: xsd:anyURI. Once the URIToken has been fully
configured, then simply double-click on each of the other errors in turn, to set the Reference Token

 6

property to URIToken by selecting it from the combo box.

9) Next in the Base Types editor examine the Participant Types. Delete the
DrivingRecordCallbackService ParticipantType, and add the DrivingRecordCallbackService under the
PolicyQuoteProcessService Role Types

10) Define the Information Types for each type of message: PolicyQuote, PolicyQuoteReply,
PolicyQuoteFault, DrivingRecordRequest, DrivingRecordResponse, CreditCheckRequest, and
CreditCheckResponse. Do this by dragging the Information Type entry on the palette onto the
Information Types node, and renaming it. Specify the Element property using the root element from the
corresponding sample messages (e.g., creditCheckRequest from sample-
data/CreditCheckRequest.xml). This step is important!

11) Next, since the messages in sample-data folder specify the use of namespaces, use the Base Type
editor to add Namespaces for pol, driv, and cred. Use the references in the message to supply the URI
and SchemaLocation.

Create Scenario

12) Next create a new scenarios (File -> New -> Other -> Choreography -> Scenario). Name it
SuccessfulPolicyQuote.scn. In the properties editor, also give it the name "PolicyQuoteSuccess" and
Description of "Scenario of a successful policy quote". Under the general properties Choreography
Description URL enter the value PolicyQuote.cdm.

13) Use the Participant icon to add four Participants from left to right. Use the Type property drop
down and select the appropriate participant: Driver, PolicyQuoteService, DrivingRecordService,
CreditCheckService.

14) Use the MessageLink icon to link Driver to PolicyQuoteProcessService. Highlight the
MessageLink line, and select the Message property (policyQuote) from the drop down. Add the Value
URL of sample-data/PolicyQuoteRequest.xml. Repeat this step for PolicyQuoteProcessService to
DrivingRecordService: (drivingRecordRequest), DrivingRecordService back to
PolicyQuoteProcessService: (drivingRecordResponse), PolicyQuoteProcessService to
CreditCheckService: (checkCreditRequest), CreditCheckService back to PolicyQuoteProcessService:
(creditCheckResponse), and finally PolicyQuoteProcessService back to Driver: (policyQuoteReply).

Add to Repository

15) Open Guvnor, and create a Knowledge Package and name it PolicyQuoteProcessService. Create a
new Category under Services / Orchestrated Service called PolicyQuoteProcessService.

 7

16) Open JBDS and open the Guvnor Repository perspective. Add a new Guvnor Repository location.
Now open policyquote-models. Right click on the SuccessfulPolicyQuote.scn and choose Guvnor ->
Add. Choose the PolicyQuoteProcessService as the folder to save to.

 8

17) Go into Guvnor -> Knowledge Bases -> PolicyQuoteProcessService -> Other assets and open
SuccessfulPolicyQuote. Show More Info, and Add Categories Services/Orchestrated Services/
PolicyQuoteProcessService and Scenario Diagrams. Next, Change Status to BusinessAnalysis. Save
Changes. Now highlight Browse -> Assets and look under Status Business Analysis and Category
Scenario Diagrams. You should see the SuccessfulPolicyQuote.

 9

18) Back in JBDS, use the Guvnor → Add feature to add the sample messages to the ServicesGlobal
package. (You can actually Shift click the entire set of sample messages and right click Guvnor - > Add
to add them all at once.

19) Once they have been added, open them up and add the Category Sample Messages.

 10

20) Next add the PolicyQuote.cdm file into the PolicyQuoteProcessService in Guvnor.

21) Open the PolicyQuote.cdm in Guvnor, you will find it in the Other assets folder under the
PolicyQuoteProcessService, and add the categories Services/Orchestrated Services/
PolicyQuoteProcessService and Choreography Model. Change the Status to Business Analysis and
Save and close.

 11

Lab3 Choreography

Goal: Create a Choreography model based on the SuccessfulPolicyQuote and UnsuccessfulPolicyQuote
scenarios and test the choreography against those scenarios (see solutions directory).

Create Choreography Flow

1) Open the policyquote-models/PolicyQuote.cdm. Select the Choreography Flows editor.

2) Add an Interaction named PolicyQuoteRequest (choose the Interaction entity from the palette and
drag it onto the navy blue thick line) at the top of the blue line. Enter the Operation as
receivePolicyQuote (i.e., the name of the task). For Channel, select the PolicyQuoteProcessChannel.
This will create a channel variable in the current choreography (called PolicyQuoteProcessChannel),
and also set the Relationship property to the value relevant for the channel's target role, in this case the
Relationship is DriverPolicyQuote.

3) Highlight the Exchange (enclosed within). Name it PolicyQuoteRequest as well, and select a
Message Type of PolicyQuote. Leave its Action as Request.

4) Add an Interaction named DrivingRecordRequest immediately below the PolicyQuoteRequest. Enter
the Operation as sendDrivingRecordRequest. For Channel select the DrivingRecordChannel. The
Relationship is PolicyQuoteDrivingRecord.

5) Highlight the Exchange (enclosed within). Name it DrivingRecordRequest as well, and select a
Message Type of DrivingRecordRequest. Leave its Action as Request.

6) Add an Interaction named DrivingRecordResponse below the DrivingRecordRequest. Enter the
Operation as receiveDrivingRecordResponse. For Channel, use the DrivingRecordCallbackChannel.
The Relationship is DrivingRecordDrivingRecordCallback.

7) Use the Variable icon from the palette and drag in into the State box below the choreography
diagram. Name is DrivingRecordResponseVar.

8) Highlight the Exchange (enclosed within). Name it DrivingRecordResponse as well, and select a
Message Type of DrivingRecordResponse. Leave its Action as Request (since this is part of two one-
way requests). Select the DrivingRecordResponseVar variable as the ReceiveVariable in the exchange
properties.

9) Add a Choice below the DrivingRecordResponse. Enter the Description "NumberOfTickets"

10) Add a Conditional below the Choice. Name it "LessThanOrEqualTo4. Enter for the Expression:
cdl:getVariable('DrivingRecordResponseVar', ' ' , '//driv:numberOfTickets/text()',
'DrivingRecordCallbackService') <= 4. Referencing the Role as the last parameter makes it so that the

 12

evaluation of the variable occurs only at that role.

11) Add a Sequence beneath the Conditional.

12) Within the Sequence, add an Interaction named CreditCheck. Enter the Operation as
sendCreditCheckRequest. For Channel, select the CreditCheckChannel. The Relationship is
PolicyQuoteCreditScoring.

13) Highlight the Exchange (enclosed within). Name it CreditCheckRequest, and select a Message
Type of CreditCheckRequest. Leave its Action as Request.

14) Use the Exchange Icon to add a second exchange. Name it CreditCheckResponse, and select a
Message Type of CreditCheckResponse. Change its Action to Response. Note - we could have done
this with two separate interactions, but we chose to use a single Interaction with two exchanges for the
request response MEP (as opposed to above where there were two oneway interactions).

15) Add an Interaction named PolicyQuoteResponse below CreditCheck. Enter the Operation as
receivePolicyQuote (same as the request). For Channel, add the PolicyQuoteChannel (same as the
request). The Relationship is DriverPolicyQuote.

16) Highlight the Exchange (enclosed within). Name it PolicyQuoteResponse as well, and select a
Message Type of PolicyQuoteReply. Change its Action to Response.

17) Add another Conditional below the Choice. Name it "GreaterThan4. Enter for the Expression:
cdl:getVariable('DrivingRecordResponseVar', ' ' , '//driv:numberOfTickets/text()',
'DrivingRecordCallbackService') > 4

18) Add a Sequence below the Conditional, and add an Interaction named PolicyQuoteInelligible
within the sequence. Enter the Operation as receivePolicyQuote. For Channel, add the
PolicyQuoteServiceChannelType. The Relationship is DriverPolicyQuote.

19) Highlight the Exchange (enclosed within). Name it PolicyQuoteInelligible as well, and select a
Message Type of PolicyQuoteFault. Change its Action to Response. Use the Advanced properties to
add a Fault Name of PolicyQuoteInelligible. At this point there should be no errors in the
PolicyQuote.cdm file.

Create Identities

20) The first step in defining identity within a choreography is to create the identity token. Select the
Base Types tab, and drag a Token from the palette onto the Tokens node. This will create a new token
with name Token1. Select the Properties view and change the name to be IDSSN (since this
Choreography will use the ssn of the driver to identify correlated messages).

21) The Type field will currently be empty. Press the New button. This will create a new information
type called IDSSNType, which can be selected and then a suitable type (xsd:string) defined.

 13

22) Now that we have defined the identity token, we need to link it to each of the message types that
have been exchanged in the choreography. This is achieved by creating a TokenLocator for each
message type and token pair, to provide the XPath expression that will locate the token's value within
the message content for the specific message type, and to associate the identity token with the channel
types. This association is required to indicate that messages that are exchange over a particular channel
type must provide a locator for the tokens associated with that channel type. To associate an IDSSN
token with a channel type, expand the Channel Types node in the Base Types tab.

23) Then drag the Identity element from the palette onto the PolicyQuoteProcessChannel. Then select
the Properties view. You will see a field called Tokens. Press the button at the end of the field to display
a selection list with the list of available tokens. Tick the checkbox next to the IDSSN token and press
the Ok button.

24) Once the identity has been defined for the channel type, and the choreography has been saved, you
will notice that errors are reported to indicate which interactions have messages being sent on the
channel type, but without identity information to enable the messages to be correlated to a particular
choreography session.

25) For each of the message type and token pairs reported in the errors, create a token locator by
dragging the Token Locator item from the palette onto the Token Locators node. When each locator has
been created, set the name to an appropriate value (e.g. PolicyQuoteIDLocator,
PolicyQuoteReplyIDLocator, PolicyQuoteFaultIDLocator) and then set the Token field to IDSSN, Type
field to the relevant message type (e.g., PolicyQuote, PolicyQuoteReply, PolicyQuoteFault, ...), and
finally the Expression field to for example: "//pol:ssn/text()". (Note - look at the samples messages to
determine the proper xpath expression, including the proper namespace prefix).

26) Once the token locators have been created for the PolicyQuote interactions, then select the IDSSN
identity entity contained within the PolicyQuoteServiceChannel and copy it to the
DrivingRecordChannel (via Copy and Paste). This will create an IDSSN identity element for the
DrivingRecordChannel. Once the choreography has been saved, then create the token locators to fix the
new set of errors that have been created. I.e. Repeat step 25 for DrivingRecordRequestIDLocator and
DrivingRecordResponseIDLocator. In this case use //driv:ssn/text() for the xpath expression.

27) Now create the Token Locators for the CreditCheckServiceChannel and associated messages.
Select the IDSSN identity entity contained within the PolicyQuoteServiceChannel and copy it to the
CreditCheckChannel (via Copy and Paste). This will create an IDSSN identity element for the
CreditCheckChannel. Once the choreography has been saved, then create the token locators to fix the
new set of errors that have been created. I.e. Repeat step 25 for CreditCheckRequestIDLocator and
CreditCheckResponseIDLocator. In this case use //cred:ssn/text() for the xpath expression.

Test Scenarios

28) Open the SuccessfulPolicyQuote.scn scenario. Examine each MessageLink and reselect the
appropriate value from the drop down list; to will now include the operation name. E.g.,
receivePolicyQuote(PolicyQuote) and save the file.

 14

29) Next, run the simulation by pressing the Green Triangle in the Eclipse Toolbar at the very far right.
If there is a red node, click on it and review the log. Otherwise click on one of the green nodes and
view the log.

30) Copy in the UnsuccessfulPolicyQuote.scn from the solutions directory and run it as well.

Update Repository

31) Next right click on updated PolicyQuote.cdm file and select Guvnor -> Commit.

32) Open the PolicyQuote.cdm in Guvnor, you will find it in the Other assets folder under the
PolicyQuoteProcessService. Change the Status from Business Analysis to Architectural Modeling and
Save and close.

33) Next right click on the SuccessfuPolicyQuote.scn and commit to Guvnor.

34) Open SuccessfuPolicyQuote.scn in Guvnor and change the status to Service Oriented Analysis.

34) Next right click on the SuccessfuPolicyQuote.scn and add it to Guvnor.

35) Open UnsuccessfuPolicyQuote.scn in Guvnor and add categories Services/Orchestrated
Services/PolicyQuoteProcessService and Scenarios and change the status to Service Oriented Analysis.

 15

Lab4 Service Modeling

Goal: Create a Services Candidate Description for each new service that specifies the name of the new
candidate service, what type of service it is (Entity, Utility, Task, or Orchestrated), and its candidate
tasks. Extend the Scenario and expand the Choreography model to include two new services.

1) Review the Business Requirements from Lab2. It appears from the description of the requirements
that two new services may be needed, one to calculation the policy quote price
(PolicyQuoteCalculationService) and the other to persist the quote (and PolicyQuoteEntityService).

2) Create a text document in policyquote-models for each new service called services-candidate-
description-serviceName that describes what the service does, what type of service it is, and its
associated tasks (see solution if needed). Open the PolicyQuoteDataModel and review its contents. Are
there any new Entity Service candidates or associated tasks required?

3) Open Guvnor and create a Knowledge Package for the two new service candidates:
PolicyQuoteEntityService and PolicyQuoteCalculationService. Add new categories for each under
Services/Entity Services and Service /Task Services.

4) Use JBDS Guvnor → Add to add the services-candidate-description-serviceName files to their
respective packages / folders in Guvnor. Using the Guvnor UI, find the file in the Other assets folder
under the PolicyQuoteEntityService, and add the categories Services/Entity Services/
PolicyQuoteEntityService and Documentation. Change the Status to Service Oriented Analysis and
Save and close. Repeat for the newly added file in PolicyQuoteCalculationService, except use the
categories Services/Task Services/PolicyQuoteCalculationService and Documentation.

Update Roles, Relationships, and Base Types

5) Open PolicyQuote.cdm. In the Roles and Relationships editor, use the Role icon to add two more
roles: PolicyQuoteCalculationService and PolicyQuoteEntityService. Name the associated Behaviors:
PolicyQuoteCalculator, PolicyQuoteEntityProvider.

6) Use the Relationship tool to draw relationships from PolicyQuoteProcessService to
PolicyQuoteCalculationService (name it PolicyQuotePolicyQuoteCalculation) and
PolicyQuoteProcessService to PolicyQuoteEntityService (name it PolicyQuotePolicyQuoteEntity).

7) Next in the Base Types editor rename the Participant Types PolicyQuoteCalculationService and
PolicyQuoteEntityService.

8) At this stage, there should only be a few errors associated with the choreography: "Reference
'Reference Token' must be specified". Double-click one of the errors, this will navigate to the
ChannelType that has reported the validation problem. Rename the ChannelType to remove "Service"
and "Type" (just to make the name shorter). Select the Properties view to see the property that has the

 16

error. This problem can be resolved by setting the Reference Token property to URIToken by selecting
it from the combo box.

Extend the Successful Scenario

9) Copy the SuccessfulPolicyQuote.scn and name it SuccessfulPolicyQuote.scn. Under the general
properties Choreography Description URL enter the value PolicyQuote.cdm.

10) Use the Participant icon to add Participants PolicyQuoteCalculationService and
PolicyQuoteEntityService at the right of CreditCheckService. Use the Type property drop down and
select the appropriate participant.

11) Use the MessageLink icon to link PolicyQuoteProcessService to PolicyQuoteCalculationService.
Highlight the MessageLink line, and select the Message property PolicyQuote from the drop down.
Add the Value URL of sample-data/PolicyQuote.xml. Repeat this step for
PolicyQuoteCalculationService back to PolicyQuoteProcessService: PolicyQuoteReply,
PolicyQuoteProcessService to PolicyQuoteEntityService: PolicyQuote, and PolicyQuoteEntityService
back to PolicyQuoteProcessService: PolicyQuoteReply.

Update Choreography Flow

12) Next select the Choreography Flows editor in PolicyQuote.cdm. Add an Interaction named
PolicyQuoteCalculation after the CreditCheckResponse (choose the Interaction entity from the palette
and drag it onto the navy blue thick line). Enter the Operation as calculatePolicyQuote. For Channel,
select the PolicyQuoteCalculationServiceChannel. This will create a channel variable in the current
choreography (called PolicyQuoteServiceChannel), and also set the Relationship property to the value
relevant for the channel's target role, in this case the Relationship is
PolicyQuotePolicyQuoteCalculation.

13) Highlight the Exchange (enclosed within). Name it PolicyQuoteCalculation as well, and select a
Message Type of PolicyQuote. Leave its Action as Request.

14) Use the Exchange Icon to add a second exchange. Name it PolicyQuoteCalculationReply, and
select a Message Type of PolicyQuoteReply. Change its Action to Response.

15) Add an Interaction named PolicyQuoteEntity. Enter the Operation as createPolicyQuote (same as
the request). For Channel, add the PolicyQuoteEntityChannel.

16) Highlight the Exchange (enclosed within). Name it PolicyQuoteEntity as well, and select a
Message Type of PolicyQuote.

14) Use the Exchange Icon to add a second exchange. Name it PolicyQuoteEntityReply, and select a
Message Type of PolicyQuoteReply. Change its Action to Response.

Create Identities

 17

17) Now create the IDSSN for the PolicyQuoteCalculationChannel and PolicyQuoteEntityChannel.

Run Scenario

18) Next, go to the SuccessfulPolicyQuote.scn and run the simulation by pressing the Green Triangle.

19) Copy in the UnsuccessfulPolicyQuote.scn from the solutions directory and run it as well.

Update Repository

20) Next right click on updated PolicyQuote.cdm file and select Guvnor -> Commit.

21) Open the PolicyQuote.cdm in Guvnor, you will find it in the Other assets folder under the
PolicyQuoteProcessService. Change the Status from Architectural Modeling to Service Oriented
Analysis and Save and close.

22) Next right click on the SuccessfuPolicyQuote and UnsuccessfulPolicyQuote (separately) and
commit them to Guvnor.

23) Open each in Guvnor and change the status of to Service Oriented Analysis.

 18

Lab5 Service Oriented Design

Goal: Associate the message schema to each new service.

Note: As part of our effort to standardize service contracts, we have decided to standardize on the use
of XML and an extensible message structure based on a Task element, any common elements (e.g.,
date) and then a complex type that varies by task. Since we do plan to use XML throughout, we need to
define XML schemas for request and response messages from / to clients. While initially we have only
identified a single business process (PolicyQuoteProcess), we anticipate that our services may be used
in other business processes, and want to promote the use of resuable and composable services.
Therefore we will define XML schemas for services that are currently internal to this business process.
To the extent possible, we would like to standardize on a "canonical" message structure, as to minimize
the number of distinct transformations required. Hence we define a single policyQuote schema (defined
in four separate xsd files) that will support several of the services. Typically we would start this schema
design as part of the Information Modeling task within Architectural Modeling, and finish it during
Service Oriented Design. For the purposes of this lab, these schema files have already been created.

1) Copy the schema folder from labs to the root of policyquote-models in your workspace. Open and
examine the policyQuoteBase.xsd, policyQuoteRequest.xsd, policyQuoteResponse.xsd, and
policyQuoteFault.xsd. Next examine the various sample messages in sample-data.

2) Add the contents of the entire schema folder to Guvnor in the ServicesGlobal package. Note adding
xsd files will cause Eclipse to report errors; these can be ignored.

3) Open in Guvnor, you will find the schema files in the Other assets folder. Add the category XML
Schemas. For the PolicyQuoteBase.xsd, PolicyQUoteRequest.xsd, PolicyQuoteResponse.xsd, and
PolicyQuoteFault.xsd, also add the categories Services/Orchestrated
Services/PolicyQuoteProcessService, Services/Entity Services/PolicyQuoteEntityService, and
Services/Task Services/PolicyQuoteCalculationService. Set the Status to Service Oriented Design for
each file.

 19

 20

Lab6 ESB Services

Goal: Create an ESB Project for the PolicyQuoteEntityService and the PolicyQuoteCalculationService
(existing external services have already been created and are in the lab/resources folder).

1) Use JBoss Developer Studio New -> Project -> ESB -> ESB Project. Name it
PolicyQuoteEntityService. Choose soa-p 5.0 server as the server.

2) Create a JCA Provider (for the JMS queue). Highlight Providers and click on Add with the following
values:

Name JBossMessaging
ConnectionFactory XAConnectionFactory
ChannelID PolicyQuoteEntityChannel

Under Advanced:

Jndi Context Factory org.jnp.interfaces.NamingContextFactory
Jndi URL localhost

Expand under the Providers JBossMessaging and select PolicyQuoteEntityChannel. Expand under
PolicyQuoteEntityChannel and select Filter. Add values:

Destination Name queue/PolicyQuoteEntity_ESB
Destination Type QUEUE (this is the default)
Transacted true

Leave other values blank.

3) Create a Service. Highlight Services and click on Add. Provide the following values

Name PolicyQuoteEntityService
Category EntityServices
Description Persists Policy Quote data

4) Add a JMS Listener to the Service with values:

Name PolicyQuoteEntityChannelListener
Channel ID Ref PolicyQuoteEntityChannel

5) Add an Action to the Service of type System Println. Give it a

Name PrintBefore
Message Message when entering PolicyQuoteEntityService.

 21

Print Full True

6) Use JBoss Developer Studio New -> Project -> ESB -> ESB Project. Name it
PolicyQuoteCalculationService. Choose soa-p 5.0 as the server.

7) Create a JCA Provider (for the JMS queue). Highlight Providers and click on Add with the following
values:

Name JBossMessaging
ConnectionFactory: XAConnectionFactory
ChannelID PolicyQuoteCalculationChannel

Under Advanced:

Jndi Context Factory org.jnp.interfaces.NamingContextFactory
Jndi URL localhost

Expand under the Providers JBossMessaging and select PolicyQuoteCalculationChannel. Expand under
PolicyQuoteCalculationChannel and select Filter. Add values:

Destination Name queue/PolicyQuoteCalculation_ESB
Destination Type QUEUE (this is the default)
Transacted true

Leave other values blank.

8) Create a Service. Highlight Services and click on Add. Provide the following values

Name PolicyQuoteCalculationService
Category TaskServices
Description Calculation Policy Quote data

9) Add a JMS Listener to the Service with values:

Name PolicyQuoteCalculationChannelListener
Channel ID Ref PolicyQuoteCalculationChannel

10) Add an Action to the Service of type System Println. Give it a

Name PrintBefore
Message Message when entering PolicyQuoteCalculationService.
Print Full True

Add to Repository

11) Next open the PolicyQuoteEntityService in JBDS. Add the jboss-esb.xml into

 22

thePolicyQuoteEntityService in Guvnor.

12) Open Guvnor, you will find the jboss-esb.xml file in the XML, Properties folder of the
PolicyQuoteEntityService package. Add the categories Services /Entity
Services/PolicyQuoteEntityService and JBossESB Configuration and the Status Service Development.

13) Next open the PolicyQuoteCalculationService in JBDS. Add the jboss-esb.xml and
deployment.xml into thePolicyQuoteCalculationService in Guvnor.

14) Open Guvnor, you will find these newly added files in the XML, Properties folder. Add the
categories Services /Task Services/PolicyQuoteCalculationService and JBossESB Configuration and
the Status Service Development.

 23

Lab7 Transformations

Goal: Transform XML message data to Java for PolicyQuoteEntityService and
PolicyQuoteCalculationService

PolicyQuoteEntityService

1) In JBoss Developer Studio open the PolicyQuoteEntityService project. Copy the org folder from
lab7-transformations/src to the project src folder. Copy policyQuote.xml and policyQuoteReply.xml
from labs/sample-data folder to the project root folder. Copy policyQuote.xsd, policyQuoteReply.xsd,
policyQuoteFault.xsd, and types folder from labs/schema folder to the project's esbcontent folder.

2) Use the File -> New -> Smooks -> Smooks Configuration File and name it
PolicyQuoteConfig.smooks. Select the Input Task, right click, and select Add Task and select Java
Mapping. Select the Input Task once more, the Input Type as XML, and under Input Data select Add
and Browse Workspace -> PolicyQuoteEntityService and select PolicyQuote.xml and hit finish.

3) Next right click in the Selected Task Details to the right of the XML Input Model and select Add ->
Java Class, name the BeanId policyQuote and and browse to org.acme.insurance.PolicyQuote for the
ClassName. Now drag from the requestDate in the XML Input Model to the requestDate in the
policyQuote. Edit the Properties to add the data format (yyyy-MM-dd) Repeat for all the XML
elements.

4) Then select the policyQuoteID in the Java object, and right click -> delete (we don't map the
policyQuoteID because it will be set by the downstream action).

5) Right click to add another Java class, this time with a beanID of task and the class name
org.acme.insurance.Task. Map the task element to taskName. (Note - you may need to open the Source
tab and add createOnElement="policyQuote" to each of the the jb:bean elements).

6) Open the jboss-esb.xml and add a SmooksAction (Actions -> Add -> Transformers/Converters ->
Smooks Action) with:

Name CreatePolicyQuoteObject
Smooks Config PolicyQuoteConfigSmooks.xml
Result Type JAVA
Set Payload Location policyPayload

7) Add another SystemPrintln action. Name it PrintAfter with the message "Message after
transformation". Set Print Full to true (this will print out the entire message, not just the default body
location).

8) Copy deployment.xml from solution/entityMETA-INF to the esb-content/META-INF directory.

 24

9) Right click on the PolicyQuoteConfigSmooks.xml and choose Run As -> Smooks Run
Configuration. You should see some printout like:

[Java Mapping Results...]
 |--
 |> policyQuote (beanId = "policyQuote")
 | > policyQuoteID = 0L
 | > requestDate = "2009-01-01 00:00:00.0 MST"
 | > driverName = "Bill Smith"
 | > age = 30I
 | > ssn = "012345678"
 | > dlNumber = "987654321"
 | > numberOfAccidents = 1I
 | > numberOfTickets = 2I
 | > creditScore = 500I
 | > policyType = "AUTO"
 | > vehicleYear = 2004I
 | > price = 0I
 |--
 |--
 |> task (beanId = "task")
 | > taskName = "createPolicyQuote"
 |--

PolicyQuoteCalculationService

10) In JBoss Developer Studio open the PolicyQuoteCalculationService project. Copy the org folder
from lab7-transformations/src-policydriver to the project src folder. Copy
policyQuoteCalculationRequest.xml and policyQuoteCalcualtionResponse.xml from labs/sample-data
folder to the project root folder. Copy policyQuote.xsd, policyQuoteReply.xsd, policyQuoteFault.xsd,
and types folder from labs/schema folder to the project's esbcontent folder.

11) Use the File -> New -> Smooks -> Smooks Configuration File and name it
PolicyQuoteCalculationConfig.smooks. Select the Input Task, right click, and select Add Task and
select Java Mapping. Select the Input Task once more, the Input Type as XML, and under Input Data
select Add and Browse Workspace -> PolicyQuoteCalculationService and select
PolicyQuoteCalculationRequest.xml and hit finish.

12) Next right click in the Selected Task Details to the right of the XML Input Model and select Add ->
Java Class, name the BeanId driver and browse to org.acme.insurance.Driver, then another Java Class
name the BeanId policy and browse to org.acme.insurance.Policy for the ClassName. Link the driver in
policy to driver. Now drag from the requestDate in the XML Input Model to the requestDate in the
policy. Edit the Properties to add the data format (yyyy-MM-dd). Repeat for all the XML elements.

13) Right click to add another Java class, this time with a beanID of task and the class name
org.acme.insurance.Task. Map the task element to taskName. (Note - you may need to open the Source

 25

tab and add createOnElement="policyQuote" to each of the the jb:bean elements).

14) Open the jboss-esb.xml and add a SmooksAction with:

Name CreatePolicyAndDriverObjects
Smooks Config PolicyQuoteCalculationConfigSmooks.xml
Result Type JAVA
Set Payload Location policyPayload

14) Add another SystemPrintln action. Name it PrintAfter with the message "Message after
transformation". Set Print Full to true (this will print out the entire message, not just the default body
location).

15) Copy deployment.xml from solution/calculation/META-INF to the esb-content/META-INF
directory.

16) Right click on the PolicyQuoteCalculationConfigSmooks.xml and choose Run As -> Smooks Run
Configuration. You should see some printout like:

[Java Mapping Results...]
 |--
 |> task (beanId = "task")
 | > taskName = "calculatePolicyQuote"
 |--
 |--
 |> policy (beanId = "policy")
 | > requestDate = "2009-01-01 00:00:00.0 MST"
 | > policyType = "AUTO"
 | > vehicleYear = 2004I
 | > price = 0I
 | > driver (beanId = "driver")
 | > driverName = "Bill Smith"
 | > age = 30I
 | > ssn = "012345678"
 | > dlNumber = "987654321"
 | > numberOfAccidents = 1I
 | > numberOfTickets = 2I
 | > creditScore = 500I
 |--

 26

Lab8 Entity Service

Goal: Add a custom JPA Persistance action to PolicyQuoteEntityService to persist the PolicyQuote
data.

1) In JBoss Developer Studio open the PolicyQuoteEntityService project. Copy the src folder from
lab8-entity-service/solutions. Copy PolicyQuoteEntity.jar from labs/resources to the root of the project.
Then add this jar to the project Java Build Path.

2) Open the jboss-esb.xml and add a Custom Action with class and name:

class org.acme.insurance.PolicyQuotePersistanceAction
name JPAAction

Add two properties:

name entityManagerJNDIName
value persistence.unit:unitName=#PolicyQuoteEntity

name manageTransactionsInAction
value false

3) Highlight Action and add the inXsd, outXsd, and faultXsd under Advanced.

In Xsd /policyQuoteRequest.xsd
Out Xsd /policyQuoteResponse.xsd
Fault Xsd /policyQuoteFault.xsd

4) Open PolicyQuotePersistenceAction and review the code. Change the code to get the message data
from the policyPayload, since the previous Smooks action uses this location (i.e., set-payload-location
= policyPayload). So the updated line of code should look like:

Map policyPayload = (Map) newMessage.getBody().get("policyPayload");

5) Add another SystemPrint action. Name it PrintAfterPersistance with the message "PolicyQuote after
persistence operations have completed". Set the Print FUll option to true.

6) Next we need to take the results of the persistence action, and transform it back to XML. Copy the
PolicyQuoteReplyConfigSmooks.xml from the solutions/esbcontent folder. Then add another
SmooksAction with:

Name CreatePolicyQuoteReply
Smooks Config PolicyQuoteReplyConfigSmooks.xml
Get Payload Location policyPayload
Result Type STRING

 27

7) Add another SystemPrint action. Name it PrintAfterReplyCreated with the message "PolicyQuote
after reply message created".

8) Set the MEP at the top of the Actions List to RequestResponse.

9) Next copy labs/resources/PolicyQuoteEntity.jar and policyquote-queue-service.xml to the
server/default/deploy directory.

10) Start the server first (if not already running). Most people prefer to run this from a separate
command prompt instead of from inside Eclipse.

11) Right click on the SOA-P server in the Server view, and select Add and Remove and then move the
PolicyQuoteEntityService to the right (Configure) list. Right click on the PolicQuoteEntityService and
select Full Publish.

12) Next use SoapUI to send a SOAP Message to the service and check the response. The WSDL is in
jboss-soa-p.5.0.0/jboss-as/server/default/data/wsdl/PolicyQuoteEntityService.esb/EntityServices. First
try the createPolicyQuote task, then the getPolicyQuote task. Or, copy the WSDL to the
PolicyQuoteEntityService project, and use the Eclipse Web Services Explorer (change to the Java EE
perspective and look for it on the tool bar).

13) Open the JBoss JMX console, http://localhost:8080/jmx-console. Scan down to jboss ->
database=localDB, service=Hypersonic. On the next page scan down startDatabaseManager. In the
GUI, enter SELECT * FROM POLICYQUOTE and hit the Execute button.

Update Repository

14) Commit the updated jboss-esb.xml file into Guvnor.

15) Add the deployment.xml, PolicyQuoteConfigSmooks.xml, PolicyQuoteReplyConfigSmooks.xml,
PolicyQuoteEntity.jar and PolicyQuotePersistanceAction.java into the PolicyQuoteEntityService in
Guvnor. Add Task.java into ServicesGlobal.

16) Open in Guvnor, you will find these newly added files in the XML, Properties folder of the
PolicyQuoteEntityService and ServiceGlobal. Add the categories Services /Entity
Services/PolicyQuoteEntityService and either JbossESB Configuration, SmooksTransformation,
Deployment Archive, or Java Source, and the Status Service Development. Note that
PolicyQuoteEntity.jar is under the Model folder.

 28

Lab9 Task Service

Goal: Create a task service PolicyQuoteCalculationService that uses a set of rules to calculate the quote
price.

1) Open the PolicyQuoteCalculationService project. Copy policyquotecalculation.drl file from
policyquotesolution/esbContent into the esbcontents directory.

2) Highlight Action and add the inXsd, outXsd, and faultXsd under Advanced.

In Xsd /policyQuoteRequest.xsd
Out Xsd /policyQuoteResponse.xsd
Fault Xsd /policyQuoteFault.xsd

3) Add a BusinessRulesProcessor action after the PrintAfter action:

Name CalculateQuote
Rule Set /policyquotecalculation.drl

Add two items to the Object Paths List with values:

body.policyPayload.policy
 body.policyPayload.driver

4) Add another SystemPrint action. Name it PrintAfterQuoteCalculation with the message
"PolicyQuote price after calculation". Set Print Full to true.

5) Next we need to take the results of the rules execution, and transform the POJOs back to XML.
Copy the PolicyQuoteCalculatioReplyConfigSmooks.xml from the solutions/esbcontent folder to the
project esbContent folder. Open and examine its contents.

7) Add another SmooksAction with:

Name CreatePolicyQuoteCalculationReply
Smooks Config PolicyQuoteCalculationReplyConfigSmooks.xml
Get Payload Location policyPayload
Result Type STRING

7) Add another SystemPrint action. Name it PrintAfterReplyCreated with the message "PolicyQuote
after reply message created".

8) Set the MEP at the top of the Actions List to RequestResponse.

 29

9) Start the server first (if not already running). Most people prefer to run this from a separate
command prompt instead of from inside Eclipse.

10) Right click on the SOA-P server in the Server view, and select Add and Remove and then move the
PolicyQuoteCalculationService to the right (Configure) list. Right click on the
PolicQuoteCalculationService and select Full Publish.

11) Next use SoapUI to send a SOAP Message to the service and check the response. The WSDL is in
jboss-soa-p.5.0.0/jboss-as/server/default/data/wsdl/PolicyQuoteCalculationService.esb/TaskServices.
Use the calculatePolicyQuote task. Or, copy the WSDL to the PolicyQuoteEntityService project, and
use the Eclipse Web Services Explorer (change to the Java EE perspective and look for it on the tool
bar).

12) Examine the console and check the message before and after the policy quote calculation. A price
should be in the XML reply message.

Update Repository

13) Next add the policyquotecalculation.drl, PolicyQuoteCalculationConfigSmooks.xml and
PolicyQuoteCalculationReplyConfigSmooks.xml, Policy.java, and Driver.java into the
PolicyQuoteCalculationService in Guvnor.

14) Open Guvnor, you will find these newly added files in the XML, Properties folder. Add the
categories Services/Task Services/PolicyQuoteCalculationService and either SmooksTransformation or
Java Source and the Status Service Development. The policyquotecalculation.drl will be in the
Technical rule assets folder. Open it and add the categories Services/Task
Services/PolicyQuoteCalculationService and the Status Service Development.

15) Add the PolicyQuoteCalcualtionService.wsdl and PolicyQuoteEntityService.wsdl found in
server/default/data/wsdl/... to their respective packages in Guvnor. Open the packages in Guvnor and
assign the appropriate categories and status (e.g., Services/Task
Services/PolicyQuoteCalculationService and WSDL and Status Service Development).

16) Add CreditCheckService.wsdl and DrivingRecordService.wsdl from the labs/wsdl folder to Guvnor
in the ServicesGlobal package.

 30

Lab10 Orchestrated Service

Goal: Create a BPEL process for the PolicyQuoteProcessService.

Note - if using SAVARA tooling, the skeleton for the process could be generated from the
Choreography model. This would save time, however it would not provide the experience of creating
the process from scratch.

Note - this lab is very lengthy, so break points have been included so that the lab can alternate with
lectures if desired.

1) Open JBDS Designer and create a new BPEL project. File -> New -> Other -> BPEL 2.0 -> BPEL
Project. Name it PolicyQuoteProcessService, Switch to the JBossAS or the Choreography perspective.
(there is no BPEL perspective, however the either of these perspectives have a good set of views for
BPEL process development).

Use the File -> New -> Guvnor -> Resources from Guvnor and add the WSDL files from
PolicyQuoteEntityService, PolicyQuoteCalculationService, and ServicesGlobal into the root of this
project (4 WSDL files).

2) Create a new BPEL Process. File -> New -> Other -> BPEL 2.0 -> New BPEL Process File. Select
an Empty BPEL Process (it will be synchronous, since this will be easier to test with a simple SOAP
client, however we already have the wsdl, and don't want the wizard to create the client partnerLink for
us). Name it PolicyQuoteProcess. Select the Target Namespace (either choice in the list should be fine).

Create Partner Links

3) Create PartnerLinks using the Partner Links + on the right hand side. Name the first one
CreditCheckService. Use the Browse button in the Properties view (Details), then in the Choose Partner
Link Type window select From Project and Filter Show Port Types. This will then list the PortTypes
from the WSDL files imported in step 1. Highlight the CreditCheckServicePortType (IMPORTANT)
and hit Ok. This will create a new PartnerLinkType. Name it CreditCheckServiceLT, and then name the
role CreditCheckServiceRole and select the CreditCheckServicePortType. Then select Finish. Next Set
Namespace Prefix to spl. Examine the Properties View, Under the Partner Role select the
CreditCheckServiceRole radio button. Make certain that the CreditCheckServiceOp appears under the
Partner Operations box.

Do the same for the following list of PartnerLinks (the first one was just completed).

 31

Partner Link PartnerLinkType PartnerRole My Role

CreditCheckService CreditCheckServiceLT CreditCheckServiceRole
DrivingRecordService DrivingRecordServiceLT DrivingRecordServiceRol

e
PolicyQuoteCalculation
Service

PolicyQuoteCalculationS
erviceLT

PolicyQuoteCalculationS
erviceRole

DrivingRecordCallback
Service

DrivingRecordCallbackS
erviceLT

DrivingRecordCallbac
kServiceRole

PolicyQuoteEntityServi
ce

PolicyQuoteEntityService
LT

PolicyQuoteEntityService
Role

PolicyQuoteProcessSer
vice

PolicyQuoteProcessServi
ceLT

PolicyQuoteServiceRo
le

Create Variables

4) Create Variables using the Variables + on the right hand side. Name the first one
PolicyQuoteRequest. Use the Browse button in the Properties view, and then Show XSD Types select
From Project and then filter on Messages. Select the PolicyQuoteProcessServiceRequest and then use a
namespace prefix of orchws. Do the same for the following list of Variables (the first one is already
completed).

 32

Variable Namespace
Prefix

MessageType

PolicyQuoteRequest orchws PolicyQuoteProcessServiceRequest
PolicyQuoteResponse orchws PolicyQuoteProcessServiceResponse
CreditCheckRequest cas CreditCheckServiceReq
CreditCheckResponse cas CreditCheckServiceRes
DrivingRecordRequest dmv DrivingRecordServiceReq
DrivingRecordResponse drcs DrivingRecordCallbackServiceReq
PolicyQuoteCalculationRequest calc PolicyQuoteCalculationServiceReq
PolicyQuoteCalculationResponse calc PolicyQuoteCalculationServiceRes
PolicyQuoteEntityRequest polent PolicyQuoteEntityServiceReq
PolicyQuoteEntityResponse polent PolicyQuoteEntityServiceRes
PolicyQuoteFault PolicyQuoteProcessServiceFault

Create the Sequence

5) Rename the sequence main to PolicyQuoteSequence. Use the Palette to add a Receive Activity (click
directly on the leftmost of the two parallel gray vertical bars that divides the canvas from the area with
PartnerLinks, Variables, Correlation Sets, and Message Exchanges, select the Receive icon and drag it
beneath the PolicyQuoteSequence). Name it ReceivePolicyQuoteRequest. In the Properties View select
the PolicyQuoteProcessService as the Partner Link, and select PolicyQuoteProcessServiceOp as the
Operation. Uncheck the Use WSDL Message Parts Mapping and select the Variable
PolicyQuoteRequest. Check Create a new Process instance if one does not already exist.

6) Next add a Reply activity and name it SendPolicyQuoteResponse. In the Properties View select the
PolicyQuoteProcessService as the Partner Link, and select PolicyQuoteProcessServiceOp as the
Operation. Uncheck the Use WSDL Message Parts Mapping and select the Variable
PolicyQuoteResponse.

7) Next drag and drop an Invoke activity from the Palette between the ReceivePolicyQuoteRequest and
the SendPolicyQuoteResponse. Name it SendDrivingRecordRequest. In the Properties View select the
DrivingRecordService as the Partner Link, and select DrivingRecordServiceOp as the Operation.
Uncheck the Use WSDL Message Parts Mapping and select the Variable DrivingRecordRequest.

BREAK

 33

8) Now add an Assign to assign the data from the PolicyQuoteRequest to the
SendDrivingRecordRequest. Drag and drop the Assign onto the palette in between the
ReceivePolicyQuoteRequest and the SendDrivingRecordRequest. Name it
AssignDataForDrivingRecordRequest. Use the New button to create four new copy operations in the
Properties view to copy from the PolicyQuoteRequest/in/receivePolicyQuote/policyQuoteInfo elements
to the corresponding DrivingRecordRequest elements (copy name, ssn, dlNumber, and age). When
requested, set the 'from' namespace prefix to pol and the 'to' namespace prefix to driv. When it asks to
create an Initializer, select Yes.

9) Next drag and drop a Receive activity from the Palette below the SendDrivingRecordRequest. Name
it ReceiveDrivingRecordResponse. In the Properties View select the DrivingRecordCallbackService as
the Partner Link, and select DrivingRecordCallbackServiceOp as the Operation. Uncheck the Use
WSDL Message Parts Mapping and select the Variable DrivingRecordResponse.

Add a Correlation Set

10) Create a Correlation Set using the Correlation Sets + on the right hand side. Name it
SSNCorrelationSet. On the Properties View select Add to create a new BPEL Property. Name it SSN,
hit Browse for the Type, Select Show XSD Types From Import and filter Simple Types (uncheck all
other boxes), and select String as the Type. Change the namespace to xs. Then add three
PropertyAliases. Select New, then Browse, Show XSD Types From Project, filter on Messages. Select
PolicyQuoteProcessServiceRequest, and within that message choose the Part
receivePolicyQuote/policyQuoteInfo/ssn. Do the same for DrivingRecordServiceReq and
DrivingRecordCallbackServiceReq.

11) Next add the correlation set to the various activities. Start with the ReceivePolicyQuoteRequest
Activity. Highlight the activity, then go to Properties View and select the Correlations tab. Press the
Add button on the right. Since there is only one Correlation Set defined, it will select
SSNCorrelationSet. This associates the activity with the correlation set. Click the cell under Initiation
and select Yes. Leave the direction as Receive. Because this Receive activity will always instantiate
the process, it will always initiate the correlation set, too. Repeat these steps for
SendDrivingRecordRequest (Send, No) ReceiveDrivingRecordResponse (Receive, No), and
SendPolicyQuoteResponse (Send, No).

BREAK

12) Drag an If activity to the space below the ReceiveDrivingRecordResponse. Highlight the If and in
the Properties View Detail select Create a New Condition. Leave the Expression Language Same as
Process (XPath 1.0 in BPEL 2.0). In the text box below use Code Completion (Ctrl Space) to add the
condition: $DrivingRecordResponse.in/driv:numberOfTickets <= 4. (Instead of copying this expression
in; use Ctrl Space, and select first the DrivingRecordResponse, then the . , then Ctrl Space and select
in, the add /, then Ctrl Space and select driv:numberOfTickets, then space to show a list of operators,

 34

and select <= and then 4).

13) Drag and Drop the Sequence Container from the Palette onto the Process canvas and drop it into
the activity portion of the If. Name the new Sequence OkDriverSequence. Drag the
SendPolicyQuoteResponse into the OkDriverSequence.

14) Next drag and drop an Invoke activity from the Palette at the top of the OkDriverSequence. Name
it SendCreditCheckRequest. In the Properties View select the CreditCheckService as the Partner Link,
and select CreditCheckServiceOp as the Operation. Uncheck the Use WSDL Message Parts Mapping
and select the Variable CreditCheckRequest for the input variable and CreditCheckResponse for the
output variable.

15) Now add another Assign (call it AssignDataForCreditCheckRequest) before the
SendCreditCheckRequest. Create a single copy operations to copy from the
PolicyQuoteRequest/receivePolicyQuote/policyQuoteInfo/ssn to the SendCreditCheckRequest. Use the
namespace prefix cred. When it asks to create an Initializer, select Yes.

16) Next invoke the PolicyQuoteCalculationService. Drag the Invoke activity from the Palette to the
process canvas and add it in between SendCreditCheckRequest and SendPolicyQuoteResponse. Name
it SendPolicyQuoteCalculationRequest. In the Properties View select the
PolicyQuoteCalculationService as the Partner Link, and select PolicyQuoteCalculationServiceOp as the
Operation. Uncheck the Use WSDL Message Parts Mapping and select the Variable
PolicyQuoteCalculationRequest for the input variable and PolicyQuoteCalculationResponse for the
output variable.

17) Add an Assign activity before SendPolicyQuoteCalculationRequest. Name it
AssignDataForCalculateQuote. Create several new copy operations to copy the following. When asked
to create an Initializer, select Yes.

 35

From To

PolicyQuoteRequest/receivePolicyQuote/request
Date

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/requestDate

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/policyType

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/policyType

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/vehicleYear

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/vehicleYear

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/driverName

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/driverName

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/ssn

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/ssn

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/dlNumber

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/dlNumber

PolicyQuoteRequest/receivePolicyQuote/policyQ
uoteInfo/age

PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/age

DrvingRecordResponse/numberOfAccidents PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/numberOfAccidents

DrvingRecordResponse/numberOfTickets PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/numberOfTickets

CreditCheckResponse/score PolicyQuoteCalculationRequest/calculatePolicyQu
ote/policyQuoteInfo/creditScore

Then select Fixed Value on the From, enter a value calculatePolicyQuote, and select
PolicyQuoteCalculationRequest/calculatePolicyQuote/task on the To. Then use the Move Up button to
move this copy operation to the third copy operation (after the requestDate). Note it is important that
the copy operations be performed in the sequence specified.

18) Next invoke the PolicyQuoteEntityService. Drag the Invoke activity from the Palette to the process
canvas and add it in between SendPolicyQuoteCalculationRequest and SendPolicyQuoteResponse.
Name it SendPolicyQuoteEntityRequest. In the Properties View select the PolicyQuoteEntityService as
the Partner Link, and select PolicyQuoteEntityServiceOp as the Operation. Uncheck the Use WSDL
Message Parts Mapping and select the Variable PolicyQuoteEntityRequest for the input variable and
PolicyQuoteEntityResponse for the output variable.

19) Add an Assign activity before SendPolicyQuoteEntityRequest. Name it
AssignDataForPolicyQuoteEntityRequest. Create several new copy operations to copy the following
data. When asked to create an Initializer, select Yes.

 36

From To
PolicyQuoteCalculationResponse/calculatePolicy
Quote/requestDate

PolicyQuoteEntityResponse/createPolicyQuote/req
uestDate

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/policyType

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/policyType

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/vehicalYear

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/vehicalYear

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/driverName

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/driverName

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/ssn

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/ssn

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/dlNumber

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/dlNumber

PolicyQuoteCalculationResponse/calculatePolicy
Quote/policyQuoteInfo/age

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/age

PolicyQuoteCalculationResponse/calculatePolicy
Quote/numberOfAccidents

PolicyQuoteEntityRequest/createPolicyQuote/num
berOfAccidents

PolicyQuoteCalculationResponse/calculatePolicy
Quote/numberOfTickets

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/numberOfTickets

PolicyQuoteCalculationResponse/calculatePolicy
Quote/creditScore

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/creditScore

PolicyQuoteCalculationResponse/calculatePolicy
Quote/price

PolicyQuoteEntityRequest/createPolicyQuote/polic
yQuoteInfo/price

Then select Fixed Value on the From, enter a value createPolicyQuote, and select
PolicyQuoteEntityRequest/createPolicyQuote/task on the To. Then use the Move Up button to move
this copy operation to the third copy operation. Note it is important that the copy operations be
performed in the sequence specified.

20) Add an Assign activity before SendPolicyQuoteResponse. Name it AssignDataForResponse.
Create several new copy operations to copy:

 37

From To

PolicyQuoteEntityResponse/createPolicyQuote/re
questDate

PolicyQuoteResponse/receivePolicyQuote/request
Date

PolicyQuoteEntityResponse/createPolicyQuote/po
licyQuoteInfo

PolicyQuoteResponse/receivePolicyQuote/policy
QuoteInfo

Then select Fixed Value on the From, enter a value receivePolicyQuote, and select
PolicyQuoteResponse/receivePolicyQuote/task on the To.

BREAK

Note - if time permits lab can be expanded to include else branch for handling numberOfTickets > 4
condition.

BREAK

Deployment

21) Create a new ODE Deployment descriptor. File -> New -> Other -> BPEL 2.0 -> Apache ODE
Deployment Descriptor. Set the Partner Links for the Inbound interfaces, and then for the Outbound
Interfaces.

21) Copy CreditCheckService.esb, DrivingRecordService.esb from resources folder to the server
/default/deploy directory. If you have not performed the preceding labs, then also copy policyquote-
queue-service.xml, PolicyQuoteCalculationService.esb, PolicyQuoteEntity.jar and
PolicyQuoteEntityService.esb to the server /default/deploy directory.

22) Start the server if it is not already started.

23) Deploy the PolicyQuoteProcess to the server using Full Publish option in the Servers view. Note
Full Publish creates a new version of the process definition in the server each time you deploy.

24) Use SoapUI to create two SoapUI projects, one to consume the PolicyQuoteProcessService.wsdl
and the other DrivingRecordCallbackService.wsdl (two SoapUI projects), and populate the respective
request messages using the sample messages. There WSDL files can be found in the
server/default/data/wsdl/PolicyQuoteProcessService folder.

25) Send the policyQuoteRequest message, wait about five seconds, the send the
drivingRecordResponse.

Update Repository

 38

26) Open the PolicyQuoteProcessService project in JBDS. Add the PolicyQuoteProcessService bpel
process definition to Guvnor in the PolicyQuoteProcessService package.

27) Open in Guvnor, you will find it in the Other assets folder (not sure why it did not wind up under
Processes). Add the categories Services/Orchestrated Services/PolicyQuoteProcessService and BPEL
Process Definition. Change the Status to Service Development and Save and close.

28) Next add the PolicyQuoteProcessArtifacts.wsdl, PolicyQuoteProcessService.wsdl, and
DrivingRecordCallbackService.wsdl to the PolicyQuoteProcessService in Guvnor. Open these assets in
Guvnor and assign categories Services/Orchestrated Services/PolicyQuoteProcessService and WSDL.
Change the Status to Service Development and Save and close. Note adding WSDL files will cause
Eclipse to report errors; these can be ignored.

29) AddCreditCheckService.esb and DrivingRecordService.esbl to ServicesGlobal by using the Create
New -> File in Guvnor. Add the category DeploymentArchive and the Status Deployed.

30) Add policyquote-destinations.xml from labs/resources to ServicesGlobal by using the Create New -
> File in Guvnor. Add the category JMS Destinations and the Status Deployed.

31) Export the repository.

 39

