
Java Enterprise Edition
Security Explained

CTU Prague, Nov 2, 2018

Peter Škopek, pskopek@redhat.com, twitter: @pskopek

Abstract
This lecture will guide you through various aspects of security in Java Enterprise
Edition Applications.
It will start with a bit of history of JAAS and continue with Java EE security
concepts and explanation of their usage in your application.
Next comes Keycloak introduction and ways to secure applications running in
WildFly 14.

Java Authentication and Authorization Service
History

The Java Authentication and Authorization Service (JAAS) was introduced as
an optional package (extension) to the Java 2 SDK, Standard Edition
(J2SDK), v 1.3. JAAS was integrated into the J2SDK 1.4.

What is that?

API for authentication and authorization services in Java application.
Hopefully become history soon.

JAAS
JAAS implements a Java version of the standard Pluggable Authentication Module
(PAM) framework as we know it from Linux/UNIX environment.

This permits applications to remain independent from underlying authentication
technologies.

New or updated authentication technologies can be plugged under an application
without requiring modifications to the application itself.

JAAS
Applications enable the authentication process by instantiating a LoginContext
object, which in turn references a Configuration to determine the authentication
technology(ies), or LoginModule(s), to be used in performing the authentication.

Typical LoginModules may prompt for and verify a username and password.
Others may read and verify a voice or fingerprint sample.

Common JAAS interfaces
Principals

● Must implement java.security.Principal interface.

Credentials

● Public and private credential classes are not part of the core JAAS class
library.

● Any class can represent a credential.
● Developers, however, may elect to have their credential classes implement

two interfaces related to credentials: javax.security.auth.Refreshable and
javax.security.auth.Destroyable

Java EE Security - Overview
What are the aspects of secure applications?

Authentication - The means by which communicating entities (for example,
client and server) prove to one another that they are acting on behalf of
specific identities that are authorized for access.

Access control for resources - The means by which interactions with
resources are limited to collections of users or programs for the purpose of
enforcing integrity, confidentiality, or availability constraints.

Java EE Security - Overview
Data integrity - The means used to prove that information has not been
modified by a third party (some entity other than the source of the
information).
For example, a recipient of data sent over an open network must be able to
detect and discard messages that were modified after they were sent.

Java EE Security - Overview
Another security aspects of good application

Confidentiality - The means used to ensure that information is made
available only to users who are authorized to access it.

Non-repudiation - The means used to prove that a user performed some
action such that the user cannot reasonably deny having done so.

Auditing - The means used to capture a tamper-resistant record of security
related events for the purpose of being able to evaluate the effectiveness of
security policies and mechanisms.

Java EE Security - HTTP Auth Mechanisms
There is more than one authentication mechanism

● Basic
● Digest
● Certificate
● SPNEGO/Kerberos
● JWT

Simple Java EE example
Step 1: Initial request

The web client requests the main application URL

Simple Java EE example
Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentication data
(for example, username and password) from the user. The web client forwards the
authentication data to the web server, where it is validated by the web server.

Simple Java EE example
Step 3: URL Authorization

The web container then tests the user’s credential against each role to determine if it can map
the user to the role.

Simple Java EE example
Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL request.

Simple Java EE example
Step 5: Invoking Enterprise Bean Business Methods

The servlet performs the remote method call to the enterprise bean, using the user’s credential
to establish a secure association between the servlet and the enterprise bean. The association
is implemented as two related security contexts, one in the web server and one in the EJB
container.

Goals of Java EE Security Architecture
Transparency: Application Component Providers should not have to know
anything about security to write an application.

Isolation: Divorcing the application from responsibility for security ensures greater
portability of Java EE applications.

Flexibility: The security mechanisms and declarations used by applications under
this specification should not impose a particular security policy, but facilitate the
implementation of security policies specific to the particular Java EE installation or
application.

Abstraction: An application component’s security requirements will be logically
specified using deployment descriptors.

Goals of Java EE Security Architecture
Independence: Required security behaviors and deployment contracts should be
implementable using a variety of popular security technologies.

Secure interoperability: Application components executing in a Java EE product
must be able to invoke services provided in a Java EE product from a different
vendor.

Terminology
Principal - is an entity that can be authenticated by an authentication protocol in a
security service that is deployed in an enterprise.

Security Policy Domain - is a scope over which a common security policy is
defined and enforced by the security administrator of the security service (also
known as security domain or realm).

Security Attributes - a set of security attributes is associated with every principal.

Credential - contains or references information (security attributes) used to
authenticate a principal for Java EE product services.

Container Based Security
Security for components is provided by their containers in order to achieve the
goals for security specified above in a Java EE environment. A container provides
two kinds of security:

1. Declarative security
Declarative security refers to the means of expressing an application’s security model or
requirements, including roles, access control, and authentication requirements in a form
external to the application. The deployment descriptor is the primary vehicle for declarative
security in web applications.

2. Programmatic security
Programmatic security is used by security aware applications when declarative security alone
is not sufficient to express the security model of the application.

Declarative Security
Following annotations are part of Servlet 3.0 specification and provide alternative
to defining access control via declarative deployment descriptor.

● @ServletSecurity - Security constraints to be enforced by a Servlet container
on HTTP protocol messages

● @HttpConstraint - The annotation is used within the @ServletSecurity
annotation to represent the security constraint to be applied to all HTTP
protocol methods for which a corresponding @HttpMethodConstraint does
NOT occur within the @ServletSecurity annotation.

● @HttpMethodConstraint - The annotation is used within the
@ServletSecurity annotation to represent security constraints on specific
HTTP protocol messages/verbs.

Servlet Security Annotation Reference
Detailed descriptions could be found at:

http://jcp.org/en/jsr/detail?id=315

https://javaee.github.io/javaee-spec/javadocs/javax/servlet/annotation/packag
e-summary.html

http://jcp.org/en/jsr/detail?id=315
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/annotation/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/annotation/package-summary.html

Example
For all HTTP methods, no constraints

@ServletSecurity
public class Example1 extends HttpServlet {
 ...
}

Example
For all HTTP methods, no auth-constraint, confidential transport required

@ServletSecurity(@HttpConstraint(transportGuarantee =
 TransportGuarantee.CONFIDENTIAL))
public class Example2 extends HttpServlet {
 ...
}

Example
For all HTTP methods, all access denied

@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))
public class Example3 extends HttpServlet {
 ...
}

Example
For all HTTP methods, auth-constraint requiring membership in Role R1

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))
public class Example4 extends HttpServlet {
 ...
}

Example
For All HTTP methods except GET and POST, no constraints; for methods
GET and POST, auth-constraint requiring membership in Role R1; for POST,
confidential transport required

@ServletSecurity((httpMethodConstraints = {
 @HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),
 @HttpMethodConstraint(value = "POST", rolesAllowed = "R1",
 transportGuarantee = TransportGuarantee.CONFIDENTIAL)
})
public class Example5 extends HttpServlet {
 ...
}

Example
For all HTTP methods except GET auth-constraint requiring membership in
Role R1; for GET, no constraints

@ServletSecurity(
 value = @HttpConstraint(rolesAllowed = "R1"),
 httpMethodConstraints = @HttpMethodConstraint("GET"))
public class Example6 extends HttpServlet {
 ...
}

Example
For all HTTP methods except TRACE, auth-constraint requiring membership
in Role R1; for TRACE, all access denied

@ServletSecurity(
 value = @HttpConstraint(rolesAllowed = "R1"),
 httpMethodConstraints = @HttpMethodConstraint(
 value="TRACE",
 emptyRoleSemantic = EmptyRoleSemantic.DENY))
public class Example7 extends HttpServlet {
 ...
}

Mapping to web.xml - example
Mapping @ServletSecurity with no contained @HttpMethodConstraint

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))

<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <security-role-name>R1</security-role-name>
 </auth-constraint>
</security-constraint>

Mapping to web.xml - example
Mapping @ServletSecurity with contained @HttpMethodConstraint

@ServletSecurity(value=@HttpConstraint(rolesAllowed = "Role1"),
 httpMethodConstraints = @HttpMethodConstraint(value = "TRACE",
 emptyRoleSemantic = EmptyRoleSemantic.DENY))

<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 <http-method-omission>TRACE</http-method-omission>
 </web-resource-collection>
 <auth-constraint>
 <security-role-name>Role1</security-role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 <http-method>TRACE</http-method>
 </web-resource-collection>
 <auth-constraint/>
</security-constraint>

Roles
A servlet container enforces declarative or programmatic security for the principal
associated with an incoming request based on the security attributes of the
principal.

● A deployer has mapped a security role to a user group in the operational
environment.

● A deployer has mapped a security role to a principal name in a security
policy domain.

Programmatic Security
Programmatic security consists of the following methods of the
HttpServletRequest interface:

● authenticate
● login
● logout
● getRemoteUser
● isUserInRole
● getUserPrincipal

EJB Container Security - Basic idea of EJB security
● Business methods of Enterprise Java Beans contain no security-related logic.
● Security policies for the application can be configured in a way that is most

appropriate for the operational environment of the enterprise.
● A security role is a semantic grouping of permissions that a given type of

users of the application must have in order to successfully use the application.

Security Permission Specification
The Bean Provider can use metadata annotations or the deployment descriptor
to specify whether the caller’s security identity or a run-as security identity should
be used for the execution of the bean’s methods.

● By default, the caller principal will be propagated as the caller identity. The
Bean Provider can use the RunAs annotation to specify that a security
principal that has been assigned to a specified security role be used instead.

● If the deployment descriptor is used to specify the security principal, the
Bean Provider or the Application Assembler can use the security-identity
deployment descriptor element to specify or override the security identity.

Programmatic Access to Caller's Security Context
The javax.ejb.EJBContext interface provides two methods (plus two deprecated
methods that were defined in EJB 1.0) that allow the Bean Provider to access
security information about the enterprise bean's caller.

public class MyBusinessBean {

 @Resource
 EJBContext ctx;

 ...
}

Security Related Annotations

Annotation Corresponding DD Element

@DeclareRoles security-role

@RolesAllowed method-permission

@PermitAll unchecked

@DenyAll exclude-list

@RunAs security-identity run-as

Security Related Annotations

Annotation Class Method

@DeclareRoles Yes No

@RolesAllowed Yes Yes

@PermitAll Yes Yes

@DenyAll Yes Yes

@RunAs Yes Yes

Java EE and Java Security Manager
Java EE application components are able to run with Java Security Manager.

Permission declarations must be stored in META-INF/permissions.xml file within
an EJB, web, application client, or resource adapter archive in order for them to be
located and subsequently processed by the deployment machinery of the Java EE
Application server.

Permissions Allowed in Web, EJB, and Resource
Adapter Components

java.lang.RuntimePermission loadLibrary.*

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read,write

java.io.FilePermission file:${javax.servlet.context.temdir} read, write

java.util.PropertyPermission

Keycloak Features
● Single-Sign On
● Kerberos bridge
● Identity Brokering and Social Login
● User Federation
● Client Adapters
● Admin Console
● Account Management Console
● Standard Protocols

○ OpenID Connect, OAuth 2.0, and SAML

● Authorization Services

Introduction to Keycloak
What is Keycloak?

Keycloak is an open source Identity and Access Management solution
aimed at modern applications and services. It makes it easy to secure
applications and services with little to no code.

Where to get it?

http://www.keycloak.org/

http://www.keycloak.org/

Keycloak
What to download?

For the sake of simplicity we will use separate Keycloak server known as
“Standalone server distribution”.

For the application server we need to download WildFly Client Adapter for
appropriate server version and intended application. (WildFly 13 client
adapter is the most recent one, but we will use one from snapshot builds. This
is at the moment only way to get support for WildFly 14)

Keycloak Setup
1. Unzip keycloak distribution package
2. Run ./bin/standalone.sh -Djboss.socket.binding.port-offset=100

This will start instance of keycloak server at port 8180 (= 8080 + 100)
3. Open http://localhost:8180/ to finish initial setup by creating admin user
4. Open Keycloak Admin Console at http://localhost:8180/auth/
5. Create new realm called “CTU”
6. Then create couple of test users (test1, test2)

a. Go to “Credentials” tab and enter new password and password confirmation
b. Switch off temporary password flag
c. Press <Reset Password> button

http://localhost:8180/
http://localhost:8180/auth/

Keycloak Client Adapter
Install Keycloak Client Adapter for WildFly 14 as we are using this application
server.

1. Download and install WildFly (you should have one already installed)
2. Download Keycloak Client Adapter and unzip this file into the root directory of

your WildFly distribution (WF14 Adapter)
3. Finish installation with:

cd bin

./jboss-cli.sh --file=adapter-install-offline.cli

4. Previous command will do necessary changes to WildFly config file and we
can start the server using ./bin/standalone.sh

https://drive.google.com/file/d/1LJGOSvvkXx2Gnvi6qO9Zfi9F8PpafH2j/view?usp=sharing

Securing Java EE application with Keycloak
Application needs to be registered first with “CTU” Keycloak realm we have
created earlier.

Follow the steps to do it.

1. Use Keycloak Admin Console open CTU realm
2. Select “Clients” and press <Create> button at the right side.
3. Register your client using this data

Client ID: app-profile-vanilla
Client Protocol: openid-connect
Root URL: http://localhost:8080/vanilla

Securing Java EE application with Keycloak
Get the installation template from installation tab in client record in Keycloak
Console.

It looks something like this:

<subsystem xmlns="urn:jboss:domain:keycloak:1.1">

<secure-deployment name="WAR MODULE NAME.war">

 <realm>CTU</realm>

 <auth-server-url>http://localhost:8180/auth</auth-server-url>

 <public-client>true</public-client>

 <ssl-required>EXTERNAL</ssl-required>

 <resource>vanilla</resource>

</secure-deployment>

</subsystem>

Change war name to
vanilla.war

Update standalone.xml in
your wildfly instance
under section

Securing Java EE application with Keycloak
To make it simple we will use keycloak-quickstarts namely “app-profile-jee-vanilla”
app. Edit src/main/webapp/WEB-INF/web.xml to use authentication method
KEYCLOAK instead of BASIC.

mvn clean wildfly:deploy -DskipTests

Login to application http://localhost:8080/vanilla/profile.jsp (not working)

Login is not working properly, one needs to modify Keycloak subsystem to
recognize the client application we have just deployed.

http://localhost:8080/vanilla/profile.jsp

