
Fault Tolerance with Hystrix

Tomáš Livora

The Exception That Grounded an Airline

IVR = Interactive Voice Response

public class FlightSearch implements SessionBean {

 private MonitoredDataSource connectionPool;

 public List lookupByCity(...) throws SQLException, RemoteException {
 Connection conn = null;
 Statement stmt = null;
 try {
 conn = connectionPool.getConnection();
 stmt = conn.createStatement();
 // do the lookup logic and return a list of results
 } finally {
 if (stmt != null) {
 stmt.close();
 }
 if (conn != null) {
 conn.close();
 }
 }
 }
}

What should they have done better?

Problems

denying the inevitability of failures
connections waiting forever

no timeouts
tightly coupled components

direct dependencies between services
synchronous blocking calls

cascading failures
error propagation throughout various systems

no safe failure modes

Stability Patterns

Stability Patterns

Timeouts
Circuit Breaker
Bulkheads
Fail Fast
Steady State
Handshaking
Test Harness
Decoupling Middleware

Timeouts

avoid waiting for a response forever
should always be set for remote calls

usually used at lower levels (operating systems)
ignored at higher levels (libraries, applications)

need to be set carefully
waiting too long slows down the whole system
timing out too quickly may ignore some responses

Circuit Breaker

similar to circuit breakers in electric circuits
detecting excess usage and failing first

wraps dangerous calls and protects the system
switching between different states

closed
open
half-open

prevents cascading failures
works closely with timeouts
valuable place for monitoring

Bulkheads

partitions that divide the inside of a ship into separate areas
a single penetration of the hull does not sink the ship

similar technique used in software systems
keep a failure in one component from affecting other components
protect against bringing down the whole system

using separate connection pools for different remote services
exhaustion of one pool do not affect other services

Fail Fast

waiting for failure is a waste of time
detect a potential failure in advance

improves stability by avoiding slow responses
helps to maintain capacity under heavy load

check all necessary resources before the execution
check all connections
verify the states of circuit breakers

check input parameters as soon as possible
distinguish between system failures and application failures

trip or do not trip the circuit breaker

Fault Tolerance Libraries

Fault Tolerance Libraries

JRugged
Failsafe
Resilience4j
Hystrix

JRugged

a Java library of robustness design patterns

provides three mechanisms
initializers
circuit breakers
performance monitors

https://github.com/Comcast/jrugged

CircuitBreaker circuitBreaker = new CircuitBreaker();
circuitBreaker.invoke(() -> service.call());

https://github.com/Comcast/jrugged

Failsafe

a lightweight, zero-dependency library for handling failures

fault tolerance mechanisms
timeouts
circuit breakers
fallbacks

other features
retries
event listeners

https://github.com/jhalterman/failsafe

https://github.com/jhalterman/failsafe

CircuitBreaker circuitBreaker = new CircuitBreaker()
 .withFailureThreshold(3, 10)
 .withSuccessThreshold(5)
 .withDelay(1, TimeUnit.MINUTES);
Failsafe.with(circuitBreaker).run(() −> remoteService.call());

RetryPolicy retryPolicy = new RetryPolicy()
 .retryOn(ConnectException.class)
 .withDelay(1, TimeUnit.SECONDS)
 .withMaxRetries(3);
Failsafe.with(retryPolicy).run(() -> remoteService.call());

Failsafe.with(retryPolicy)
 .withFallback(this::callFallback)
 .get(() -> remoteService.call());

Resilience4j

a lightweight fault tolerance library for Java 8 and functional programming

based on (formerly Javaslang) and
many different mechanisms

circuit breaker, fallback, bulkheads
rate limiter, automatic retrying, response caching
metrics monitoring

annotation-based configuration possible (AOP)

https://github.com/resilience4j/resilience4j
Vavr RxJava

https://github.com/resilience4j/resilience4j
http://www.vavr.io/
https://github.com/ReactiveX/RxJava

// Create a CircuitBreaker with a default configuration
CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("backendName");

// Create a Retry with 3 retries and 500ms interval between retries
Retry retryContext = Retry.ofDefaults("backendName");

// Decorate your call to BackendService.doSomething()
Try.CheckedSupplier<String> decoratedSupplier = Decorators
 .ofCheckedSupplier(() -> backendService.doSomething())
 .withCircuitBreaker(circuitBreaker)
 .withRetry(retryContext)
 .decorate();

// Invoke the decorated function and recover from any exception
Try<String> result = Try.of(decoratedSupplier)
 .recover(throwable -> "Hello from Recovery");

Hystrix

Hystrix

the most popular fault tolerance library
developed by Netflix
provides various mechanisms

timeouts
circuit breakers, fallbacks
isolation by thread pools
request caching and collapsing

annotation-based configuration possible (AOP)
provides monitoring capabilities (Hystrix Dashboard)

Hystrix Command

wraps a single remote service method
need to provide different implementation for each method

based on command design pattern
extend HystrixCommand abstract class
perform remote service call in run() method
execute by calling execute() method on an instance

provides a large set of configuration options
command group, command name...

allows fallback method implementation

public class GetUserCommand extends HystrixCommand<User> {

 private static final UserServiceClient userServiceClient =
 new UserServiceClient();

 private final String userName;

 public GetUserCommand(String userName) {
 super(HystrixCommandGroupKey.Factory.asKey("UserService"));
 this.userName = userName;
 }

 @Override
 protected User run() {
 return userServiceClient.getUser(userName);
 }
}

...

User john = new GetUserCommand("john").execute();

Circuit Breaker

starts in closed state and makes remote calls as usual
when an error occurs

record a failure
execute a fallback method (if provided)

when an error rate exceeds the defined threshold
move to open state and stop executing remote calls
wait in this state during the specified sleep window

after the sleep window elapses
switch to half-open state and a single request is tried
if it succeeds, move to closed state, otherwise move to open state

Fallbacks

support graceful degradation
return a default value in case the main command fails
circuit breakers still count this as a failure

should not call any remote service directly
another Hystrix command need to be used

not suitable in some cases
a command that performs a write operation
batch systems/offline computation

need to override getFallback() method from HystrixCommand class

public class CommandHelloFailure extends HystrixCommand<String> {

 private final String name;

 public CommandHelloFailure(String name) {
 super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
 this.name = name;
 }

 @Override
 protected String run() {
 throw new RuntimeException("this command always fails");
 }

 @Override
 protected String getFallback() {
 return "Hello Failure " + name + "!";
 }
}

Isolation

bulkheads pattern implementation
semaphores

limit the number of concurrent calls to any given dependency
no timing out options

thread pools (default)
isolate dependencies from each other

thread-pool per command group by default
configurable for each command

additional computational overhead

Request Collapsing

collapsing multiple requests within a short time window
a single back-end dependency call

reduction of the number of threads and network connections
suitable in case of high number of concurrent requests

global or user context collapsing
latency before the actual command is executed

Request Caching

eliminates duplicate thread executions
within a single request context

data retrieval is consistent throughout the request
underlying run() method executed only once
all executing threads will received the same data

executions matched based on a cache key
need to implement getCacheKey() method
returned null means "do not cache" (default)

public class CommandUsingRequestCache extends HystrixCommand<Boolean> {

 private final int value;

 protected CommandUsingRequestCache(int value) {
 super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
 this.value = value;
 }

 @Override
 protected Boolean run() {
 return value == 0 || value % 2 == 0;
 }

 @Override
 protected String getCacheKey() {
 return String.valueOf(value);
 }
}

Hystrix Javanica

Hystrix configuration using Java annotations
@HystrixCommand
@HystrixProperty
@DefaultProperties
@HystrixCollapser
@CacheResult
@CacheRemove
@CacheKey

need to use AspectJ (AOP) in your project

@DefaultProperties(groupKey = "UserService")
class UserServiceClient {

 @HystrixCommand(
 commandProperties = {
 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "40")
 @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds", value = "3500")
 },
 threadPoolProperties = {
 @HystrixProperty(name = "coreSize", value = "30")
 }
)
 public User getUserById(Integer id) {
 return target.path("users/{id}").resolveTemplate("id", id).request().get(User.class);
 }

 @HystrixCommand(fallbackMethod = "getActiveUsersFallback")
 public List<User> getActiveUsers() {
 return target.path("users/active").request().get(List.class);
 }

 public List<User> getActiveUsersFallback() {
 return Collections.emptyList();
 }
}

Metrics and Monitoring

commands generate metrics on execution outcomes and latency
modeled as a first-class stream
written to in-memory data structures

published using REST API
need to deploy HystrixMetricsStreamServlet
can be consumed by Hystrix Dashboard

Hystrix Dashboard

metrics monitoring in real time
single server
multiple servers (Turbine)

finding the cause of problems quickly
web application

WAR file deployable in servlet containers

Follow-up

Hystrix workshop
simple assignments teaching the basics of Hystrix

Six principles for building fault tolerant microservices on the JVM
Devoxx presentation by Christopher Batey

https://github.com/livthomas/hystrix-workshop

https://youtu.be/dKWNZnuZhd0

https://github.com/livthomas/hystrix-workshop
https://youtu.be/dKWNZnuZhd0

Sources

Fallacies of Distributed Computing Explained

Release It!: Design and Deploy Production-Ready Software

Netflix Hystrix GitHub Wiki

Fault Tolerance in Microservices

http://www.rgoarchitects.com/Files/fallacies.pdf

https://pragprog.com/book/mnee/release-it

https://github.com/Netflix/Hystrix/wiki

https://is.muni.cz/th/396542/fi_m/?lang=en

http://www.rgoarchitects.com/Files/fallacies.pdf
https://pragprog.com/book/mnee/release-it
https://github.com/Netflix/Hystrix/wiki
https://is.muni.cz/th/396542/fi_m/?lang=en

