
ENTERPRISE
MESSAGING AND
JBOSS A-MQ

Jakub Knetl

jknetl@redhat.com

1.1

Messaging systems

JMS specification
JMS API

JBoss A-MQ

JBoss A-MQ and Apache ActiveMQ
Protocols
topologies

Apache Artemis

LECTURE OUTLINE

1.2

Method for asynchronous message (data) transfer between different systems which allows
to integrate these systems.

WHAT IS ENTERPRISE MESSAGING

1.3

Method for asynchronous message (data) transfer between different systems which allows
to integrate these systems.

WHAT IS ENTERPRISE MESSAGING

1.4

data exchange between applications
Message oriented middleware (MoM)

Message broker servers as mediator between communicating parties

ENTERPRISE MESSAGING
ARCHITECTURE

1.5

Other methods:

Webservices (REST, SOAP)
JDBC and ORM
RMI
CORBA
...

WHY DO WE NEED ANOTHER
COMMUNICATION METHOD?

1.6

BENEFITS OF MESSAGING SYSTEM
Asynchronous communication
Loose coupling
Scalability
Reliability
Message routing and transformation

1.7

Web music streaming service, which allows to upload and store your own music files. Music
files are stored in the ogg format in some shared storage (NAS, cloud, whatever, ...).
However it allows to upload music in many formats (mp3, flac, wav, aac, and others) which
are converted by the service into ogg.

Where will we convert data?

EXAMPLE USE CASE

1.8

Web music streaming service, which allows to upload and store your own music files. Music
files are stored in the ogg format in some shared storage (NAS, cloud, whatever, ...).
However it allows to upload music in many formats (mp3, flac, wav, aac, and others) which
are converted by the service into ogg.

Where will we convert data?

server side?
client side?

Usually none of them because of required CPU performance...

EXAMPLE USE CASE

1.9

Benefits

asynchronous communication - server doesn't need to wait neither until data are
encoded or sent
loose coupling - server doesn't need to know anything about the encoder
scalability - we may just start new processes as encoders
message routing and transformation - message may be arbitrary routed between
using metadata information

1 server will just simply store data into temporary place shared storage

2 It will sends message containing metadata about music file into a queue

3 There may be arbitrary numbers of running consumer, which will perform encoding
and upload into final storage location in ogg format.

EXAMPLE USE CASE - SOLUTION

1.10

JMS SPECIFICATION
goal is to:

provide messaging functionality to the java applications
maximizes portability between messaging products
define common messaging concepts

JMS provides API for messaging products
JMS is not messaging system!
JMS does not address:

load balancing
fault tolerance
administration
wire protocol
security

1.11

BASIC TERMS
JMS provider
JMS client

producer/consumer

non JMS client
JMS destinantion
JMS domains
JMS Message

1.12

MESSAGE STRUCTURE
Headers

metadata about message
stored as key value pairs
two types (differs only semantically):

headers (same for all messages)
properties

arbitrary key-values (some of them are
standardized)

Payload

may contain different types of payload

JMS Message
JMS Headers

JMS Properties

JMS payload

1.13

MESSAGE HEADERS LIST
Header name meaning

JMSDestination destination on the broker

JMSDeliveryMode persistent or nonperistent delivery mode

JMSExpiration message will not be delivered after expiration

JMSMessageID Identifiaction of the message

JMSPriority Number 0 - 9 (0-4 low, 5-9 high priority). Advise only

JMSTimestamp Time when the message is handed to provider for send

JMSCorrelationID links message to another one

JMSReplyTo Destination for reply

JMSRedelivered Contains true if the message was likely redelivered

1.14

PREDIFINED PROPERTIES

Search through JMS specification!

1.15

MESSAGE SELECTORS
Message filtering based on properties and headers
Condition based on subset of SQL92

FLIGHT_NUMBER LIKE 'N14%'

PRICE <= 1000 AND COLOR = 'RED'

See examples!

1.16

http://timjansen.github.io/jarfiller/guide/jms/selectors.xhtml

MESSAGE CONTENT
There are several types of message defined in JMS:

TextMessage - String content
MapMessage - "body contains a set of name-value pairs
where names are Strings and values are Java primitive type"
BytesMessage - stream of uninterpreted bytes bytes
StreamMessage - stream of java primitive values (read and filled sequentially)
ObjectMessage - Serializable object

1.17

COMMUNICATION DOMAINS
Communication type:

Point-to-point (PTP)
Publish/Subscribe (Pub/Sub)

1.18

POINT TO POINT COMMUNICATION
Destination is a queue
one of multiple consumers gets message
Load is distributed across consumers
Message is stored until some consumers receives it

1.19

PUBLISH SUBSCRIBE DOMAIN
Destination is a topic
message is delivered to all subscribers
message is thrown away if there is no subscription
Durable subscriber

if durable subscriber disconnects broker is obliged to store all messages for later
delivery

1.20

IT IS TIME FOR HISTORY...

1.21

JMS API
JMS 1.0 (2001)

Different APIs for pub/sub and PTP communication

JMS 1.1 (2002)

Classic API - unified API for pub/sub and PTP

JMS 2.0 (2013)

Classic API

it is not deprecated and will remain part of JMS indefinitely

Simplified API

less code needed
AutoCloseable resources -> Java 7 needed
no checked exceptions

1.22

CLASSES OF CLASSIC API
ConnectionFactory
Connection - heavyweight object (allocates resources outside JVM)
Session - lightweight object

factory for MessageProducer, MessageConsumer and Destination
should not be shared between threads
defines serial order and transaction context

MessageProducer

for producing messages

MessageConsumer

for consuming messages

Destination - administered object
Message

1.23

RELIABILITY OF MESSAGE
delivery mode
acknowledgement mode
transactional mode

1.24

DELIVERY MODE
determines level of delivery reliability

Persistent (default)

provider should persist the message
message must be delivered once and only once even in case of provider failure

Nonpersistent

provider is instructed not ot presist the message
message must be delivered at most once
message is usually lost on provider failure
better performance

1.25

MESSAGE ACKNOWLEDGEMENT
Delivery between broker and client is not considered successful until message is
acknowledged.
acknowledgement modes:

AUTO_ACKNOWLEDGE
DUPS_OK_ACKNOWLEDGE
CLIENT_ACKNOWLEDGE

1.26

TRANSACTIONS
Session can be transacted
multiple messages handled as atomic unit
transaction is completed by calling commit() or rollback() on session
commit also acknowledges message
Support for distributed transaction is not required by JMS

but still many providers implement distributed transactions
JMS recommends support using JTA XAResource API

1.27

CODE EXAMPLES

1.28

PART II
APACHE ACTIVEMQ

1.29

APACHE ACTIVEMQ
Opensource MoM
JMS 1.1 compliant
Supports many protocols and clients
other features:

High availability
scalibility
management
security

1.30

JBOSS A-MQ
Open-source messaging platform
Messaging system based on Apache ActiveMQ
Runs on OSGI container
Enable easy deployment
Provides web based management console

1.31

JBOSS A-MQ

1.32

CONFIGURATION
XML file
most of things work out of the box
 configuration example

1.33

http://activemq.apache.org/xml-configuration.html

MESSAGE STORES
kahaDB
multi kahaDB
levelDB
JDBC

 <persistenceAdapter>
 <jdbcPersistenceAdapter dataSource="#derby-ds"/>
 </persistenceAdapter>

 <!-- Embedded Derby DataSource Sample Setup -->
 <bean id="derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
 <property name="databaseName" value="derbydb"/>
 <property name="createDatabase" value="create"/>
 </bean>

<persistenceAdapter>
 <kahaDB directory="${activemq.data}/kahadb"/>
</persistenceAdapter>

1.34

CONNECTION TO BROKER
Transport connectors

For client to broker connections

Network connectors

For broker to broker connections

Many transport protocols supported:

tcp, udp, nio, ssl, http/https, vm

1.35

WIRE PROTOCOLS
Openwire
STOMP
AMQP
MQTT

1.36

PROTOCOL URIS
determines what:

protocol will be used
location of the broker (typically hostname and port)

high level uris:

typically uses composite URI
failover
fabric

failover:(tcp://primary:61616,tcp://secondary:61616)?randomize=false

1.37

RUNTIME MANAGEMENT
There are three options for management:

web console
JMX
Karaf OSGi console

DEMO!

1.38

HIGH AVAILABILITY (HA)
Messaging systems usually processes business critical data
broker must be accessible 24/7
ActiveMQ provides various mechanisms to ensure HA

1.39

HA IN ACTIVEMQ
Group of brokers forms logically one broker
Master broker

communicates with clients

Slave brokers

Passive (all connectors are stopped)

election mechanisms
client reconnects in case of failure (failover)
Message acknowledgment after the message is stored safely

1.40

MASTER SLAVE FOR HA
Shared JDBC master/slave
Shared file system master/slave
Replicated levelDB master/slave

1.41

SCALABILITY: NETWORK OF BROKERS
connections between broker
message forwarding
enables massive scalability
requires careful configuration

1.42

NETWORK CONNECTOR

 <networkConnectors>
 <networkConnector uri="static:(tcp://B:61617)"/>
 </networkConnectors>

Broker A :

1.43

NETWORK OF BROKERS
duplex connections
destination filtering
dynamic vs static forwarding
AdvisoryMessages
network consumer priority
networkTTL

1.44

HIERARCHIES OF NETWORKS
concentrator topology
hub and spokes topology
tree topology
mesh topology
complete graph

1.45

OTHER ACTIVEMQ FEATURES
exclusive consumers
message groups
composite destinations
wildcards (. * >)
virtual destinations

See http://activemq.apache.org/features.html

1.46

http://activemq.apache.org/features.html

APACHE ACTIVEMQ ARTEMIS
new Apache MoM
non-blocking architecture => great performance
merges codebase with JBoss HornetQ
JMS 2.0 compliant
Support for:

ActiveMQ clients
AMQP
STOMP
HornetQ clients

More details on .Artemis website

1.47

https://activemq.apache.org/artemis/

THANK YOU!

1.48

