AuthZ - Authorization Framework

XACML-compliant Rule-based authorization framework

Externalizes Security (Logic + Data) from the core
application into a Policy Engine

Support for more robust security usecases in addition to
Role-based Access Control (RBAC)

Dynamic Policy Provisioning

Consistent Developer Framework



Problem : What problem is being solved?

Security codebase (logic+data) intermingled with application codebase

Client code becomes brittle as its scattered throughout the codebase.
This hampers quick evolution of security functionality

Hard to customize security behavior and usecases

An inconsistent approach across all modules. At best a mini-security
module with its own classes, and data is created for each application
module

Provisioning tools don't have a common framework and infrastructure

From persistence world: Same as JDBC/DAO vs ORM



Core Forum Application Codebase




Incoming Request

- Security Aspect I

Provisioning
(GUI, XML, JON, JOPR)

.\ i A
) I 7\
e N

Topic Post Comment
Facts Security Security Security

Core Forum Application ‘

\/ PicketLink Authz Service \/

a \

Rule Engine

Policies

Enforcement

logic logic logic logic




Advantage: Security becomes a cross cutting concern

Just like container-managed transactions, security becomes a container-managed
cross cutting concern

Application functionality can evolve without having to worry about security
functionality in parallel

Security functionality can evolve without affecting the codebase it protects

The concept of ”"Security Profiles” lets you swap different security behavior
in and out. This is very useful for customization by developers, system
integrators, and consultants

Use of a "Fact” base approach decouples the traditional coupling between these
two layers. From a code standpoint they don't know that the other one exists

It removes the application's need to designate points in the code
"when/where” an authorization check is started

It does not have to specify ”"what action” needs protection

It does not have to issue any calls to the boolean logic that provides a
"yes/no” decision



Advantage: Security Logic applied to arbitrary state

Allows enabling robust access control behavior, without applying any added
burden to core application codebase

Some possible usecases for the same exact protected action

Allow access to this page if user is a member to this set of roles/groups
(standard role-based access control)

Do not allow page access after 5 p.m.

Allow page access to all my friends from my social networking accounts

Allow page access only if the user is over 18 yrs old

Since the security system is completely decoupled from the application, these
security requirements/conditions can be customized for different customers.
(same non-forked core codebase, different security behavior)

The granularity of security enforcement can be customized

One installation only needs to protect the ”Page”

Another installation can go finer and protect "Page”, "Portlet Modes”,
"Window States”, and even the "content” displayed inside the Portlet window



Advantage: Consistent Framework

A component-oriented framework allows creation of policy-based
provisioning tools

Components encapsulate the (logic+data) aspect of a policy

Components are re-usable across applications

Developers use a common framework and runtime for developing
the policy-management tools for their respective applications



Advantage: Policy Provisioning

Provisioning tools can vary from xml based configuration, to
integrated GUI based applications

Provisioning is dynamic. All policy modifications are hot-
deployed and activated across all applications without
requiring any system restarts

A consistent policy infrastructure and a common API even opens
the door for integration with central monitoring tools like
JOPR and JON



Concepts: Policy

Policy is the central component of the framework. All authorization
decisions are made by the "Rule Engine” matching policies and
executing the encapsulated "Logic”

It encapsulates externalized "Logic” and "Data” used to make an Access
Control decison

It answers the following question based on the incoming "Facts”

Does this policy apply to this request

If it applies, do the incoming facts satisfy the conditions to be
allowed access



Concepts: Policy

The incoming "Facts” provide the LHS/variable side of the ”"Boolean” expression,
while the "Data” externalized within the Policy provide the RHS/criteria side of
the expression

For instance, in a simple Role-based check,

Facts : "Roles” of the currently authenticated user

Policy Data : "Roles” specified to be allowed access

The Policy along with its ”"Logic” and "Data” can be modified at runtime
resulting in an entirely new security profile

An existing policy can have Role-based access control

New Logic related access based on "the Age” of the user can be dynamically
added



Concepts: Enforcement

Enforcement consists of intercepting an incoming request, and evaluating whether
it should be granted access to the resource

It consists of populating an EnforcementContext with "Facts” about the request's
environment

Depending on the layer where its intercepted these "Facts” change

In the http layer facts look like,

"URL"” of the resource

Request parameters

Request headers and cookies

Authenticated Identity and the correspoding "Roles/Memberships”
In a portlet layer facts look 1like,

"Name” of the Portlet being accessed

Phase such as "Render”, "Action”

Portlet Mode

Authenticated Identity and the correspoding "Roles/Memberships”, etc



Concepts: Enforcement

The Enforcement Interceptor can be of various types:

In the Http layer, it could a Servlet Filter or a Tomcat Valve
In the Portlet layer, it could be a Portlet Filter

In Seam, it could be a Phase Listener

In pure POJO, it can be an AOP interceptor (my personal favorite)

The EnforcementContext only provides the ”"Facts” (what I am trying to access,
and the data in my environment). It does not contain any decision making logic.

This ”logic” is provided by the externalized "Policy” that will be matched with
this particular request



Concepts: Provisioning

The Provisioning phase is used by tool developers for managing
security policies

There are several types of tools possible depending on your
application requirements

Simple XML based configuration
Dynamic GUI based Application

Plugins into central monitoring tools like JON and JOPR

Whatever the tool is, they use the same common API and
framework



Concepts: Provisioning

The Provisioning framework uses Authz Component Specification
compliant components.

Each component encapsulates its ”Boolean Logic” (specified in the
Drools language DRL), and ”"Criteria Data” associated with the
expression

A set of components are orchestrated into an instance of a
CompositionContext

This instance of a CompositionContext is then processed by a
PolicyComposer service. This service generates the system level XACML-
compliant policy, and propagates it dynamically

This allows a Developer to easy manage security policies without
having to deal with the very complex low level details of XACML.



Questions!!




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

