
Biometrics for Global Web Authentication: an Open Source
Java/J2EE-Based Approach

Ruchir Choudhry

ruchirchoudhry@cint.co.in;

Abstract.
J2EE based Web applications have largely spread over our multiple networks/VLAN
over the last couple of years. Thus it becomes essential for the applications often need
authentication across the multiple networks. Taking this point into consideration we have
been working on integrating biometric verification capabilities using open source single
sign on techniques. Going with this thought that the source code can be shared and can be
used for multiple purposes and can enrich the knowledge of the entire biometric society
we chosen a widely accepted Java-based open-source system for web authentication
called Central Authentication Service (CAS) using the Java Authentication and
Authorization Services (JASS).
The main idea behind this integration was to take advantage of the infrastructure
provided by CAS to offer single sign-on web authentication, while improving security
beyond basic mechanisms based on login and password, by adding biometrics. Thus, we
make possible that any application prepared to use CAS for authenticating its users can
also use our biometric extension for this purpose, supporting any Bio API-compliant
biometric software or devices.
Introduction:
Biometrics are difficult to fabricate, which makes them much harder to share or steal than
traditional authentication mechanisms such as passwords, tokens, certificates or
smartcards, which have potential vulnerabilities due to credentials shared, forgotten,
stolen or used without the consent of the owner. For robust security, the recommended
approach is often to combine two or more authentication methods — a process called
multi-factor authentication. For example, a highly secure installation could use three-
factor authentication based on password (what the user knows), smartcard (what the user
possesses), and fingerprints (who the user is).
Incorporating biometric sign-on in an application enforces a highly secure user
authentication by comparing a registered biometric sample, also referred to as a biometric
template, against a newly acquired biometric sample during the application login process.
If the match score between the newly acquired sample and the registered template
exceeds a given threshold, the authentication is successful and assures the application
Provider about the identity who was really accessing application.

mailto:ruchirchoudhry@cint.co.in

1 Introduction
During the last years web-based applications as mailers, forums, agendas and
other specific applications have largely spread over our networks. Typically it
is needed to perform user authentication when accessing to some of these web
applications or services. In a normal web browsing session, the user needs to
access to different applications (webmail, e-learning tools . . .) and for each one
he must provide credentials in order to be allowed to use each service. This is a
tedious task; a more user-friendly approach would be authenticating only once
in a browsing session in order to access multiple applications. This is the basic
principle of all single sign-on solutions.
Otherwise, classical techniques for electronic person authentication have several
drawbacks in terms of performing reliable and user-friendly identity recognition;
this occurs particularly with remote operations, where hacker attacks add
to forgotten, shared, lost or stolen passwords or cards. Automatic identity verification,
based on distinctive anatomical features (e.g., face, voice, fingerprint,
iris, etc.) and behavioral characteristics (e.g., online/offline signature, keystroke
dynamics, etc), is becoming an increasingly reliable standalone solution and
attracting a great deal of attention as far as remotely-based applications are
concerned [1].

Taking this aspect into considerations, we have been working on integrating
biometric verification capabilities into a classical single sign-on solution
for web authentication. For this purpose, we have chosen a widely accepted
Java-based open-source authentication system known as Central Authentication
Service (CAS) [2]. This system was originally developed at Yale University and
later placed under the auspices of the Java Architectures Special Interest Group
(JA-SIG). Nowadays, it has an extensive community of adopters. In fact, this
open source system has quickly become the most popular single sign-on solution
for universities, especially on U.S.A.
The main idea behind the integration of biometric verification functionality
within the Central Authentication Service was to take advantage of the infrastructure
provided by CAS to offer single sign-on web authentication, while
improving security beyond basic mechanisms based on login and password, by
adding biometrics. Thus, we make possible that any application prepared to use
CAS for authenticating his users can also use our biometric system for this purpose,
supporting any BioAPI-compliant biometric software or device in order
to authenticate users. The open-source e-learning platforms Moodle, ILIAS, or
Claroline are well known examples of web applications that are yet capable of
relying the authentication task on CAS. We had used Moodle and ILIAS to
demonstrate the usability of our biometric extension of CAS within a common
web application.

The remainder of this paper is organized as follows. Section 2 is devoted
to the description of the concept of single sign-on web authentication, and the
open-source Central Authentication Service architecture. Section 3 presents the
results of integrating biometric verification functionality within the Central
Authentication
Service, in order to provide single sign-on web authentication based
on any BioAPI-compliant biometric software or devices. Finally, Section 4 describes
our conclusions and future research lines.
The final subsection presents the overall system, described both from a structural
and functional point of view.

2 Single Sign-On with Central Authentication Service
Single sign-on is a session/user authentication process that allows a user to provide
his credentials once in order to access multiple applications. The single
sign-on authenticates the user to access all the applications he has been authorized
to access. It eliminates future authentication requests when the user
switches applications during that particular session.
Web single sign-on works strictly with applications accessed with a web
browser. The request to access a web resource is intercepted either by a component
in the web server, or by the application itself. Unauthenticated users
are diverted to an authentication service and returned only after a successful
authentication.
The JA-SIG Central Authentication Service (CAS) is an open-source single
sign-on service, originally developed by Yale University. It allows web
applicaBiometrics
for Web Authentication: an Open Source Java-Based Approach 3
tions the ability to defer all authentications to a trusted central server or servers.
It is made up of Java servlets, and runs over any (JSP spec 1.2 compliant) servlet
engine, offering a web-based authentication service. Its strong points are security,
proxying features, flexibility, reliability, and its numerous client libraries freely
available, including clients for Java, .Net, PHP, Perl, Apache, uPortal, Liferay
and others.
Because of these advantages, CAS is used by many American Universities,
with LDAP or Kerberos-based authentication. Moreover, it can be directly
plugged into uPortal, chosen by the ESUP-Portail consortium, on the way to
become a standard for open source portals [3]. This makes us confident in it
permanence.

Fig. 1 shows a Central Authentication Service protocol with single sign-on.

The steps in the authentication protocol are as follows:
1. The actor requests a web resource protected by a Central Authentication Service.
Access Manager's policy agent running in the J2EE server intercepts the request and
verifies the user's SSO token, if any exists.
2. The user is authenticated by the Central Authentication Server. As a result, he obtains
credentials and is forwarded to the web resource.
3. At the second attempt requesting the protected web resource, the browser
Automatically sends the user credentials, it again checks the token.
4. If the token's authentication level is insufficient (or none exists) the Access Manager
calls the biometric authentication service (Biometric Login Module) requesting
authentication, which redirects the user to a login page prompting the user to provide
username and terminal ID
5. The biometric authentication service verifies that the provided user and terminal
information matches the data stored in the BiObex repository
6. The success or failure is determined

Fig. 1. Single sign-on sequence architecture

7. On success the sso token is issues
8. If denied the actor gets a failure message on the browser, in case of success
9. The actor is redirected to the subsequent menu or to the application or the access of
resource is allowed.

10. The agent keeps on checking the request for sso token, based on this check it keeps
giving the access to the resources
11. The actor is allowed until the session along with the token is valid.

3 Architecture for Biometric Web Authentication

Fig. 2 Is an Architecture which expands the same concept to the enterprise/global level
using the an extension of the classical Central Authentication Service protocol,
JAAS(Java authentication and authorizations service)for web single sign-on, adapted to
include biometric verification. The steps in the authentication protocol are as follow:

1. Initial request can come from any heterogeneous system over port 443 SSL(1024
bit encryption).

2. The call is then redirects from the load balancer to the apache servers
3. The apache server contains the web agent which redirect the call to the sso policy

server
4. The sso server based on the sso ID generates a token and sends the call back to

the web server
5. In case of failure the call is sent back to the client/actor
6. In case of success the call is passed back to the application server containing the

biometric module
7. The access details are passed to the db to get the encryption key
8. The call is sent back to the Application sever and then the call is made to get the

respective image
9. In case of success the resources are granted else failure is sent to the client

2. With the biometric module the authentication process is broken down as follows:
(a) The user launches the biometric client.
(b) Server-side biometric verification is performed.
(c) The result of the biometric verification is stored in a server database.
(d) The user request credentials to the Central Authentication Server.
(e) In order to provide valid credentials to the user, the Central Authentication Server
checks the result of the corresponding biometric verification.
3. Request.
4. Validation.
The main guidelines for the development of a Java-based biometric system
to be integrated within the Central Authentication Service for web single signon
were focused on security, interoperability and usability issues [4]. For this
purpose, some widely accepted standards in the field of biometrics were adopted.

Summarizing:
– Security: In order to comply with the Core Security Requirements of the
ANSI X9.84 standard for Biometric Information Management [5], SSL(Secure socket
Layer Security),WTLS(Wireless transport layer Security) connections are used, and local
disk writing of user samples is avoided, for instance.
Biometrics for Web Authentication: an Open Source Java-Based Approach 5
– Interoperability: A great deal of attention has been paid to the design of a
client-server architecture capable of controlling any kind of biometric software
or device compliant with the standard BioAPI and frvt [6] [7].With this goal,
an open source Java Native Interface wrapper for the BioAPI framework on
Linux/Unix has been used [8]. To integrate into our system, this Java wrapper
has been extended to include Windows support and access to low-level
BioAPI primitives [9].
– Usability: The user interacts with the system through a user-friendly graphical
user interface. This interaction is driven by an easily configurable dialogue.
Thus, verification tasks are modeled as human-machine dialogues
Specified by an XML document which describes the sample acquisition process
and the biometric verification mode.
Fig. 2 depicts a Architecture diagram of the biometric authentication system itself,
Detailing the functionality corresponding to step 2 presented on Fig. 2. Starting
from a client verification or enrolment request, the successive actions and
Functionalities are explained as follows (see diagram numbering):
Fig. 2. Building blocks and functionality description of the biometric authentication
System
1. The biometric client application obtains, from the server, an XML document that
specifies the human-machine dialogue with the enrolment or verification
process description.
2. The client application interprets the protocol contained in the XML dialogue, prompts
the corresponding information to the user, acquires the biometric sample, and performs
an enrolment or verification.

3. Each time a biometric sample is required, the sample is captured from the
corresponding BioAPI-compliant module. For this purpose, the client application
calls the BioAPI_Capture primitive using the Java Native Interface wrapper for the
BioAPI framework. BioAPI-compliant modules are also called Biometric Service
Providers or BSPs.
4. The result of the acquisition process is sent to the server bound to an enrolment
or verification request.
5. The enrolment or verification process is executed in the server as a sequence of
BioAPI calls.
6. The verification results or enrolment templates are stored in the server
database.
7. The database with the biometric verification results will be available to finally
authenticate users for the web through the Centralized Authentication
Service (CAS).

4 Conclusion and Future Work
We have successfully integrated biometric verification functionality in a truly global
environment, within a widely accepted open source solution for single sign-on web
authentication called Central Authentication Service (CAS) in conjunction with JAAS
Framework . Thus, any application prepared to use CAS and JAAS for authenticating its
users can also use our biometric extension for this purpose.
The overall system provides single sign-on web authentication beyond basic mechanisms
based on login and password, by adding biometrics. Concretely, our biometric extension
of CAS supports any BioAPI-compliant biometric software or devices in order to
authenticate users.
As a result, any BioAPI-compliant kind of biometric verification could be used in order
to get single-sign-on web authentication.
In order to demonstrate the usability of our biometric extension of CAS, we have tested
successfully the overall system with different web, client server based, wireless based
applications that allows the use of CAS to authenticate users Current version of the
presented system for biometric authentication is available on http://cint.us/Default.aspx
We are continuously working to improve the system and to integrate it with the pervasive
/mobile computing platforms and to make it more easy to use without compermising the
core security functionality.
Acknowledgments. This project has been a part of core product of Biometrics.
MEC under the project PRESA TEC2005-07212 and the European NoE BioSecure.
References
1. Jain (A.), Bolle (R.), Pankanti (S.): Introduction to Biometrics. In Biometrics. Personal
Identification in Networked Society. Kluwer Academic Publishers, 2000.
Biometrics for Web Authentication: an Open Source Java-Based Approach 7
2. JA-SIG (Java Architectures Special Interest Group) Central Authentication Service
(CAS): http://www.ja-sig.org/products/cas/
3. Aubry P., Mathieu V., Marchal J., ESUP-Portail: open source Single Sign-On with
CAS (Central Authentication Service) Proceedings of EUNIS04 - IT Innovation in
a Changing World, Bled (Slovenia)Fl´orez, O.W.: An Open Framework For Distributed
Biometric Authentication In A

http://cint.us/Default.aspx

Web Environment, Annals of Telecommunications. Vol. 62, No. 1-2. Special issue
on multimodal biometrics
5. http://www.biometrics.gov/Standards/Default.aspx
6. BioAPI Consortium: http://www.bioapi.org
7. http://www.frvt.org/DLs/FERET7.pdf
8. JBioAPI, A library of tools for accessing BioAPI-compliant biometric service
providers in Java: http://code.google.com/p/jbioapi/
9. http://developers.sun.com/identity/reference/techart/bioauthentication.html
Java wrapper for the BioAPI framework. Submitted to Computer Standards
& Interfaces.
10. Biometrics for Web Authentication: http://sourceforge.net/projects/biowebauth/
11. http://www.biometrics.dod.mil/CurrentInitiatives/architecture.aspx

	Biometrics for Global Web Authentication: an Open Source Java/J2EE-Based Approach
	1 Introduction

