-« rednat

OSGI BASICS

SYSTEM INTEGRATION WITH JBOSS

Jiri Pechanec

OSGI TECHNOLOGY

o Open Services Gateway initiative (obsolete)

Set of specifications (last v6, 2014)

Managed by OSGi Alliance

Modular system and a service platform for the Java programming
language

Implements a complete and dynamic component model
Applications or components, coming in the form of bundles
Bundles have lifecycle

"Service Oriented Architecture" in JVM

Enterprise ready system (web bundles)

https://www.knopflerfish.org/

OSGI ARCHITECTURE

e Key layers

= Modules
= Life Cycle
= Services

e Execution Environment
= Defines what methods and classes are available in a specific platform.

Life Cycle

g

Modules

Execution Environment

I

Java VM

Native Operating System

0SGI USAGE Boss

o . by Red Hat

e Main implementations
m Apache Felix

m Eclipse Equinox (reference implementation) GlassFish
= Knopflerfish /-Q

e Usage \‘:)/HW’ q
-y

= Middleware products

o Apache Karaf
o JBoss Fuse
o GlassFish (v3) - Application server for Java EE

= |DE (Integrated Development Environment)
o Eclipse

http://felix.apache.org/
http://www.eclipse.org/equinox/
https://www.knopflerfish.org/

APACHE KARAF CONTAINER

e Small OSGi based runtime

Lightweight container

Various components and applications can be deployed (jar, war)
Based on Apache Felix

Features:

= Hot deployment ([home]/deploy)

= Dynamic configuration ([home]/etc)
» Logging System (centralised, Log4J)
= Provisioning (mvn, http, file etc.)

= Extensible Shell console

= Remote access (ssh)

= Security framework (JAAS)

= Managing multiple instances

APACHE KARAF (2)
SCREENSHOT

default-karaf ./bin/karaf

Apache Karaf (4.0.0)

'<tab>' for a list of available commands
‘[cmd] --help' for help on a specific command.
'<ctrl-d>' or type 'system:shutdown' or 'logout’' to shutdown Karaf.

karaf@root()> |

BUNDLE

e Basic module in OSGi container
e = JAR archive + OSGI| metadata
e OSGi metadata

m Properties in META-INF/MANIFEST.MF file
m Bundle unique static identification

o Symbolic name + version

Manifest

Manifest

MANIFEST HEADERS

e Non-OSGi headers

= Manifest-Version, Build-Jdk, Build-By, Main-Class
e OSGI headers

= Mandatory

o Bundle-SymbolicName
o Bundle-Version
o Bundle-ManifestVersion (the only value is "2")

= Optional
o Human readable

o Bundle-Name
o Bundle-Description
o Bundle-Vendor

o Lifecycle
o Bundle-Activator
o Modules

o Export-Package
o Import-Package
o Bundle-ClassPath (default valueis ".")

MANIFEST EXAMPLE

Bundle-Name: Hello World

Bundle-SymbolicName: org.wikipedia.helloworld
Bundle-Description: A Hello World bundle
Bundle-ManifestVersion: 2

Bundle-Version: 1.0.0

Bundle-Activator: org.wikipedia.Activator
Export-Package: org.wikipedia.helloworld;version="1.0.0"
Import-Package: org.osgi.framework;version="1.3.0"

OSGI PACKAGES

e Export package

= Provided package for other bundles
= Property "version" - single value

e Import package
= Missing package
m Property "version" - interval (always!)
o no version —> 0.0.0 <= x <= max
o ".2" —1.2.0 <= x <= max
o "[21,3)" = 21<=x<3

Question: Is it possible to to require only single version?

MANIFEST GENERATOR

° tool

Simplifies bundle creation
Generates OSGi metadata semi-automatically
Syntactic sugars

o Import-Package: com.library.*; version = 1.21

Uses BND tool internally

org.apache.felix
maven-bundle-plugin
true

org.wikipedia.Activator

http://www.aqute.biz/Bnd/Bnd
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html

IMPORT PACK. PRIORITIES

RESOLVED bundle state has precedence before INSTALLED
Greater versions have precedence

Property match (e.g. vendor="sun")

Directive "uses:=<package-name>"

Question: Why HTTP client will not be resolved if other bundles are

resolved?
‘ impCIJr't, : import
Tomcat Javax.eerviet HTTP import. HTTP javax.gerviet Serviet
~z g . 2 ersion= "2 % 0"
version= "2.4.0 client org.oagi.service.http service /croion="2.3 APl
- : - Wl cessssnssn- S .- Ml cecccsasvassn B -
export export export
javax.serviet org.osgi.service.http javax.serviet

version= "2.4.0" uses: = javax.serviet” version= "2.3.0"

OSGI CLASSLOADING

o Every bundle has its own classloader
o Classloader's structure is Map
e One item for each imported package

= key - Package name
= value - Another classloder

o There is no delegation of requests to parent classloaders
o Class searching
1 java.*

2 Import packages (Import-Package)

s Own packages (Bundle-ClassPath)

What is [home]/etc/jre.properties good for?

OSGI LIFECYCLE

update
install refresh

INSTALLED

resolve update

refresh start

STARTING

RESOLVED <

uninstall uninstall

ACTIVE

stop

ﬁ Demo 1: Bundle events

‘>| UNINSTALLED \ —i STOPPING |<

stop

BUNDLE ACTIVATORS

e Connected with states STARTING and STOPPING

o Activators implement interface org.osgi.framework.BundleActivator
e OSGi header "Bundle-Activator" in MANIFEST.MF

e Often used for OSGi services registrations

public interface
public void throws Exception;
public void throws Exception;

}

OSGI SERVICES

e "SOA" In JVM
o Advantages

= L ess coupling
= Multiple implementations

e Every service has contract (one or more interfaces)
e Service registration

= Activator
= Component framework

e Service discovery
= Contract + service properties (LDAP syntax)
e Service priority
1 Atribute "service.ranking"

> Attribute "service.id"

SERVICE REGISTRATION

public class implements

private ServiceRegistration registration;

public void {
Dictionary props = new Properties();
props.put (, 1)
registration = ctx.registerService(Foo.class.getName(),
new FooImpl(), props);

}

public void
registration.unregister();

}

LISTENERS

e Bundle listener

m Tracks bundle events (STARTED, STOPPED, UPDATED, ...)
m Used in BundleTracker (advanced bundle monitoring)

public interface extends

public void

e Service listener

m Tracks service events (REGISTERED, MODIFIED, ...)
m Used in ServiceTracker (advanced service monitoring)

public interface extends

public void

E Demo 2 : Paint application (OSGi in Action)

COMPONENT FRAMEWORKS

o Simplifies creation of logical components
= (e.g. OSGi service, java beans, ...)

e Frameworks are based on OSGi listeners
o« Component definition

= XML descriptor

o Declarative Services, Blueprint, Spring DS
= Java annotations

o Apache Felix iPojo

http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

BLUEPRINT

e Specification of OSGi component framework

e Specification managed by OSGi Aliance

e Uses dependency injection

e Designed to deal with the dynamic nature of OSGi

= Services can become available and unavailable at any time.
= Uses proxy objects

e Each bundle has own Blueprint container
e Uses OSGi extender pattern

= Extension definition
i OSGI-INF/blueprint/*.xml

2 "Bundle-Blueprint" property in MANIFEST.MF

e Implementations

= Apache Aries
= Eclipse Gemini (reference implementation)

http://aries.apache.org/modules/blueprint.html
http://www.eclipse.org/gemini/

BLUEPRINT DESCRIPTOR

e XML elements
= Main

o <bean>, <service>, <reference>, <reference-list>
= Other
o <value>, <ref>, <idref>, <map>, <props>, <list>, <array>, ...

<?xml version="1.0" encoding="UTF-8"?>
xmlns:xsi

id interface
class
ref
interface

key

(SPRING DM)

e Spring DM = Spring Dynamic Modules
e An open source project in the Spring portfolio
e Allows to implement Spring Applications on top of an OSGi framework
e Connects the benefits of both technologies

= Spring - Component management, AOP, Dependency Injection, ...
= OSGIi - Dynamic environment

e Each bundle has own Spring container
e Spring beans can be exported as OSGi services
e Uses OSGi extender pattern

= Extension definition

o META-INF/spring/*.xml
o "Spring-Context" property in MANIFEST.MF

Spring DM is discontinued and last version is for spring 3.x.

http://docs.spring.io/osgi/docs/current/reference/html/

SPRING DESCRIPTOR

<?xml version="1.0" encoding="UTF-8"?>
xmlns
xmlns:xsi
xmlns:osgi

interface

interface

key

OSGI ENTERPRISE

e Web applications
= web.xml
m Web-ContextPath in MANIFEST.MF
e Dependency Injection
= Blueprint
= Spring
JNDI

m osgi:service/<interface>[/<properties>]

m Service property "osgi.jndi.service.name" for custom JNDI names
o osgi:service/<jndi-name>
JPA, JDBC

® problems with dynamic classpath
m solution: OSGi services (Datasources, EntityManagers)

m persistence.xml ("Meta-Persistence" in MANIFEST.MF)

container/aplication managed
e JTA
m container/aplication managed

OSGI ENTERPRISE (2)

e Blueprint + JPA + Transactions

xmlns
xmlns: jpa
xmlns:tx

id class
method value
property unitname

interface

OSGI ENTERPRISE (3)

e Enterprise archives
= JavaEE
o EAR archives (Enterprise archives)
= OSGi
o ESA

o Enterprise Subsystem Archives
o no application.xml but SUBSYSTEM.MF
o Dependencies do not have to be contained in archive

o EBA

o Enterprise Bundle Archive
o similar to ESA (from Aries)

o Features
o XML descriptor (from Apache)

THANK YOU!

REFERENCES

e OSGiin Action - Richard S. Hall, Karl Pauls, Stuart McCulloch, David Savage
Enterprise OSGi in Action - Holly Cummins, Timothy Ward

Spring in Action - Craig Walls

Spring Dynamic Modules in Action - Arnaud Cogoluegnes, Thierry Templier, Andy
Piper

http://www.osgi.org/Specifications

