

Performance Improvement of Jboss EAP 4.3
Platform

Ruchir Choudhry#1, Alpesh Vaghela #2, Vaidyanathan Kothandaraman#3

Web Architecture

 Joseph Monsanto, Kaliki Jan
 VM Architecture team

NBC Universal, 100 Universal City Plaza, CA, 91608-1002 USA

1ruchir.Choudhry@nbcuni.com
2 alpesh.Vaghela@nbcuni.com

3vaidyanahan.kothandaraman@nbcuni.com

jan.kaliki@nbcuni.com
Joseph Monsanto@nbcuni.com

 Confidential 2010 NBC Universal, Inc. All rights reserved

mailto:alpesh.Vaghela@nbcuni.com
mailto:3vaidyanahan.kothandaraman@nbcuni.com
mailto:3vaidyanahan.kothandaraman@nbcuni.com
mailto:Monsanto@nbcuni.com

Abstract:
One of the principle objectives of this endeavour was to increase the performance of the overall system without touching the code and
to formulate a strategy in which we can utilize the best practice provided by Apache, Red Hat Jboss, Sun JDK and various other
distributed components. This white paper provides an in-depth knowledge of how to increase the performance of the system without
going into the complexity of redoing the code.

I. INTRODUTON

During the last few years J2EE/JavaEE based applications have largely spread over our networks. Our Jboss EAP 4.3/ J2EE
platform uses a distributed multi tiered application model for enterprise applications. Application logic is divided into
components according to function, and the various application components that make up a J2EE application are installed on
different machines depending on the tier in the multi tiered like

• Client-tier components run on the client machine.
• Web-tier components run on the J2EE server.
• Business-tier components run on the J2EE server.
• Enterprise information system (EIS)-tier software runs on the EIS server.

Taking this distributed component into preview this white paper works as a baseline for Jboss EAP 4.3 J2EE/ Java EE platform
in NBC Universal and provide guideline for the performance counters from the core infrastructure components, application
server, webserver, java engine.

II. BEST PRACTICE

3) Use the most recent version of JDK /JRE

For each major Java™ release "train" (e.g.J2SE 1.4.2, J2SE 5.0, J2SE 6.0) Sun publishes update releases on a regular basis. For
example the most recent update release of Java SE 1.6.0_18. Update releases often include bug fixes and performance
improvements. By deploying the most recent update release for Java™ you will benefit from the latest and greatest performance
improvements.

4) Insure OS patches are up-to-date
Even though Java is cross platform it does rely on the underlying operating system and therefore it is important that the OS
basis for the Java™ Platform is as up-to-date as possible. In our case we used Red Hat Enterprise 5.3 on VM.

5) Use trimmed version of Web Server (Apache2.2.8, 2.2.15)[9][10], by compiling it specific for the needs of the
applications or env.

Apache comes with various configuration parameters to give more and more flexibility to the application. It’s very much
required to pick what is good for us and what is the need of the application. Based on NBC/Ge needs we have trimmed the
Apache modules, and recompiled for NBC requirements. The details are in the appendix 1

6) Place the code on the local env not on the storage; content can reside on the storage.
By placing the code on the local (a carved out space on virtual machine (VM Ware) from the storage), there is no traversing to
the storage, rather is utilizes the higher capacity bandwidth, which is dedicated for the VM Ware env.

7) Trim the application server (Jboss EAP 4.3) by exactly using what you need from the application server
By trimming the Jboss EAP 4.3 we mean to remove a lot of services which comes with a J2EE container by default like JMS,
Session based clustering, large size of object pooling, connection poking , XA Transaction, Modjk tomcat connectivity and
much more the details are there in the appendix 2

8) Use logging as into
Use only info type of logging in production; this is done to reduce the I/O to the file system.

 Confidential 2010 NBC Universal, Inc. All rights reserved

9) Test various JVM[1][2][3][13][14] configuration settings and make sure to use what is best for the en, appendix1
We used this to find out what is the right size for our env and how it fluctuates based on the different application needs. Based
on our test, we found that 2 VCPU with 4 GB of RAM is best suited for our applications/env.

The details of the JVM parameters and their changes are in appendix 3

10) Test various CPU or VCPUS, RAM options to find out what’s best suited for the env
The right size of the CPU & RAM varies due to type of hardware used; design an type of application, how the multithreaded
env is used/programmed, type of platform and so on and so fourth. We used VM Ware RED HAT 5.3 Enterprise edition on
ESX farms. We did various rounds of test, as detailed in appendix 4, and found that 2VCPU along with 4 GB of RAM per Jboss
EAP4.3 is needed.

11) Use hardware based load balancing to provide a HA env, Avoid clustering if its not the business need
Its tempting to use software based clustering and it can be done at various levels and in various ways. But in all possible
scenarios it creates an overhead.
Example:
HAPartition[15] is a general-purpose service used for a variety of tasks in AS clustering. At its core, it is an abstraction built on
top of a Jgroups[15] Channel that provides support for making/receiving RPC invocations on/from one or more cluster members.
HAPartition allows services that use it to share a single Channel and multiplex RPC invocations over it, eliminating the
configuration complexity and runtime overhead of having each service create its own Channel.

12) Disable hot deployment if its not needed in production

Looking at the hot deployment features supported by various vendors everybody thinks it’s “cool idea” but not robust as it
appears. None of the vendors recommend wholeheartedly these in production environment, so you have to be careful when you
decide to use this in your production server running your website or mission critical applications. In addition to the above
during hot deployment Container spends significant CPU cycles polling for changes in applications. This is the sole reason we
decided not to use hot deployment.

13) Start Jboss EAP 4.3 always in production mode if the application is in production

During our series of test we did find the best startup mode among the various modes of startup (default, all, minimal and
production) is production. This gave us the best possible performance.

14) Eliminating Variables
Be aware that various system activities and the operations of other applications running on your system can introduce
significant variance into the measurements of any application's performance, including Java applications. The activities of the
OS and other applications may introduce CPU, Memory, disk or network resource contention that may interfere with your
measurements.

Before you begin to measure Jboss platform performance try to assess application behaviour that may discolour your
performance results (e.g. accessing the Internet for updates, reading files from the users home directory, etc.). By simplifying
application behaviour as much as possible and by changing only one variable at a time (i.e. operating system tuneable parameter,
Java command line option, application argument, etc.) your performance investigation can track the impact of each change
independently.

 Confidential 2010 NBC Universal, Inc. All rights reserved

III. MAKING DECISION ON DATA
It’s tempting to run an application once before and once after a change and draw some conclusion about the impact of that
change. Sometimes the application runs for a long time. Sometimes launching the application may be complex and dependent
on multiple external services. But can you legitimately make a decision from this test? It's really impossible to know if you can
safely draw a conclusion from the data unless you measure the power of the data quantitatively. Applying the scientific method
is important when designing any set of experiments. Rigor is especially necessary when measuring Java application platform’s
performance because the behaviour of Java Hotspot virtual machine adapts and reacts to the specific machine and specific
application it is running. And subtle changes in timing due to other system activity can result in measurable differences in
performance and which are unrelated to the comparisons being made.

Prior to the experiment we tried to eliminate as much application performance variability as possible. However it is rarely
possible to eliminate all variability, especially noise from asynchronous operating system services. By repeating the same
experiment over the course of several trials and averaging the results you effectively focus on the signal instead of the noise.
The rate of improving the signal is proportional to the square root of the number of samples.

To put Java/Jboss benchmarking into statistics terms we are going to test the baseline settings before a change and the specimen
settings after a change. For example you may run a benchmark baseline test 10 times with no Java/Jboss command line options
and specimen test 10 times with the command line of "-server". This will give you two different sample populations. The
questions you really want to answer are, "Did that change in Java settings make a difference? And, if so, how much of a
difference?".

The second question, determining the percentage improvement is actually the easier question:
percentageImprovement = 100.0 x (SpecimenAvg - BaselineAvg) / BaselineAvg

The first question, "Did that change in Java/Jboss settings make a difference?” is the most important question, however because
what we really want to know is "Is the difference significant enough that we can safely draw conclusions from it?” In statistics
jargon this question could be rephrased as "Do these two sample populations reflect the same underlying population or not?” To
answer this question we use the Students t-test. Using the number of samples, mean value and standard deviation of the baseline
population and the specimen population as well as setting the desired risk level (alpha) we can determine the p-value or
probability that the change in Java settings was significant. The risk level (alpha) is often set at 0.05 (or 0.01), which means that
five times (one time) out of one hundred you would find a statistically significant difference between the means even if there
were none. Generally speaking if the p-value is less than 0.05 then we would say that the difference is significant and thus we
can draw the conclusion that the change in Java/Jboss settings did make a difference.

 Confidential 2010 NBC Universal, Inc. All rights reserved

IV. GENERAL JBOSS EAP 4.3 TUNNING GUIDELINES

In the above section II of BEST PRACTICE we discussed about some of the fundamental aspects of the env tuning, we also
found out the right way to find and analysis the data that is churned out due to various test which we performed. This section on
Tuning Ideas contains suggestions on various tuning options that you should try on with your Jboss EAP 4.3 and Java
application. All comparisons made between different sets of options are performed using the statistical techniques discussed
above.

01) Selecting the right JDK and JRE env
Java platform is very unique and very versatile to get maximum out of it we must know which is the exact versions best for our
need.

To quantify this we did various round of test with multiple applications in the same Jboss EAP4.3 J2EE container (Noise Test).
This gives a much closer simulation of the actual production env. Based on our test we were able to find that Jdk1.6_18 is best
suited for NBCU/GE env.
The details are depicted in the 01 –graph as below.

JDK Version

9.23 8.46
10.78

8.51

13.36

8.19

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

JDK 1.6 Update
7

JDK 1.6 Update
14

JDK 1.6 Update
15

JDK 1.6 Update
16

JDK 1.6 Update
17

JDK 1.6 Update
18

JDK Versions

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

02) Selection of the right set of JVM parameter

Selecting a right size for the JVM for a J2EE/Java EE container, which holds multiple applications and providing the right size
for every application is impossible as every application is unique based on it, JVM needs and can perform very differently under
different condition. For our purpose we conducted series of test on various applications (Appendix 02), which is as follows.

� Single user test
� Noise test
� Endurance test
� Stress test

Based on these test results we can conclude that the case 09(details are there in the appendix 01) is the best suited for our env

 Confidential 2010 NBC Universal, Inc. All rights reserved

JVM Params

2.98
2.64 2.82

2.59 2.46 2.55 2.50 2.40
2.18 2.21

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10

JVM Params

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

 Figure – 02-JVM Params.

Eden SS Virtual Tenured Virtual Perm Virtual

Total Size PERM

Young Gen

Eden Survivor

Space

Tenured

Uncommitted
Space

Uncommitted
Space

Committed
Space

Committed
Space

Uncommitted
Space

Committed
Space

Details

Young Gen: The young generation consists of eden plus two survivor spaces
 Objects are initially allocated in eden
 One survivor space is empty at any time, and serves as a destination of the next, copying collection of any live

 objects in eden and the other survivor space.
Tenured : The old objects which is copied between the survivor space are copied to the tenured section.

Permanent
Generation
(Perm Gen): It is special because it holds data needed by the virtual machine to describe objects that

 do not have an equivalence at the Java language level. For example objects describing classes and methods are
 stored in the permanent generation.

Committed Space : This space is used as the JVM start.
Uncommitted Space: This space is used on demand basis

Figure 03 Details of Parameters

The details of the JVM parameters are as below.

2.1) Maximum and Minimum heap size -Xmx2048m -Xms2048m

 Confidential 2010 NBC Universal, Inc. All rights reserved

2.2) Configures a large Java heap to take advantage of the large memory system and 64 bit processors, size of memory

allocation in JVM is increased in 64 bit systems

2.3) Maximum size of New Generation in mega bytes -XX:MaxNewSize=64m & -XX:NewSize=64m

2.4) The parameters NewSize and MaxNewSize bound the young generation size from below and above. Setting these

equal to one another fixes the young generation, just as setting -Xms and -Xmx equal fixes the total heap size. This
is useful for tuning the young generation at a finer granularity than the integral multiples allowed by NewRatio.

2.5) For most applications in our Jboss EAP 4.3 platform the permanent generation is not relevant to garbage collector
performance. However, we did aboserve some applications dynamically generate and load many classes. For
instance, some implementations of JSPTM pages do this. Taking this factor into consideration, the maximum
permanent generation size was increased to -XX:MaxPermSize=128m.

2.6) This size is double to the default permgen setup on 64 bit env.

2.7) The parameter SurvivorRatio can be used to tune the size of the survivor spaces If survivor spaces are too
small, copying collection overflows directly into the tenured generation. If survivor spaces are too large, they will
be uselessly empty. At each garbage collection the virtual machine chooses a threshold number of times an object
can be copied before it is tenured. This threshold is chosen to keep the survivors half full -XX:SurvivorRatio=8

2.8) Desired percentage of survivor space used after scavenge, In our test we Allowed 90% of the survivor spaces to be
occupied instead of the default 50%, allowing better utilization of the survivor space memory. -
XX:TargetSurvivorRatio=90

2.9) The MaxTenurubgThreshold, Allows short-lived objects a longer time period to die in the young generation (and

hence, avoid promotion). A consequence of this setting is that minor GC times can increase due to additional objects
to copy. This value and survivor space sizes may need to be adjusted so as to balance overheads of copying between
survivor spaces versus tenuring objects that are going to live for a long time, we left this setting to default which is -
XX:MaxTenuringThreshold=0

2.10) CMSInitiatingOccupancyFraction: With the serial collector a major collection is started when the tenured generation
becomes full and all application threads are stopped while the collection is done. In contrast a concurrent collection
should be started at a time such that the collection can finish before the tenured generation becomes full. There are
several ways a concurrent collection can be started.

2.11) The concurrent collector keeps statistics on the time remaining before the tenured generation is full (T-until-full)
and on the time needed to do a concurrent collection (T-collect). When the T-until-full approaches T-collect, a
concurrent collection is started. This test is appropriately padded so as to start a collection conservatively early.

2.12) A concurrent collection will also start if the occupancy of the tenured generation grows above the initiating
occupancy (i.e., the percentage of the current heap that is used before a concurrent collection is started). The
initiating occupancy by default is set to about 68%. It can be set with the parameter
CMSInitiatingOccupancyFraction which can be set on the command line with the flag

2.13) -XX:CMSInitiatingOccupancyFraction=<nn>
The value <nn> is a percentage of the current tenured generation size. We have reduced the percentage from 68% to
60% as we were able to get the best performance on this.

2.14) LargePageSizeInBytes : We got the best efficiency out of the memory management system of our server. However
we have just allocated 5MB to of space to this, but it can be increased based on the applications need.
Note that with larger page sizes we can make better use of virtual memory hardware resources

 -XX:LargePageSizeInBytes=5m

2.15) A throughput collector is a generational collector similar to the serial collector but with multiple threads used to do
the minor collection. The major collections are essentially the same as with the serial collector. By default on a host
with N CPUs, the throughput collector uses N garbage collector threads in the minor collection. The number of
garbage collector threads can be controlled with a command line option (see below). On a host with 1 CPU the
throughput collector will likely not perform as well as the serial collector because of the additional overhead for the
parallel execution (e.g., synchronization costs). On a host with 2 CPUs the throughput collector generally performs
as well as the serial garbage collector and a reduction in the minor garbage collector pause times can be expected on
hosts with more than 2 CPUs.

 Confidential 2010 NBC Universal, Inc. All rights reserved

2.16) throughput collector can be enabled by using command line flag -XX:+UseParallelGC. The number of garbage

collector threads can be controlled with the ParallelGCThreads command line option (-
XX:ParallelGCThreads=<desired number>). If explicit tuning of the heap is being done with command
line flags the size of the heap needed for good performance with the throughput collector is to first order the same as
needed with the serial collector. Turning on the throughput collector should just make the minor collection pauses
shorter. Because there are multiple garbage collector threads participating in the minor collection there is a small
possibility of fragmentation due to promotions from the young generation to the tenured generation during the
collection. Each garbage collection thread reserves a part of the tenured generation for promotions and the division
of the available space into these "promotion buffers" can cause a fragmentation effect.
We used -XX:ParallelGCThreads=10, as we wanted not to use too much of CPUs threads neither we wanted to use
default because of the larger size of heap and due to more then one CPU used.

Note: This number should be changed based on the CPU count, heap size and other parameters of JVM settings.

2.17) Stopping the explicit garbage collection: Applications can interact with garbage collection is by invoking full

garbage collections explicitly, such as through the System.gc() call. These calls force major collection, and
inhibit scalability on large systems. The performance impact of explicit garbage collections can be measured by
disabling explicit garbage collections using the flag -XX:+DisableExplicitGC.

2.18) This also makes our system more robust as we can control the GC of the system based on the env needs.

2.19) Concurrent Mark Sweep collector: This collector may deliver better response time properties for the application (i.e.,

low application pause time). It is a parallel and mostly-concurrent collector and and can be a good match for the
threading ability of an large multi-processor systems. -XX:+UseConcMarkSweepGC -XX:+UseParNewGC

2.20) ThreadStackSize : Is used based on the env and the underlying platform, It can be different for different systems.
2.21) We used 1024 as is best suited for the AMD based 64 bit processors and can be used for large scale systems
2.22) -XX:ThreadStackSize=1024

2.23) Distributed garbage collection: One of the most commonly encountered uses of explicit garbage collection occurs

with RMI's distributed garbage collection (DGC). Applications using RMI refer to objects in other virtual machines.
Garbage can't be collected in these distributed applications without occasional local collection, so RMI forces
periodic full collection. Which is a type of Stop the world collection, this can cause a significant overhead to the
application performance.

2.24) The default value is 1 DGC per min, In our test scenarios we have reduced the DGC cycle to 1 per hr, this gives us
an additional boost of performance during the endurance test and during the peak/stress test.

2.25) -Dsun.rmi.dgc.client.gcInterval=3600000
2.26) -Dsun.rmi.dgc.server.gcInterval=3600000

 Confidential 2010 NBC Universal, Inc. All rights reserved

V. MONITORING & PROFILING

Discussing monitoring (extracting high level statistics from a running application) or profiling (incrementing an application to
provide detailed performance statistics) are subjects, which are worthy of White Papers in their own right.

In our test we used standard JVM monitoring tools, which give us a good and necessary amount of data.

VI. CODING PRACTICE
This section will cover coding level changes that you can make which will make an impact on performance. For the purpose of
this initial draft of the Java Tuning White Paper examples of the kinds of coding level changes that can have an impact on
performance are taking advantage of new language features like NIO and the Concurrency utilities.

The New I/O API's (or NIO) offer improved performance for operations like memory-mapped files and scalable network
operations. By using NIO developers may be able to significantly improve performance of memory or network intensive
applications.

new Java language features that impact performance is the set of Concurrency Utilities. Increasingly server applications are
going to be targeting platforms with multiple CPU's and multiple cores per CPU. In order to best take advantage of these
systems applications must be designed with multi-threading in mind. Classical multi-threaded programming is very complex
and error prone due to subtleties in threads interactions such as race conditions. Now with the Concurrency Utilities developers
finally have a solid set of building blocks upon which to build scalable multi-threaded applications while avoiding much of the
complexity of writing a multi-threaded framework.

 Confidential 2010 NBC Universal, Inc. All rights reserved

3) Jboss[[16]]/Apache Sliming[9][10]

3.1) Reducing the thread count for tomcat access: Tomcat is not connected directly by the application, so why we need to

open so many connections to tomcat engine, the hash table which needs to be rehashed due to the increase in
connection need to be kept to very low we will keep it to 10.

3.2) Disabling deployment parameter: As a default this parameter is on and the server scans for the new class every 5

seconds which is counterproductive, as we don’t use hot deployment in our Jboss EAP 4.3 application farms.

3.3) Remote Method Invocation (RMI): 01>by default, JBoss creates a new thread for every RMI request that comes in.
This is not generally efficient on a large system 02>Secondly, it can be dangerous to allow unrestrained connections
in the case of performance or traffic spikes or run-away connection creating clients. To remedy this you should
consider switching to the pooled invoker.

3.4) Logging: -Logging has a profound effect on performance. Changing the logging level to TRACE can bring the

JBossAS to a crawl. Changing it to ERROR (or WARN) can speed things up dramatically. By default, JBoss logs
both to the console and server.log and by default it uses level "INFO".Consider not logging to System.out (you may
still want to redirect it to catch JVM errors)

3.5) Consider changing the log level to ERROR. Remember that JBoss watches its log4j config file for changes and you
can always change configuration at runtime. Add a category filter for your Java class hierarchy.

3.6) We have used Info and do suggest to use Info in Staging and Production env, in addition to this we turned off
logging verbosity and turned off console logging in production .

3.7) Mail Services: In our case most of the applications are not using JAF (Java Activation Framework), hence these

class are not required in the container.
3.8) Jboss Hypersonic, Jboss MQ, JMS: We are not using any of such properties in our env, hence its an overhead for the

system and we removed it from our shared env. These additional packages will be deployed on demand basis.
3.9) HTTPInvoker (which lets you tunnel RMI over HTTP): This function we are not using and it must not be used as

it allows you to tunnel through HTTP protocol
3.10) Jboss Scheduler: We are not using any scheduling within the application layer and within the Jboss container, It

takes extra overhead to run the scheduler threads and must be avoided to get the best performance
3.11) Vendor Specific SQL exception: We must disable it as we are not using any db vendor specific APIS.
3.12) JBoss UUID key generation: It should be done on demand
3.13) Tomcat via HTTP: It must never be allowed as it’s a breach of security, the communication to tomcat must always

go through modjk
3.14) Disable hot deployment in production
3.15) Clustering must be done only for dedicated env.
3.16) Apache complication will be use the core module (Appendix 04) only , addition of modules will be done on demand

and with the justification
3.17) Farm deployment /replicated deployment must be avoided
3.18) XA or Two Phase commits transaction: Don't use XA versions unless you really know you need them. XA

connections do not have good performance.
3.19) Use database specific "ping" support where available for "check-connection" or use database-specific driver fail-

over support rather than checking connections at all. (Remember that not all tuning options may be feasible in your
environment, we're talking optimal).

 Confidential 2010 NBC Universal, Inc. All rights reserved

4) Storage tunning :
We at NBC Universal were using mount points, which was containing application code, log and web content. This practice
seemed good during the ear of physical server, as there was limitation of local space on the box.

Where in with VM we have this flexibility to have a bigger /opt and it has a dedicated communication between the VM/ESX
server to the storage.

We found approximately 200% increase in performance when we moved to VM local Figure 04.

Local v/s NFS (via Load Balancer)

23.24

9.23

0.00

5.00

10.00

15.00

20.00

25.00

NFS Local

Storage-VM Connectivity

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Figure 04

In addition to the above we also tested the scenario in which the call is not routes through the load balancer while
communicating from App/Web VM to storage, for this we took help of Jan Kaliki and Monsanto, Joseph(VM architecture
team). With their help we were able to design a virtual NIC, which can help us rout the traffic without routing it through the F5
load balance, figure 05.

We did see a significant improvement over the baseline, but comparing it with local still it was not able to match the
performance.

Storage-VM Connectivity

5.76

3.50

2.17

0
1
2
3
4
5
6
7

Via Load Balancer Same VLAN Local - No Storage

Storage-VM Connectivity

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Figure 05

 Confidential 2010 NBC Universal, Inc. All rights reserved

Appendix 01
Case# Params Description

Case 1

-Xmx1024m
-Xms1024m
-XX:MaxNewSize=128m
-XX:NewSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=64m
-XX:ParallelGCThreads=20
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024

3 GB RAM , 2 VCPUS with no blocking of DGC(distributed
garbage collection)

Case 2

-Xmx1124m
-Xms1124m
-XX:MaxNewSize=64m
-XX:NewSize=64m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=30m
-XX:ParallelGCThreads=20
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

3 GB RAM , 2 VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

 Confidential 2010 NBC Universal, Inc. All rights reserved

Case 3

-Xmx1303m
-Xms1303m
-XX:MaxNewSize=64m
-XX:NewSize=64m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=50
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=10m
-XX:ParallelGCThreads=30
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

3 GB RAM, 2 VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

Case 4

-Xmx1500m
-Xms1500m
-XX:MaxNewSize=128m
-XX:NewSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=10m
-XX:ParallelGCThreads=30
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 4VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

 Confidential 2010 NBC Universal, Inc. All rights reserved

Case 5

-Xmx1700m
-Xms1700m
-XX:MaxNewSize=128m
-XX:NewSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=10m
-XX:ParallelGCThreads=20
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 4VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

Case 6

-Xmx2048m
-Xms2048m
-XX:MaxNewSize=256m
-XX:NewSize=256m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=5m
-XX:ParallelGCThreads=20
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 4VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

 Confidential 2010 NBC Universal, Inc. All rights reserved

Case 7

-Xmx1900m
-Xms1900m
-XX:MaxNewSize=128m
-XX:NewSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=5m
-XX:ParallelGCThreads=20
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 4VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

Case 8

-Xmx2048m
-Xms2048m
-XX:MaxNewSize=64m
-XX:NewSize=64m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=5m
-XX:ParallelGCThreads=10
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 4VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

 Confidential 2010 NBC Universal, Inc. All rights reserved

Case 9

-Xmx2048m
-Xms2048m
-XX:MaxNewSize=64m
-XX:NewSize=64m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=5m
-XX:ParallelGCThreads=10
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 2VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr)

Case 10

-Xmx2048m
-Xms2048m
-Xss512k
-XX:MaxNewSize=128m
-XX:NewSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=8
-XX:TargetSurvivorRatio=90
-XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60
 -XX:LargePageSizeInBytes=5m
-XX:ParallelGCThreads=10
-XX:-DisableExplicitGC
-XX:-RelaxAccessControlCheck
-XX:+StringCache
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC
-XX:ThreadStackSize=1024
-Dsun.rmi.dgc.client.gcInterval=3600000

4 GB RAM, 2VCPUS --> increasing max and min reducing
other and adding DGC(distributed Garbage collection every
01 hr) with reducing the default Stack Size

 Confidential 2010 NBC Universal, Inc. All rights reserved

Appendix 02

Project used for testing these performance parameters:

Project name Project Group Type of test Remarks
Asset Tracker IT TV Operations Mgmt

Systems
JVM, JDK, NOISE,
Endurance, Apache and Jboss
trimming

This is a unique app as its
horizontally clustered and
shares the session between
nodes

IRIS IT Film International (Legal) JVM, JDK, NOISE ,
Endurance, Apache and Jboss
trimming

This app we wanted to
improve the performance
without touching the code.

NBC Sports

IT TV Operations Mgmt
Systems

Noise, Endurance and
Storage

For this app we wanted to
resize the env

Facilities Apps IT TV Operations Mgmt
Systems

Noise, Endurance and
Storage

We wanted to see a
deviation when there are
many small app and how
do they react to the
changes in the env

NOTE: In essence we too different type of applications which uses the env in different way just to
make sure our results are more and more close to the actual production env.

 Confidential 2010 NBC Universal, Inc. All rights reserved

Appendix03 Architecture used

 Confidential 2010 NBC Universal, Inc. All rights reserved

Storage Farms

Storage Servers Storage Servers

Linux
RHE4.X

LINUX RHE 5.3 VM ESX FARM Cluster rack

Oracle
10g/

SQL2005
Farms

Jboss EAP4.3
 /jdk1.6_18

Jboss EAP4.3
/jdk1.6_18

Laptop

Laptops

Apache 2.2.15,
2.2.8

Apache 2.2.15
,2.2.8

Internal Fire Wall

In Side the
network

Oracle
10g/

SQL2005
Farms

Laptops

Mobile
Blackberry
device

UNIT NBC UNI Web Architectute
Project J2EE/JBOSS EAP 4.3.4 Non DMZ/DMZ
Group Media
Developed by Ruchir C, Alpesh Vaghela
Version 1.0.0.2

Site Minder 6.0
 policy server

 NBC LDAP on Sun/Linux

02

Workstations

External fire wall

Apache 2.0.54

Apache 2.0.54

DMZ

GE LDAP

Web Engg Architecture Sunday 06-05-2010

(Active)

(Passive)

(Active)

(Passive)

O
ra

cl
e1

0G
 /M

SS
Q

L2
00

5V
IP

W
eb

 S
er

ve
r V

IP

W
eb

 S
er

ve
r V

IP

Other system

NAS/SAN Storage VIP

Load Balancing is
done based on
sticky key /
cookie based
pattern

Other system

Ajp port 8009 is
opened to
communicate
between DMZ
apache and
Jboss EAP4.3
App Server

Ajp port 8009 is
opened to
communicate
between DMZ
apache and
Jboss EAP4.3
App Server

Port 80/443 is
open on the F5
VIP so that the
external traffic
can reach to
Application
specific F5 VIP

Load balancing is
done based on
Sticky key pattern
only

01

01

OS Details:Red Hat Enterprise Linux Server release 5.3 Tikanga)
Kernel:2.6.18-128.7.1.el5 x86_64 x86_64 x86_64 GNU/Linux
Java/JDK
java version"1.6.0_18"
Java(TM) SE Runtime Environment (build 1.6.0_18-b18)
Java HotSpot(TM) 64-Bit Server VM
Web Server:- Apache2.2.8, 2.2.15
App Server:- Enterprise Application Platform Jboss 4.3

Communication
between Apache
DMZ to Jboss
App servers

Cluster based on
session
replication ONLY
for Asset Tracker

 Confidential 2010 NBC Universal, Inc. All rights reserved

Appendix 04

Apache version Modules use in old setup Modules used in new setup Remarks
2.2.8/2.2.15 core_module (static)

 authn_file_module (static)
 authn_default_module
(static)
 authz_host_module (static)
 authz_groupfile_module
(static)
 authz_user_module (static)
 authz_default_module
(static)
 auth_basic_module (static)
 include_module (static)
 filter_module (static)
 log_config_module (static)
 env_module (static)
 setenvif_module (static)
 mpm_prefork_module
(static)
 http_module (static)
 mime_module (static)
 status_module (static)
 autoindex_module (static)
 asis_module (static)
 negotiation_module (static)
 dir_module (static)
 actions_module (static)
 userdir_module (static)
 alias_module (static)
 so_module (static)
 sm_module (shared)
 authn_dbm_module (shared)
 authn_anon_module (shared)
 authn_alias_module (shared)
 authz_dbm_module (shared)
 authz_owner_module
(shared)
 auth_digest_module (shared)
 file_cache_module (shared)
 cache_module (shared)
 disk_cache_module (shared)
 mem_cache_module
(shared)
 ext_filter_module (shared)
 deflate_module (shared)
 logio_module (shared)
 mime_magic_module
(shared)
 expires_module (shared)
 headers_module (shared)
 usertrack_module (shared)
 proxy_module (shared)
 proxy_connect_module
(shared)
 proxy_ftp_module (shared)
 proxy_http_module (shared)

core_module (static)
 authn_file_module (static)
 authn_default_module
(static)
 authz_host_module (static)
 authz_groupfile_module
(static)
 authz_user_module (static)
 authz_default_module
(static)
 auth_basic_module (static)
 include_module (static)
 filter_module (static)
 log_config_module (static)
 env_module (static)
 setenvif_module (static)
 version_module (static)
 mpm_prefork_module
(static)
 http_module (static)
 mime_module (static)
 status_module (static)
 autoindex_module (static)
 asis_module (static)
 cgi_module (static)
 negotiation_module (static)
 dir_module (static)
 actions_module (static)
 userdir_module (static)
 alias_module (static)
 so_module (static)
 sm_module (shared)
 info_module (shared)
 vhost_alias_module (shared)
 rewrite_module (shared)
 jk_module (shared)

 Confidential 2010 NBC Universal, Inc. All rights reserved

 proxy_ajp_module (shared)
 proxy_balancer_module
(shared)
 dav_module (shared)
 info_module (shared)
 suexec_module (shared)
 cgi_module (shared)
 dav_fs_module (shared)
 vhost_alias_module (shared)
 speling_module (shared)
 rewrite_module (shared)
 jk_module (shared)

Note : Please refer to apache [9][10] for modules details

VII. CONCLUSIONS

This white paper presents various details by which the overall performance of the system can be increased without touching the
code. It also give a technical insight that how JVM settings, change in storage, change in compiling different modules in apache,
trimming Jboss parameters and trying to start Jboss with different startups may impact the system.
This document can be used as a living doc for reference in architecting a highly scalable, avilable distributed evn.

VIII. ACKNOWLEDGMENT
I would like to acknowledge the contributions of the following groups and individuals who helped us during the project and to
develop this white paper.
--
Alpesh Vaghela –Web Architecture

For his continuous work in getting details of the setup and figuring out various parameters, which can help us, improve the
performance

Vaidyanathan Kothandaraman- Web Architecture

For his guidance, motivation , persisted to make the env better and better and his strive for excellence.

Agasthi Kothurkar –Web Architecture

For setting up various env within a short notice and working tirelessly with the performance team to get various performances
test done

Anthony Sarabia- Web Operations

For always motivating me to do things which is never done in NBC Universal

Maskara Arvind –Web Operations

For supporting my team, giving Ideas to improve.

Jan Kalicki, -Virtualization COE

For architecting the new virtual NIC so that the application server can communicate directly to the storage without routing
through the F5 load balancer

Joseph Monsanto –VM Architect

For setting up the virtual NIC on the VM server

 Confidential 2010 NBC Universal, Inc. All rights reserved

Joanne Marshall,- Sr Sever Engineer

For providing continuous support in changing various OS parameters and helping us complete this endeavour.

-- ---

IX. REFERENCES
[1] http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp#BehavioralOptions
[2] http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
[3] http://java.sun.com/docs/hotspot/gc1.4.2/example.html
[4] http://www.ibm.com/developerworks/java/library/j-jtp11253/
[5] http://www.ibm.com/developerworks/ibm/library/i-garbage1/
[6]http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tprf
_tunejvm.html
[7] http://java.sun.com/docs/hotspot/gc1.4.2/faq.html
[8] http://java.sun.com/developer/technicalArticles/Programming/turbo/
[9] http://httpd.apache.org/docs/2.2/
[10] http://httpd.apache.org/docs/2.2/mod/
[11] http://www.javaperformancetuning.com/
[12] http://www.artima.com/index.jsp
[13]Tim Lindholm and Frank Yellin The JavaTM Virtual Machine Specification, Second Edition
[14] Joshua Engel Programming for the Java(TM) Virtual Machine
[15] http://docs.jboss.com/jbossas/guides/clusteringguide/r2/en/html_single/#cluster.chapt
[16] http://community.jboss.org/wiki/JBossASTuningSliming

 Confidential 2010 NBC Universal, Inc. All rights reserved

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp#BehavioralOptions
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc1.4.2/example.html
http://www.ibm.com/developerworks/java/library/j-jtp11253/
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://java.sun.com/docs/hotspot/gc1.4.2/faq.html
http://java.sun.com/developer/technicalArticles/Programming/turbo/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/mod/
http://www.javaperformancetuning.com/
http://www.artima.com/index.jsp
http://docs.jboss.com/jbossas/guides/clusteringguide/r2/en/html_single/#cluster.chapt
http://community.jboss.org/wiki/JBossASTuningSliming

 Confidential 2010 NBC Universal, Inc. All rights reserved

