
Java EE Microservices 
with WildFly Swarm

Heiko Braun <hbraun@redhat.com> 
Oct 2016

mailto:hbraun@redhat.com


About me
• Heiko Braun 

• Principal Software Engineer at Red Hat 

• Focus on Java Middleware 

• Java middleware components (WildFly/EAP, J2EE)  

• Tools and frameworks for enterprise systems 
integration (Web Services, BPEL, SOA, BPM)



This evening 

• The Context: Microservices and Java EE 

• WildFly Swarm: Concepts, Ideas & workflow 

• Code and Demo 

• Outlook, Discussions



What are 
Microservices anyway?



Like SOA, but different …
• Microservices are different 

primarily due to innovations like: 

• Linux containers, 

• automated, elastic infrastructure, you know, the 
cloud 

• plus wide adoption of CI, continuous integration 

• and the growing adoption of DevOps principles & 
practices



“In short, the microservice architectural style is 
an approach to developing a single application 
as a suite of small services, each running in its 

own process and communicating with 
lightweight mechanisms, often an HTTP 

resource API. These services are built around 
business capabilities and independently 

deployable by fully automated deployment 
machinery. There is a bare minimum of 

centralized management of these services, 
which may be written in different programming 

languages and use different data storage 
technologies.” 

– Martin Fowler, ThoughtWorks



What is Java EE 
anyway?



Perspectives on Java EE

• It’s different things to different people: 

• A collection of (useful) API’s  

• Technical capabilities of a system 

• A love/hate relationship (of the past) 

• (Existing) knowledge and expertise



Hello WildFly Swarm



WildFly Swarm

• OSS Project sponsored by Red Hat 

• Sidekick of Wildfly Application Server 

• Small, but ambitious and friendly community 

• Part of a bigger system of interrelated projects 
under the JBoss / Red Hat umbrella



Rightsize your runtime

• Use the API’s you 
want 

• Include the 
capabilities you need 

• Wrap it up for 
deployment



Self-contained JAR
• A single .jar file containing 

your application,  

• the portions of WildFly 
required to support it,  

• an internal Maven repository 
of dependencies,  

• plus a shim to bootstrap it 
all



Self-contained executables

- Dev / Ops separation 
- App / Runtime separation 
- Configuration drift 

- DevOps unification 
- Self-containment 
- Reproducibility 



Fractions
• A tangible unit, expressed as maven GAV 

• Focus on end users 

• To support the compositional aspect in Swarm 

• Belongs to a dependency tree 

• Ties to together multiple contents: 

• Modules, Subsystems, MSC services, Deployments



What Fractions can do
• Enable WildFly subsystems (i.e Logging, 

Datasources)  

• Configure runtime components 

• Integrate additional system capabilities (i.e Topology) 

• Add API dependencies (i.e. JAX-RS) 

• Provide deployments (i.e. Swagger)  

• Alter deployments (i.e. SSO)



Converting a Java EE 
App to use WildFly 

Swarm



Code Example

https://github.com/javaee-samples/javaee7-simple-sample


Using custom fractions 
to build an application



Code example

http://wildfly-swarm.io/generator/


Going beyond simple 
(and Java EE)



Custom Configuration

(alternatively use standalone.xml)



Advertising Services

(supports different service registries)



Load Balancing & Circuit Breaking

(Integration of Ribbon with Topology. Supports Hystrix)



Securing Access to Services

(provided by Keycloak: OpenID, SAML, Social Login, OAuth, LDAP, Active Directory)



Publishing Service Interface Descriptions

(provided by Swagger)



$ curl http://localhost:8080/swagger.json

http://localhost:8080/swagger.json


Other Noteworthy Features
• Testing: 

• Arquillian (in container, web driver) 

• Consumer-Driven Contracts  
(expressing and asserting expectations of a provider contract) 

• Logging & Monitoring 

• Simple REST interface on each node 

• Centralised Logging with Logstash  

• Push Runtime Data to Hawkular,Influx,etc 

• Remote Management 

• CLI (full access to the server config and runtime state)



Get Involved
• Project Home: http://wildfly-swarm.io 

• GitHub: https://github.com/wildfly-swarm 

• Twitter: @wildflyswarm 

• Freenode: @wildfly-swarm 

• Issues: https://issues.jboss.org/projects/SWARM  
(see ‘getting-started’ labels)

http://wildfly-swarm.io
https://github.com/wildfly-swarm
https://issues.jboss.org/projects/SWARM

