
DISTRIBUTED
TRANSACTIONS
SYSTEM INTEGRATION WITH JBOSS

Vaclav Chalupa & Viliam Kasala | QE at RedHat

WHAT IS A TRANSACTION?

In computer programming, a transaction means a
sequence of operations (database updates) where
data integrity is ensured.

ACID
ATOMICITY All, or Nothing

CONSISTENCY From one valid state to another valid state

ISOLATION Transactions do not affect each other

READ_UNCOMMITED < READ_COMMITED < REPEATEBLE_READ < SERIALIZABLE

Isolation levels (relaxation):

DURABILITY Stored permanently

DISTRIBUTED TRANSACTION

A transaction in which two and more transactional
resources are involved

DT, as any other transactions, must have all four ACID
properties

Databases
JMS
EIS (Enterprise Integration Systems supporting transactions)

Transactional resources?

DT EXAMPLE

HOW IS ACID ACHIEVED?JMS INBOUND QUEUE

PG

MY

JMS OUTBOUND QUEUE

TRANSACTION MANAGER
TRANSACTION COORDINATOR

Transaction manager uses two-phase commit protocol to perform atomic distributed
transactions.

Transaction manager is component that is responsible for
coordinating of distributed transactions.

2PC
TWO-PHASE COMMIT PROTOCOL

It coordinates all participated transactional resources within distributed
transaction on whether to commit or rollback (abort).

An algorithm ensuring correct completion of a distributed
transaction = Atomicity

2PC | PHASE I
VOTING/PREPARE PHASE

Answer NO or no answer causes rollback of
DT.

If the transaction will commit, the
transaction coordinator records the
decision on stable storage, and the protocol
enters phase II.

If the transaction will abort all participant
are informed about this decision too.

A

B

C

commit?

commit?

yes

yes

2PC | PHASE II
COMMIT PHASE

A

B

C

commit

commit

TRANSACTION LOG
Transaction log is used for transaction recovery in case
of failure.

If a distributed transaction will commit, transaction
coordinator writes the decision to log.

Each participant must have own transaction log to write
commit decision.

Start Prepare
phase

Decide to
commit Write log Commit

phase Remove log End

FAILURE RECOVERY
COORDINATOR FAILURE | NETWORK / PARTICIPANT FAILURE

A

B

C

commit

commit

A

B

C

commit

commit

2PC OPTIMIZATIONS

ONE-PHASE
If there is only one involved transactional resource, transaction manager can
use simply commit.

LAST RESOUCE COMMIT (GAMBIT)
It is possible to enlist one resource which is not two-phase commit aware.

X/OPEN XA
"EXTENTED ARCHITECTURE"

The Open Group defines standard for Distributed Transaction Processing
(DTP) = standard for distributed transactions

The standard describes how the transaction manager must
behave to coordinate distributed transaction and what
resource managers of transactional resources must do to
support transactional access.

XA Transaction = Distributed Transaction

XA Resource = Transactional Resource (Participant)

JTA
JAVA TRANSACTION API

JTA is java implementation of X/OPEN XA specification

JTA specifies standard Java interfaces between a transaction manager and
the parties involved in a distributed transaction system: the resource
manager, the application server and the transactional applications.

High-level application interface for transaction boundaries demarcation
High-level transaction manager interface used by container to control
transactions

JTA is a specification developed under the Java Community Process as JSR 907.

JTS
JAVA TRANSACTION SERVICE

JTS is implementation of another specification: Object
Transaction Service (OTS) specified by OMG

JTS specifies an implementation of a transaction manager
that support JTA specification = JTS can be used by JTA

JTS uses the standard CORBA ORB/TS interfaces and
Internet Inter-ORB Protocol (IIOP) for transaction
context propagation between JTS transaction managers.

JTA is high-level API
JTS is low-level API

X/OPEN XA
ARCHITECTURE

JTA INTERFACES
javax.transaction.UserTransaction

javax.transaction.TransactionManager

javax.transaction.Transaction

javax.transaction.Synchronization

javax.transaction.xa.XAResource

javax.transaction.xa.Xid

JTA ARCHITECTURE IN
JAVA EE

USER TRANSACTION
JAVAX.TRANSACTION.USERTRANSACTION

Obtained via JNDI (java:jboss/UserTransaction) or using @Inject annotation (Java EE)

Used by Java EE applications to programmatically demarcate transactions

 begin() creates a new transaction and associate it with the current thread

 commit() completes the transaction associated with current thread

 rollback() rollback the transaction associated with current thread

 setRollbackOnly() only possible outcome of the transaction of current thread is rollback

 getStatus() obtain the status of the transaction associated with current thread

Operations:

TRANSACTION MANAGER
JAVAX.TRANSACTION.TRANSACTIONMANAGER

Obtained via JNDI - java:jboss/TransactionManager

Used by Application container

 begin() creates a new transaction and associate it with the current thread

 commit() completes the transaction associated with current thread

 rollback() rollback the transaction associated with current thread

 setRollbackOnly() only possible outcome of the transaction of current thread is rollback

 int getStatus() obtain the status of the transaction associated with current thread

 Transaction getTransaction() gets the transaction of the calling thread

 Transaction suspend() suspend transaction of the calling thread

 resume(Transaction t) resumes the transaction context of the calling thread with t

Operations:

TRANSACTION
JAVAX.TRANSACTION.TRANSACTION

Represent transaction started by transaction manager

Control transaction outcome: commit, rollback, setRollbackOnly

Enlist/delist transactional resources to transaction

Register synchornization callbacks with transaction

commit() completes the transaction associated with current thread

rollback() rollback the transaction associated with current thread

setRollbackOnly() only possible outcome of the transaction of current thread is rollback

enlistResource(XAResouce xar) enlist the specified resource to transaction

delistResource(XAResouce xar, int flag) delist the specified resource from transaction

registerSynchronization(Synchronization sync) registers synchronization

Operations:

SYNCHRONIZATION
JAVAX.TRANSACTION.SYNCHRONIZATION

Callback interface to inform about transaction completion

Typically used by cache to update/invalidate its contents

Best-effort only, not guaranteed to be called in case of crash

 beforeCompletion()

 afterCompletion()

Operations:

XA RESOURCE
JAVAX.TRANSACTION.XA.XARESOURCE

Represents any object that supports one or two phase protocol to participate in transaction
and can ensure ACID properties

Database connection

JMS connection

 start(Xid xid, int flag) starts the work on behalf of transaction branch specified in XID

 end(Xid xid, int flag) ends the work performed on behalf of transaction branch

 prepare(Xid xid) informs resource manager that it should prepare work for commital

 commit(Xid xid, boolean onePhase) commit

 rollback(Xid xid) rollback

 Xid[] recover(int flag) obtains a list of prepared transaction branches from RM

 forget(Xid xid) tells the resource manager to forget about a heuristically completed transaction branch

Operations (called exclusively by TransactionManager):

XID
JAVAX.TRANSACTION.XA.XID

Unique identifier of transaction

Industry standard

Fully portable across different Transaction Managers, allows creation of delegated
transactions in case of hierarchical Transaction Managers

Consists of three components

Format identifier – must be unique across all transaction systems
Global transaction identifier
Branch qualifier

ENTERPRISE JAVABEANS

Demarcation models supported by container:

Container managed transaction: @TransactionAttribute (REQUIRED, REQUIRES_NEW, ...)
Bean managed transactions: @Inject UserTransaction

Transaction demarcation beans in Java EE application

@Stateless
@TransactionManagement(BEAN)
public class ExampleBean {

 @Inject private UserTransaction utx;

 public void foo() {
 // start a transaction
 utx.begin();
 // Do work
 // Commit it
 utx.commit();
}}

@Stateless
@TransactionManagement(CONTAINER)
public class UserDetailBean {

 @TransactionAttribute(REQUIRED)
 public void createUserDetail() {
 //create user details object
 }
}

TRANSACTION FLOW

JBOSS FUSE GUIDES

XA TRANSACTION DECLARATION IN JBOSS FUSE

TRANSACTION GUIDE FOR JBOSS FUSE

https://github.com/FuseByExample/esb-transactions

https://access.redhat.com/documentation/en-us/red_hat_ jboss_fuse/6.3/html-
single/transaction_guide/

https://github.com/FuseByExample/esb-transactions
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html-single/transaction_guide/

TRANSACTION AND WEB
SERVICES
Common atomic transactions are short-running

= short atomic operations

For Web Services, we need long-running transaction which are propagated between
communicating Web Service.

BEA, IBM, and Microsoft developed WS-Coordinator and WS-Tx specs.

WS-Tx was split to WS-Atomic Transaction ans WS-BusinessActivity.

WS-COORDINATOR
There is a need for a generic coordination infrastructure in a Web Service
environment.

WS-Coordinator defines a framework that:

allows different coordination protocols to be plugged-in
coordinates work between clients, services and participants.

Consists of three main modules:

Activation Service creates new coordinator & context
Registration Service registers the participant with the coordinator
Context contains information necessary to perform coordination, context
is propagated between participants

WS-ATOMIC TRANSACTION
The specification:

extends the coordinator context to create transaction context
augments Activation and Registration services to support atomic transaction
(emulates ACID)
adds/defines two protocols - Completion, 2PC

This ensure automatic activation, registration, propagation and atomic termination
of Web services.

WS-ATOMIC TRANSACTION
COORDINATING PROTOCOLS

There are two coordinating protocols defined to ensure atomicity.

Each client/participant is registered to any of these protocols:

Completion used between client and coordinator to instruct to commit or
rollback
2PC used between coordinator and particiant

1 volatile 2PC - when commit notification is received from completion
protocol, happens before durable 2PC, volatile resources e.g. caches

2 durable 2PC - after successful completing of the prepare phase for
Volatile 2PC participant, durable resources e.g. database

WS-ATOMIC TRANSACTION

WS-ATOMIC TRANSACTION

3.

THANK YOU!

