AsyncContinuation

Asynchronous Continuations

We often find that external interactions with the ESB are required to be synchronous but this
does not mean that the internal communication has also to be synchronous. In fact, the best
performance and reliability occur when the internal services use asynchronous messaging to
communicate between each other.

The example attached to this page demonstrates how an incoming (synchronous) request
could be handled internally with asynchronous messaging. It demonstrates two different
mechanisms which can be used to compose individual ESB services into logical services.

The first service is composed of Servicel and ServicelContinuation whereas the second
service is composed of Service2 and Service3.

In this scenario, the first service, having being called by a synchronous ESB client, wishes
to call the second service in a synchronous manner. As it does not wish to block threads, or
prevent other requests from being processed, it uses a continuation mechanism to split the
processing.

The first part of this is handled by Servicel, which is a OneWay service responsible for
handling the incoming request and preparing an outgoing message for continuation.
Preparing the message for continuation involves specifying the continuation service
(ServicelContinuation) as the ReplyTo of the outgoing message and also including the
original, incoming, ReplyTo as an extension of that EPR. Once the message has been
initialised, all that remains is to send it to the second service using an asynchronous
mechanism (StaticWireTap in this case). Servicel is now free to process more incoming
requests, regardless of how long the next service takes to process the request.

The second service is composed of two ESB services, Service2 and Service 3, and
demonstrates how a single, logical, service can be created by chaining services together.
Service 2 is a OneWay service that receives the request from Servicel, performs some

Generated by Clearspace on 2009-02-12-05:00



AsyncContinuation

processing, and then finally sends the message asynchronously to Service3. Service3,
being the final service in this chain, is a RequestResponse service which performs some
processing in addition to that performed by Service2 before sending its response to the
ReplyTo of the message (in this case the ServicelContinuation specified in Servicel).

The second part of the first service, ServicelContinuation, now receives the response

from the second service. This is a OneWay service which continues the processing of the
message following the response from the second service. Once it has handled the message
it then prepares a response for the original caller. By inspecting the incoming To EPR it can
extract the original ReplyTo specified by the external caller and send a response to the client
asynchronously.

All communications between the internal services are asynchronous, can take advantage of
the retry mechanism, and do not cause any threads to block while waiting for a response.

The attached example will work on the SOA Platform and the current trunk. It does not work
on the 4.2.1GA release of the ESB project.

The example can be executed by unpacking into the quickstart directory, changing into the
async_continuation directory, and then executing ant deploy followed by ant runtest

Generated by Clearspace on 2009-02-12-05:00



