
EJB 3.1 Expert Group

Specification Lead:

Kenneth Saks, Sun Microsystems

Please send comments to: jsr-318-comments@jcp.org

Sun Microsystems

JSR 318: Enterprise JavaBeansTM,Version 3.1

EJB Core Contracts and Requirements

November 5, 2009
Version 3.1, Final Release

Enterprise JavaBeans 3.1, Final Release Sun Microsystems, Inc.
Specification : : JSR-000318 Enterprise JavaBeans(tm) ("Specification")

Version: 3.1

Status: Final Release

Release: 10 December 2009

Copyright 2009 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under Sun's
applicable intellectual property rights to view, download, use and reproduce the Specifi-
cation only for the purpose of internal evaluation. This includes (i) developing applica-
tions intended to run on an implementation of the Specification, provided that such
applications do not themselves implement any portion(s) of the Specification, and (ii) dis-
cussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided
that such excerpts do not in the aggregate constitute a significant portion of the Specifi-
cation.

2. License for the Distribution of Compliant Implementations. Sun also grants you a per-
petual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited
license (without the right to sublicense) under any applicable copyrights or, subject to the
provisions of subsection 4 below, patent rights it may have covering the Specification to
create and/or distribute an Independent Implementation of the Specification that: (a) fully
implements the Specification including all its required interfaces and functionality; (b)
does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those required/authorized by the Specifica-
tion or Specifications being implemented; and (c) passes the Technology Compatibility
Kit (including satisfying the requirements of the applicable TCK Users Guide) for such
Specification ("Compliant Implementation"). In addition, the foregoing license is
expressly conditioned on your not acting outside its scope. No license is granted hereun-
der for any other purpose (including, for example, modifying the Specification, other than
to the extent of your fair use rights, or distributing the Specification to third parties). Also,
no right, title, or interest in or to any trademarks, service marks, or trade names of Sun or
Sun's licensors is granted hereunder. Java, and Java-related logos, marks and names
2 11/5/09

Enterprise JavaBeans 3.1, Final Release Sun Microsystems, Inc.
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous
paragraph or any other particular "pass through" requirements in any license You grant
concerning the use of your Independent Implementation or products derived from it.
However, except with respect to Independent Implementations (and products derived
from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither:
(a) grant or otherwise pass through to your licensees any licenses under Sun's applica-
ble intellectual property rights; nor (b) authorize your licensees to make any claims con-
cerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under sub-
paragraph 2 above that would be infringed by all technically feasible implementations of
the Specification, such license is conditioned upon your offering on fair, reasonable and
non-discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive,
non-transferable, worldwide license under Your patent rights which are or would be
infringed by all technically feasible implementations of the Specification to develop, dis-
tribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided in a
technically feasible manner when implementing the Specification, such license shall ter-
minate with respect to such claims if You initiate a claim against Sun that it has, in the
course of performing its responsibilities as the Specification Lead, induced any other
entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license
granted under subparagraph 2 above, where the infringement of such claims can be
avoided in a technically feasible manner when implementing the Specification such
license, with respect to such claims, shall terminate if You initiate a claim against Sun
that its making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall
mean an implementation of the Specification that neither derives from any of Sun's
source code or binary code materials nor, except with an appropriate and separate
license from Sun, includes any of Sun's source code or binary code materials; "Licensor
Name Space" shall mean the public class or interface declarations whose names begin
with "java", "javax", "com.sun" or their equivalents in any subsequent naming convention
3 11/5/09

Enterprise JavaBeans 3.1, Final Release Sun Microsystems, Inc.
adopted by Sun through the Java Community Process, or any recognized successors or
replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test
suite and accompanying TCK User's Guide provided by Sun which corresponds to the
Specification and that was available either (i) from Sun 120 days before the first release
of Your Independent Implementation that allows its use for commercial purposes, or (ii)
more recently than 120 days from such release but against which You elect to test Your
implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS
OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRAC-
TICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS
OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does
not represent any commitment to release or implement any portion of the Specification in
any product. In addition, the Specification could include technical inaccuracies or typo-
graphical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUEN-
TIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY
TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING USING _THE SPECIFI-
CATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims aris-
ing or resulting from: (i) your use of the Specification; (ii) the use or distribution of your
Java application, applet and/or implementation; and/or (iii) any claims that later versions
or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Gov-
4 11/5/09

Enterprise JavaBeans 3.1, Final Release Sun Microsystems, Inc.
ernment or by a U.S. Government prime contractor or subcontractor (at any tier), then
the Government's rights in the Software and accompanying documentation shall be only
as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublic-
ensees, to incorporate, disclose, and use without limitation the Feedback for any pur-
pose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice
of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or
import regulations in other countries. Licensee agrees to comply strictly with all such
laws and regulations and acknowledges that it has the responsibility to obtain such
licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It super-
sedes all prior or contemporaneous oral or written communications, proposals, condi-
tions, representations and warranties and prevails over any conflicting or additional
terms of any quote, order, acknowledgment, or other communication between the parties
relating to its subject matter during the term of this Agreement. No modification to this
Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

Rev. April, 2006
5 11/5/09

Enterprise JavaBeans 3.1, Final Release Sun Microsystems, Inc.
6 11/5/09

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
Table of Contents

Chapter 1 Introduction.. 29
1.1 Target Audience... 29
1.2 What is New in EJB 3.1 .. 29

1.2.1 What Was New in EJB 3.0.. 30
1.3 Acknowledgements ... 31
1.4 Organization of the Specification Documents... 31
1.5 Document Conventions ... 31

Chapter 2 Overview.. 33
2.1 Overall Goals... 33
2.2 EJB Roles .. 34

2.2.1 Enterprise Bean Provider .. 35
2.2.2 Application Assembler.. 35
2.2.3 Deployer.. 35
2.2.4 EJB Server Provider.. 36
2.2.5 EJB Container Provider .. 36
2.2.6 Persistence Provider.. 37
2.2.7 System Administrator ... 37

2.3 Enterprise Beans.. 38
2.3.1 Characteristics of Enterprise Beans .. 38
2.3.2 Flexible Model .. 38

2.4 Session, Entity, and Message-Driven Objects... 39
2.4.1 Session Objects ... 39
2.4.2 Message-Driven Objects ... 40
2.4.3 Entity Objects.. 40

2.5 Standard Mapping to CORBA Protocols .. 40
2.6 Mapping to Web Service Protocols ... 41
2.7 Pruning the EJB API ... 41
2.8 Relationship to Managed Bean Specification.. 42

Chapter 3 Client View of a Session Bean... 43
3.1 Overview ... 43
3.2 Local, Remote, and Web Service Client Views... 45

3.2.1 Remote Clients.. 45
3.2.2 Local Clients ... 45
3.2.3 Choosing Between a Local or Remote Client View 46
3.2.4 Web Service Clients .. 47

3.3 EJB Container.. 48
3.4 Client View of Session Beans Written to the EJB 3.x Simplified API 48

3.4.1 Obtaining a Session Bean’s Business Interface 48
3.4.2 Obtaining a Reference to the No-interface View 49
3.4.3 Session Bean’s Business Interface .. 49
 7 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
3.4.4 Session Bean’s No-Interface View.. 50
3.4.5 Client View of Session Object’s Life Cycle...................................... 51
3.4.6 Example of Obtaining and Using a Session Object 51
3.4.7 Session Object Identity.. 53

3.4.7.1 Stateful Session Beans .. 53
3.4.7.2 Stateless Session Beans... 53
3.4.7.3 Singleton Session Beans ... 54

3.4.8 Asynchronous Invocations .. 54
3.4.8.1 Return Values.. 55

3.4.9 Concurrent Access to Session Bean References 56
3.5 The Web Service Client View of a Session Bean .. 56

3.5.1 JAX-WS Web Service Clients... 57
3.5.2 JAX-RPC Web Service Clients ... 58

3.6 Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View
API59

3.6.1 Locating a Session Bean’s Home Interface....................................... 59
3.6.2 Session Bean’s Remote Home Interface ... 60

3.6.2.1 Creating a Session Object ... 60
3.6.2.2 Removing a Session Object .. 61

3.6.3 Session Bean’s Local Home Interface... 61
3.6.3.1 Creating a Session Object ... 62
3.6.3.2 Removing a Session Object .. 62

3.6.4 EJBObject and EJBLocalObject ... 62
3.6.5 Object Identity... 63
3.6.6 Client view of Session Object’s Life Cycle 64

3.6.6.1 References to Session Object Remote Interfaces 64
3.6.6.2 References to Session Object Local Interfaces................... 65

3.6.7 Creating and Using a Session Object .. 65
3.6.8 Object Identity... 67

3.6.8.1 Stateful Session Beans .. 67
3.6.8.2 Stateless Session Beans... 67
3.6.8.3 getPrimaryKey() ... 68

3.6.9 Type Narrowing... 68

Chapter 4 Session Bean Component Contract.. 69
4.1 Overview ... 69
4.2 Conversational State of a Stateful Session Bean ... 70

4.2.1 Instance Passivation and Conversational State 71
4.2.2 The Effect of Transaction Rollback on Conversational State 73

4.3 Protocol Between a Session Bean Instance and its Container......................... 74
4.3.1 Required Session Bean Metadata.. 74
4.3.2 Dependency Injection.. 74
4.3.3 The SessionContext Interface.. 74
4.3.4 Session Bean Lifecycle Callback Interceptor Methods..................... 76
4.3.5 The Optional SessionBean Interface ... 77
4.3.6 Use of the MessageContext Interface by Session Beans................... 78
4.3.7 The Optional Session Synchronization Notifications for Stateful Session

Beans78
 11/5/09 8

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
4.3.8 Timeout Callbacks for Stateless and Singleton Session Beans......... 79
4.3.9 Business Method Delegation .. 79

4.3.10 Session Bean Creation .. 79
4.3.10.1 Stateful Session Beans.. 80
4.3.10.2 Stateless Session Beans .. 80

4.3.11 Stateful Session Bean Removal .. 80
4.3.12 Stateful Session Bean Timeout ... 81
4.3.13 Business Method Interceptor Methods for Session Beans................ 81
4.3.14 Serializing Session Bean Methods.. 82

4.3.14.1 Stateful Session Bean Concurrent Access Timeouts 82
4.3.15 Transaction Context of Session Bean Methods 83

4.4 Global JNDI Access .. 83
4.4.1 Syntax.. 83

4.4.1.1 java:app... 84
4.4.1.2 java:module .. 85

4.4.2 Examples... 85
4.4.2.1 Session bean exposing a single local business interface 85
4.4.2.2 Session bean exposing multiple client views 86

4.5 Asynchronous Methods ... 87
4.5.1 Metadata.. 87
4.5.2 Method Requirements ... 87

4.5.2.1 Business Interfaces ... 87
4.5.2.2 Bean Classes ... 87

4.5.3 Transactions .. 88
4.5.4 Security ... 88
4.5.5 Client Exception Behavior .. 88

4.6 Stateful Session Bean State Diagram .. 89
4.6.1 Operations Allowed in the Methods of a Stateful Session Bean Class92
4.6.2 Dealing with Exceptions ... 96
4.6.3 Missed PreDestroy Calls ... 97
4.6.4 Restrictions for Transactions... 97

4.7 Stateless Session Beans ... 98
4.7.1 Stateless Session Bean State Diagram .. 99
4.7.2 Operations Allowed in the Methods of a Stateless Session Bean Class101
4.7.3 Dealing with Exceptions ... 105

4.8 Singleton Session Beans.. 106
4.8.1 Singleton Initialization.. 107
4.8.2 Singleton Destruction.. 109
4.8.3 Transaction Semantics of Initialization and Destruction 109
4.8.4 Singleton Error Handling .. 109
4.8.5 Singleton Concurrency.. 109

4.8.5.1 Container Managed Concurrency....................................... 110
4.8.5.2 Bean Managed Concurrency .. 111
4.8.5.3 Specification of a Concurrency Management Type............ 111
4.8.5.4 Specification of the Container Managed Concurrency Metadata for

a Bean’s Methods112
4.8.5.5 Specification of Concurrency Locking Attributes with Metadata

Annotations113
4.8.6 Operations Allowed in the Methods of a Singleton Session Bean ... 115
 9 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
4.9 The Responsibilities of the Bean Provider .. 119
4.9.1 Classes and Interfaces ... 120
4.9.2 Session Bean Class.. 120

4.9.2.1 Session Bean Superclasses.. 121
4.9.3 Lifecycle Callback Interceptor Methods ... 122
4.9.4 Session Synchronization Methods .. 122
4.9.5 ejbCreate<METHOD> Methods... 123
4.9.6 Business Methods.. 123
4.9.7 Session Bean’s Business Interface .. 124
4.9.8 Session Bean’s No-Interface View.. 125
4.9.9 Session Bean’s Remote Interface .. 126

4.9.10 Session Bean’s Remote Home Interface ... 126
4.9.11 Session Bean’s Local Interface ... 127
4.9.12 Session Bean’s Local Home Interface... 127
4.9.13 Session Bean’s Web Service Endpoint Interface............................... 128

4.10 The Responsibilities of the Container Provider... 129
4.10.1 Generation of Implementation Classes ... 129
4.10.2 Generation of WSDL .. 130
4.10.3 Session Business Interface Implementation Class 130
4.10.4 No-Interface View Reference Class .. 130
4.10.5 Session EJBHome Class.. 131
4.10.6 Session EJBObject Class... 131
4.10.7 Session EJBLocalHome Class .. 131
4.10.8 Session EJBLocalObject Class.. 131
4.10.9 Web Service Endpoint Implementation Class 132

4.10.10 Asynchronous Client Future<V> Return Value Implementation Class132
4.10.11 Handle Classes .. 132
4.10.12 EJBMetaData Class... 132
4.10.13 Non-reentrant Instances... 132
4.10.14 Transaction Scoping, Security, Exceptions 132
4.10.15 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints132
4.10.16 SessionContext .. 133

Chapter 5 Message-Driven Bean Component Contract.. 135
5.1 Overview ... 135
5.2 Goals .. 136
5.3 Client View of a Message-Driven Bean .. 136
5.4 Protocol Between a Message-Driven Bean Instance and its Container........... 138

5.4.1 Required MessageDrivenBean Metadata .. 138
5.4.2 The Required Message Listener Interface... 138
5.4.3 Dependency Injection.. 139
5.4.4 The MessageDrivenContext Interface... 139
5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods 140
5.4.6 The Optional MessageDrivenBean Interface 140
5.4.7 Timeout Callbacks... 141
5.4.8 Message-Driven Bean Creation .. 141
5.4.9 Message Listener Interceptor Methods for Message-Driven Beans . 142

5.4.10 Serializing Message-Driven Bean Methods...................................... 142
 11/5/09 10

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
5.4.11 Concurrency of Message Processing .. 142
5.4.12 Transaction Context of Message-Driven Bean Methods 142
5.4.13 Security Context of Message-Driven Bean Methods........................ 143
5.4.14 Activation Configuration Properties ... 143
5.4.15 Message Acknowledgment for JMS Message-Driven Beans 143
5.4.16 Message Selectors for JMS Message-Driven Beans......................... 144
5.4.17 Association of a Message-Driven Bean with a Destination or Endpoint144

5.4.17.1 JMS Message-Driven Beans... 144
5.4.18 Dealing with Exceptions ... 145
5.4.19 Missed PreDestroy Callbacks ... 146
5.4.20 Replying to a JMS Message.. 146

5.5 Message-Driven Bean State Diagram ... 146
5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class148

5.6 The Responsibilities of the Bean Provider .. 150
5.6.1 Classes and Interfaces ... 150
5.6.2 Message-Driven Bean Class ... 150
5.6.3 Message-Driven Bean Superclasses.. 151
5.6.4 Message Listener Method ... 151
5.6.5 Lifecycle Callback Interceptor Methods... 152

5.7 The Responsibilities of the Container Provider... 152
5.7.1 Generation of Implementation Classes ... 152
5.7.2 Deployment of JMS Message-Driven Beans 152
5.7.3 Request/Response Messaging Types .. 153
5.7.4 Non-reentrant Instances .. 153
5.7.5 Transaction Scoping, Security, Exceptions 153

Chapter 6 Persistence ... 155

Chapter 7 Client View of an EJB 2.1 Entity Bean ... 157
7.1 Overview ... 157
7.2 Remote Clients .. 158
7.3 Local Clients.. 159
7.4 EJB Container.. 159

7.4.1 Locating an Entity Bean’s Home Interface 160
7.4.2 What a Container Provides ... 160

7.5 Entity Bean’s Remote Home Interface .. 161
7.5.1 Create Methods ... 162
7.5.2 Finder Methods ... 163
7.5.3 Remove Methods .. 164
7.5.4 Home Methods.. 164

7.6 Entity Bean’s Local Home Interface ... 165
7.6.1 Create Methods ... 165
7.6.2 Finder Methods ... 166
7.6.3 Remove Methods .. 166
7.6.4 Home Methods.. 167

7.7 Entity Object’s Life Cycle ... 167
 11 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
7.7.1 References to Entity Object Remote Interfaces 169
7.7.2 References to Entity Object Local Interfaces.................................... 169

7.8 Primary Key and Object Identity... 170
7.9 Entity Bean’s Remote Interface ... 171

7.10 Entity Bean’s Local Interface .. 172
7.11 Entity Bean’s Handle ... 173
7.12 Entity Home Handles... 174
7.13 Type Narrowing of Object References .. 174

Chapter 8 EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence 175
8.1 Overview ... 176
8.2 Container-Managed Entity Persistence and Data Independence 176
8.3 The Entity Bean Provider’s View of Container-Managed Persistence............ 178

8.3.1 The Entity Bean Provider’s Programming Contract 179
8.3.2 The Entity Bean Provider’s View of Persistent Relationships 181
8.3.3 Dependent Value Classes .. 181
8.3.4 Remove Protocols ... 182

8.3.4.1 Remove Methods .. 182
8.3.4.2 Cascade-delete .. 183

8.3.5 Identity of Entity Objects .. 183
8.3.6 Semantics of Assignment for Relationships...................................... 184

8.3.6.1 Use of the java.util.Collection API to Update Relationships184
8.3.6.2 Use of Set Accessor Methods to Update Relationships...... 186

8.3.7 Assignment Rules for Relationships ... 187
8.3.7.1 One-to-one Bidirectional Relationships.............................. 188
8.3.7.2 One-to-one Unidirectional Relationships 189
8.3.7.3 One-to-many Bidirectional Relationships 190
8.3.7.4 One-to-many Unidirectional Relationships 194
8.3.7.5 Many-to-one Unidirectional Relationships......................... 197
8.3.7.6 Many-to-many Bidirectional Relationships........................ 199
8.3.7.7 Many-to-many Unidirectional Relationships...................... 203

8.3.8 Collections Managed by the Container ... 206
8.3.9 Non-persistent State .. 206

8.3.10 The Relationship Between the Internal View and the Client View... 207
8.3.10.1 Restrictions on Remote Interfaces 207

8.3.11 Mapping Data to a Persistent Store ... 207
8.3.12 Example... 208
8.3.13 The Bean Provider’s View of the Deployment Descriptor................ 211

8.4 The Entity Bean Component Contract... 215
8.4.1 Runtime Execution Model of Entity Beans....................................... 215
8.4.2 Container Responsibilities... 217

8.4.2.1 Container-Managed Fields.. 217
8.4.2.2 Container-Managed Relationships...................................... 217

8.5 Instance Life Cycle Contract Between the Bean and the Container................ 218
8.5.1 Instance Life Cycle.. 219
8.5.2 Bean Provider’s Entity Bean Instance’s View................................... 221
8.5.3 Container’s View... 225
 11/5/09 12

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
8.5.4 Read-only Entity Beans .. 229
8.5.5 The EntityContext Interface.. 230
8.5.6 Operations Allowed in the Methods of the Entity Bean Class 231
8.5.7 Finder Methods ... 233

8.5.7.1 Single-Object Finder Methods.. 234
8.5.7.2 Multi-Object Finder Methods ... 234

8.5.8 Select Methods.. 235
8.5.8.1 Single-Object Select Methods .. 236
8.5.8.2 Multi-Object Select Methods.. 236

8.5.9 Timer Notifications ... 237
8.5.10 Standard Application Exceptions for Entities 237

8.5.10.1 CreateException.. 237
8.5.10.2 DuplicateKeyException.. 238
8.5.10.3 FinderException.. 238
8.5.10.4 ObjectNotFoundException ... 238
8.5.10.5 RemoveException... 239

8.5.11 Commit Options.. 239
8.5.12 Concurrent Access from Multiple Transactions 241
8.5.13 Non-reentrant and Re-entrant Instances.. 242

8.6 Responsibilities of the Enterprise Bean Provider.. 243
8.6.1 Classes and Interfaces ... 243
8.6.2 Enterprise Bean Class ... 243
8.6.3 Dependent Value Classes .. 244
8.6.4 ejbCreate<METHOD> Methods... 244
8.6.5 ejbPostCreate<METHOD> Methods.. 245
8.6.6 ejbHome<METHOD> Methods ... 246
8.6.7 ejbSelect<METHOD> Methods ... 246
8.6.8 Business Methods ... 246
8.6.9 Entity Bean’s Remote Interface .. 247

8.6.10 Entity Bean’s Remote Home Interface.. 247
8.6.11 Entity Bean’s Local Interface.. 248
8.6.12 Entity Bean’s Local Home Interface... 249
8.6.13 Entity Bean’s Primary Key Class.. 250
8.6.14 Entity Bean’s Deployment Descriptor .. 250

8.7 The Responsibilities of the Container Provider... 250
8.7.1 Generation of Implementation Classes ... 251
8.7.2 Enterprise Bean Class ... 251
8.7.3 ejbFind<METHOD> Methods.. 252
8.7.4 ejbSelect<METHOD> Methods ... 252
8.7.5 Entity EJBHome Class.. 253
8.7.6 Entity EJBObject Class ... 253
8.7.7 Entity EJBLocalHome Class... 253
8.7.8 Entity EJBLocalObject Class.. 254
8.7.9 Handle Class ... 254

8.7.10 Home Handle Class... 254
8.7.11 Metadata Class .. 255
8.7.12 Instance’s Re-entrance .. 255
8.7.13 Transaction Scoping, Security, Exceptions 255
8.7.14 Implementation of Object References... 255
 13 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
8.7.15 EntityContext .. 255
8.8 Primary Keys ... 256

8.8.1 Primary Key That Maps to a Single Field in the Entity Bean Class . 256
8.8.2 Primary Key That Maps to Multiple Fields in the Entity Bean Class256
8.8.3 Special Case: Unknown Primary Key Class 256

Chapter 9 EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods259
9.1 Overview ... 260
9.2 EJB QL Definition... 260

9.2.1 Abstract Schema Types and Query Domains 261
9.2.2 Query Methods.. 262
9.2.3 Naming .. 262
9.2.4 Examples ... 263
9.2.5 The FROM Clause and Navigational Declarations........................... 264

9.2.5.1 Identifiers .. 265
9.2.5.2 Identification Variables ... 265
9.2.5.3 Range Variable Declarations... 266
9.2.5.4 Collection Member Declarations .. 267
9.2.5.5 Example .. 267
9.2.5.6 Path Expressions ... 267

9.2.6 WHERE Clause and Conditional Expressions.................................. 268
9.2.6.1 Literals .. 269
9.2.6.2 Identification Variables ... 269
9.2.6.3 Path Expressions ... 269
9.2.6.4 Input Parameters ... 270
9.2.6.5 Conditional Expression Composition 270
9.2.6.6 Operators and Operator Precedence 270
9.2.6.7 Between Expressions .. 271
9.2.6.8 In Expressions... 271
9.2.6.9 Like Expressions ... 272

9.2.6.10 Null Comparison Expressions .. 272
9.2.6.11 Empty Collection Comparison Expressions 273
9.2.6.12 Collection Member Expressions... 273
9.2.6.13 Functional Expressions ... 274

9.2.7 SELECT Clause .. 275
9.2.7.1 Null Values in the Query Result ... 275
9.2.7.2 Aggregate Functions in the SELECT Clause 276
9.2.7.3 Examples... 276

9.2.8 ORDER BY Clause... 277
9.2.9 Return Value Types ... 278

9.2.10 Null Values .. 280
9.2.11 Equality and Comparison Semantics... 281
9.2.12 Restrictions.. 281

9.3 Examples ... 281
9.3.1 Simple Queries .. 282
9.3.2 Queries with Relationships.. 282
9.3.3 Queries Using Input Parameters.. 283
9.3.4 Queries for Select Methods ... 283
 11/5/09 14

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
9.3.5 EJB QL and SQL .. 284
9.4 EJB QL BNF ... 285

Chapter 10 EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence 289
10.1 Overview of Bean-Managed Entity Persistence.. 290

10.1.1 Entity Bean Provider’s View of Persistence 290
10.1.2 Runtime Execution Model .. 291
10.1.3 Instance Life Cycle ... 293
10.1.4 The Entity Bean Component Contract .. 295

10.1.4.1 Entity Bean Instance’s View... 295
10.1.4.2 Container’s View .. 299

10.1.5 Read-only Entity Beans .. 302
10.1.6 The EntityContext Interface.. 302
10.1.7 Operations Allowed in the Methods of the Entity Bean Class 303
10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods 306

10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attribute
307

10.1.9 Finder Method Return Type .. 308
10.1.9.1 Single-Object Finder... 308
10.1.9.2 Multi-Object Finders .. 308

10.1.10 Timer Notifications ... 310
10.1.11 Standard Application Exceptions for Entities 310

10.1.11.1 CreateException.. 310
10.1.11.2 DuplicateKeyException.. 311
10.1.11.3 FinderException.. 311
10.1.11.4 ObjectNotFoundException ... 311
10.1.11.5 RemoveException... 312

10.1.12 Commit Options.. 312
10.1.13 Concurrent Access from Multiple Transactions 313
10.1.14 Non-reentrant and Re-entrant Instances.. 315

10.2 Responsibilities of the Enterprise Bean Provider.. 316
10.2.1 Classes and Interfaces ... 316
10.2.2 Enterprise Bean Class ... 316
10.2.3 ejbCreate<METHOD> Methods... 317
10.2.4 ejbPostCreate<METHOD> Methods.. 318
10.2.5 ejbFind Methods ... 318
10.2.6 ejbHome<METHOD> Methods ... 319
10.2.7 Business Methods ... 319
10.2.8 Entity Bean’s Remote Interface .. 320
10.2.9 Entity Bean’s Remote Home Interface.. 321

10.2.10 Entity Bean’s Local Interface.. 322
10.2.11 Entity Bean’s Local Home Interface... 322
10.2.12 Entity Bean’s Primary Key Class.. 323

10.3 The Responsibilities of the Container Provider... 324
10.3.1 Generation of Implementation Classes ... 324
10.3.2 Entity EJBHome Class.. 325
10.3.3 Entity EJBObject Class ... 325
10.3.4 Entity EJBLocalHome Class... 325
 15 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
10.3.5 Entity EJBLocalObject Class .. 326
10.3.6 Handle Class.. 326
10.3.7 Home Handle Class... 326
10.3.8 Metadata Class .. 327
10.3.9 Instance’s Re-entrance... 327

10.3.10 Transaction Scoping, Security, Exceptions 327
10.3.11 Implementation of Object References... 327
10.3.12 EntityContext .. 327

Chapter 11 EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence 329
11.1 EJB 1.1 Entity Beans with Container-Managed Persistence 329

11.1.1 Container-Managed Fields .. 330
11.1.2 ejbCreate, ejbPostCreate ... 331
11.1.3 ejbRemove... 332
11.1.4 ejbLoad.. 332
11.1.5 ejbStore.. 332
11.1.6 Finder Hethods .. 333
11.1.7 Home Methods .. 333
11.1.8 Create Methods ... 333
11.1.9 Primary Key Type ... 333

11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Class
333

11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Class
334

11.1.9.3 Special Case: Unknown Primary Key Class....................... 334

Chapter 12 Interceptors... 335
12.1 Overview ... 335
12.2 Interceptor Life Cycle.. 336
12.3 Business Method Interceptors ... 336

12.3.1 Exceptions ... 336
12.4 Timer Timeout Method Interceptors.. 337

12.4.1 Exceptions ... 337
12.5 Interceptors for LifeCycle Event Callbacks .. 337

12.5.1 Exceptions ... 337
12.6 InvocationContext ... 338
12.7 Specification of Interceptors in the Deployment Descriptor 338

Chapter 13 Support for Transactions .. 339
13.1 Overview ... 339

13.1.1 Transactions... 339
13.1.2 Transaction Model... 340
13.1.3 Relationship to JTA and JTS... 341

13.2 Sample Scenarios... 341
13.2.1 Update of Multiple Databases ... 341
13.2.2 Messages Sent or Received Over JMS Sessions and Update of Multiple
 11/5/09 16

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
Databases342
13.2.3 Update of Databases via Multiple EJB Servers 344
13.2.4 Client-Managed Demarcation ... 345
13.2.5 Container-Managed Demarcation ... 346

13.3 Bean Provider’s Responsibilities... 347
13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation347

13.3.1.1 Non-Transactional Execution ... 347
13.3.2 Isolation Levels ... 348
13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation .. 348

13.3.3.1 getRollbackOnly and setRollbackOnly Methods 353
13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation354

13.3.4.1 javax.ejb.SessionSynchronization Interface 355
13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method 356
13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method 356

13.3.5 Use of JMS APIs in Transactions ... 356
13.3.6 Specification of a Bean’s Transaction Management Type 356
13.3.7 Specification of the Transaction Attributes for a Bean’s Methods ... 357

13.3.7.1 Specification of Transaction Attributes with Metadata Annotations
360

13.3.7.2 Specification of Transaction Attributes in the Deployment Descrip-
tor361

13.4 Application Assembler’s Responsibilities... 364
13.5 Deployer’s Responsibilities... 364
13.6 Container Provider Responsibilities .. 364

13.6.1 Bean-Managed Transaction Demarcation... 365
13.6.2 Container-Managed Transaction Demarcation for Session and Entity Beans

368
13.6.2.1 NOT_SUPPORTED ... 368
13.6.2.2 REQUIRED .. 368
13.6.2.3 SUPPORTS... 369
13.6.2.4 REQUIRES_NEW.. 369
13.6.2.5 MANDATORY... 369
13.6.2.6 NEVER... 370
13.6.2.7 Transaction Attribute Summary ... 370
13.6.2.8 Handling of setRollbackOnly Method................................ 371
13.6.2.9 Handling of getRollbackOnly Method 371

13.6.2.10 Handling of getUserTransaction Method 372
13.6.2.11 Session Synchronization Callbacks 372
13.6.2.12 Timing of Return Value Marshalling w.r.t. Transaction Boundaries

372
13.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans

372
13.6.3.1 NOT_SUPPORTED ... 373
13.6.3.2 REQUIRED .. 373
13.6.3.3 Handling of setRollbackOnly Method................................ 373
13.6.3.4 Handling of getRollbackOnly Method 374
13.6.3.5 Handling of getUserTransaction Method 374

13.6.4 Local Transaction Optimization.. 374
13.6.5 Handling of Methods that Run with “an unspecified transaction context”374

13.7 Access from Multiple Clients in the Same Transaction Context..................... 375
 17 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
13.7.1 Transaction “Diamond” Scenario with an Entity Object 376
13.7.2 Container Provider’s Responsibilities ... 377
13.7.3 Bean Provider’s Responsibilities .. 377
13.7.4 Application Assembler and Deployer’s Responsibilities.................. 377
13.7.5 Transaction Diamonds involving Session Objects............................ 377

Chapter 14 Exception Handling.. 379
14.1 Overview and Concepts... 379

14.1.1 Application Exceptions ... 379
14.1.2 Goals for Exception Handling... 380

14.2 Bean Provider’s Responsibilities ... 380
14.2.1 Application Exceptions ... 380
14.2.2 System Exceptions .. 382

14.2.2.1 javax.ejb.NoSuchEntityException 383
14.3 Container Provider Responsibilities .. 384

14.3.1 Exceptions from a Session Bean’s Business Interface Methods and No-Inter-
face View Methods384

14.3.2 Exceptions from Method Invoked via Session or Entity Bean’s 2.1 Client
View or through Web Service Client View387

14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Session Bean
391

14.3.4 Exceptions from Message-Driven Bean Message Listener Methods 391
14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Mes-

sage-Driven Bean393
14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method ... 393
14.3.7 Exceptions from Other Container-invoked Callbacks 394
14.3.8 javax.ejb.NoSuchEntityException .. 395
14.3.9 Non-existing Stateful Session or Entity Object................................. 396

14.3.10 Exceptions from the Management of Container-Managed Transactions396
14.3.11 Release of Resources... 396
14.3.12 Support for Deprecated Use of java.rmi.RemoteException.............. 397

14.4 Client’s View of Exceptions .. 397
14.4.1 Application Exception... 398

14.4.1.1 Local and Remote Clients... 398
14.4.1.2 Web Service Clients .. 398

14.4.2 java.rmi.RemoteException and javax.ejb.EJBException.................. 398
14.4.2.1 javax.ejb.EJBTransactionRolledbackException, javax.ejb.Transac-

tionRolledbackLocalException, and javax.transaction.Transaction-
RolledbackException399

14.4.2.2 javax.ejb.EJBTransactionRequiredException, javax.ejb.Transac-
tionRequiredLocalException, and javax.transaction.TransactionRe-
quiredException400

14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalEx-
ception, and java.rmi.NoSuchObjectException400

14.5 System Administrator’s Responsibilities... 400

Chapter 15 Support for Distributed Interoperability .. 401
15.1 Support for Distribution... 401
 11/5/09 18

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
15.1.1 Client-Side Objects in a Distributed Environment 402
15.2 Interoperability Overview ... 402

15.2.1 Interoperability Goals ... 403
15.3 Interoperability Scenarios.. 404

15.3.1 Interactions Between Web Containers and EJB Containers for E-Commerce
Applications404

15.3.2 Interactions Between Application Client Containers and EJB Containers
Within an Enterprise’s Intranet405

15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet406
15.3.4 Intranet Application Interactions Between Web Containers and EJB Contain-

ers407
15.4 Overview of Interoperability Requirements.. 407
15.5 Remote Invocation Interoperability... 408

15.5.1 Mapping Java Remote Interfaces to IDL .. 409
15.5.2 Mapping Value Objects to IDL ... 409
15.5.3 Mapping of System Exceptions .. 409
15.5.4 Obtaining Stub and Client View Classes .. 410
15.5.5 System Value Classes.. 410

15.5.5.1 HandleDelegate SPI.. 411
15.6 Transaction Interoperability .. 412

15.6.1 Transaction Interoperability Requirements....................................... 412
15.6.1.1 Transaction Context Wire Format 412
15.6.1.2 Two-Phase Commit Protocol.. 412
15.6.1.3 Transactional Policies of Enterprise Bean References 414
15.6.1.4 Exception Handling Behavior .. 414

15.6.2 Interoperating with Containers that do not Implement Transaction Interoper-
ability414

15.6.2.1 Client Container Requirements .. 415
15.6.2.2 EJB container requirements.. 415

15.7 Naming Interoperability .. 417
15.8 Security Interoperability.. 418

15.8.1 Introduction... 418
15.8.1.1 Trust Relationships Between Containers, Principal Propagation419
15.8.1.2 Application Client Authentication...................................... 420

15.8.2 Securing EJB Invocations ... 420
15.8.2.1 Secure Transport Protocol .. 421
15.8.2.2 Security Information in IORs ... 422
15.8.2.3 Propagating Principals and Authentication Data in IIOP Messages

422
15.8.2.4 Security Configuration for Containers 424
15.8.2.5 Runtime Behavior... 424

Chapter 16 Enterprise Bean Environment .. 427
16.1 Overview ... 427
16.2 Enterprise Bean’s Environment as a JNDI Naming Context........................... 429

16.2.1 Sharing of Environment Entries.. 429
16.2.2 Annotations for Environment Entries ... 430
16.2.3 Annotations and Deployment Descriptors .. 432
 19 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
16.3 Responsibilities by EJB Role .. 432
16.3.1 Bean Provider’s Responsibilities .. 433
16.3.2 Application Assembler’s Responsibility ... 433
16.3.3 Deployer’s Responsibility ... 433
16.3.4 Container Provider Responsibility .. 433

16.4 Simple Environment Entries.. 434
16.4.1 Bean Provider’s Responsibilities .. 434

16.4.1.1 Injection of Simple Environment Entries Using Annotations434
16.4.1.2 Programming Interfaces for Accessing Simple Environment Entries

435
16.4.1.3 Declaration of Simple Environment Entries in the Deployment

Descriptor436
16.4.2 Application Assembler’s Responsibility ... 440
16.4.3 Deployer’s Responsibility ... 440
16.4.4 Container Provider Responsibility .. 440

16.5 EJB References.. 441
16.5.1 Bean Provider’s Responsibilities .. 441

16.5.1.1 Injection of EJB References ... 441
16.5.1.2 EJB Reference Programming Interfaces............................. 442
16.5.1.3 Declaration of EJB References in Deployment Descriptor 443

16.5.2 Application Assembler’s Responsibilities .. 445
16.5.2.1 Overriding Rules... 448

16.5.3 Deployer’s Responsibility ... 448
16.5.4 Container Provider’s Responsibility ... 449

16.6 Web Service References .. 450
16.7 Resource Manager Connection Factory References.. 450

16.7.1 Bean Provider’s Responsibilities .. 450
16.7.1.1 Injection of Resource Manager Connection Factory References451
16.7.1.2 Programming Interfaces for Resource Manager Connection Factory

References451
16.7.1.3 Declaration of Resource Manager Connection Factory References

in Deployment Descriptor453
16.7.1.4 Standard Resource Manager Connection Factory Types 455

16.7.2 Deployer’s Responsibility ... 455
16.7.3 Container Provider Responsibility .. 456
16.7.4 System Administrator’s Responsibility... 457

16.8 Resource Environment References.. 457
16.8.1 Bean Provider’s Responsibilities .. 457

16.8.1.1 Injection of Resource Environment References 458
16.8.1.2 Resource Environment Reference Programming Interfaces458
16.8.1.3 Declaration of Resource Environment References in Deployment

Descriptor458
16.8.2 Deployer’s Responsibility ... 459
16.8.3 Container Provider’s Responsibility ... 459

16.9 Message Destination References ... 459
16.9.1 Bean Provider’s Responsibilities .. 459

16.9.1.1 Injection of Message Destination References..................... 459
16.9.1.2 Message Destination Reference Programming Interfaces .. 460
16.9.1.3 Declaration of Message Destination References in Deployment
 11/5/09 20

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
Descriptor461
16.9.2 Application Assembler’s Responsibilities .. 462
16.9.3 Deployer’s Responsibility... 465
16.9.4 Container Provider’s Responsibility ... 465

16.10 Persistence Unit References .. 466
16.10.1 Bean Provider’s Responsibilities .. 466

16.10.1.1 Injection of Persistence Unit References............................ 466
16.10.1.2 Programming Interfaces for Persistence Unit References .. 466
16.10.1.3 Declaration of Persistence Unit References in Deployment Descrip-

tor467
16.10.2 Application Assembler’s Responsibilities .. 468

16.10.2.1 Overriding Rules... 469
16.10.3 Deployer’s Responsibility... 469
16.10.4 Container Provider Responsibility .. 470
16.10.5 System Administrator’s Responsibility .. 470

16.11 Persistence Context References... 470
16.11.1 Bean Provider’s Responsibilities .. 471

16.11.1.1 Injection of Persistence Context References 471
16.11.1.2 Programming Interfaces for Persistence Context References471
16.11.1.3 Declaration of Persistence Context References in Deployment

Descriptor472
16.11.2 Application Assembler’s Responsibilities .. 474

16.11.2.1 Overriding Rules... 474
16.11.3 Deployer’s Responsibility... 475
16.11.4 Container Provider Responsibility .. 475
16.11.5 System Administrator’s Responsibility .. 475

16.12 UserTransaction Interface.. 476
16.12.1 Bean Provider’s Responsibility... 477
16.12.2 Container Provider’s Responsibility ... 477

16.13 ORB References .. 477
16.13.1 Bean Provider’s Responsibility... 478
16.13.2 Container Provider’s Responsibility ... 478

16.14 TimerService References... 478
16.14.1 Bean Provider’s Responsibility... 479
16.14.2 Container Provider’s Responsibility ... 479

16.15 EJBContext References ... 479
16.15.1 Bean Provider’s Responsibility... 479
16.15.2 Container Provider’s Responsibility ... 479

16.16 Deprecated EJBContext.getEnvironment Method .. 480

Chapter 17 Security Management .. 483
17.1 Overview ... 483
17.2 Bean Provider’s Responsibilities... 485

17.2.1 Invocation of Other Enterprise Beans... 485
17.2.2 Resource Access ... 485
17.2.3 Access of Underlying OS Resources .. 486
17.2.4 Programming Style Recommendations... 486
17.2.5 Programmatic Access to Caller’s Security Context 486
 21 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
17.2.5.1 Use of getCallerPrincipal.. 487
17.2.5.2 Use of isCallerInRole.. 489
17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Code

489
17.3 Responsibilities of the Bean Provider and/or Application Assembler 491

17.3.1 Security Roles ... 492
17.3.2 Method Permissions .. 494

17.3.2.1 Specification of Method Permissions with Metadata Annotations
494

17.3.2.2 Specification of Method Permissions in the Deployment Descriptor
495

17.3.2.3 Unspecified Method Permissions 499
17.3.3 Linking Security Role References to Security Roles 499
17.3.4 Specification of Security Identities in the Deployment Descriptor... 500

17.3.4.1 Run-as ... 500
17.4 Deployer’s Responsibilities ... 501

17.4.1 Security Domain and Principal Realm Assignment.......................... 501
17.4.2 Assignment of Security Roles ... 502
17.4.3 Principal Delegation.. 502
17.4.4 Security Management of Resource Access 502
17.4.5 General Notes on Deployment Descriptor Processing...................... 503

17.5 EJB Client Responsibilities ... 503
17.6 EJB Container Provider’s Responsibilities.. 503

17.6.1 Deployment Tools ... 503
17.6.2 Security Domain(s) ... 504
17.6.3 Security Mechanisms .. 504
17.6.4 Passing Principals on EJB Calls.. 504
17.6.5 Security Methods in javax.ejb.EJBContext....................................... 505
17.6.6 Secure Access to Resource Managers... 505
17.6.7 Principal Mapping ... 505
17.6.8 System Principal.. 505
17.6.9 Runtime Security Enforcement ... 506

17.6.10 Audit Trail ... 507
17.7 System Administrator’s Responsibilities... 507

17.7.1 Security Domain Administration .. 507
17.7.2 Principal Mapping ... 507
17.7.3 Audit Trail Review.. 507

Chapter 18 Timer Service ... 509
18.1 Overview ... 509
18.2 Bean Provider’s View of the Timer Service .. 510

18.2.1 Calendar-Based Time Expressions.. 511
18.2.1.1 Attribute Syntax.. 512
18.2.1.2 Expression Rules... 514
18.2.1.3 Examples... 514

18.2.2 Automatic Timer Creation... 516
18.2.3 Non-persistent Timers ... 517
18.2.4 The Timer Service Interface.. 518
 11/5/09 22

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
18.2.4.1 Example .. 519
18.2.5 Timeout Callbacks .. 519

18.2.5.1 Timeout Callbacks for Programmatic Timers..................... 520
18.2.5.2 Timeout Callbacks for Automatically Created Timers....... 520
18.2.5.3 Timeout Callback Method Requirements 520

18.2.6 The Timer and TimerHandle Interfaces .. 521
18.2.7 Timer Identity.. 522
18.2.8 Transactions .. 522

18.3 Bean Provider’s Responsibilities... 523
18.3.1 Enterprise Bean Class ... 523
18.3.2 TimerHandle ... 523

18.4 Container’s Responsibilities .. 523
18.4.1 TimerService, Timer, and TimerHandle Interfaces........................... 523
18.4.2 Automatic Timers.. 524
18.4.3 Timer Expiration and Timeout Callback Method 524
18.4.4 Timer Cancellation.. 524
18.4.5 Entity Bean Removal .. 525

Chapter 19 Deployment Descriptor.. 527
19.1 Overview ... 527
19.2 Bean Provider’s Responsibilities... 528
19.3 Application Assembler’s Responsibility ... 532
19.4 Container Provider’s Responsibilities ... 534
19.5 Deployment Descriptor XML Schema.. 535

Chapter 20 Packaging... 587
20.1 Overview ... 587
20.2 Deployment Descriptor ... 588
20.3 Packaging Requirements ... 588
20.4 Enterprise Beans Packaged in a .war... 589

20.4.1 Class Loading.. 589
20.4.2 Component Environment .. 589
20.4.3 Visibility of the Local Client View ... 590
20.4.4 Ejb-names.. 590
20.4.5 EJB 2.1/1.1 Entity Bean Restriction ... 590
20.4.6 JAX-RPC Endpoint Restriction .. 590
20.4.7 Example .. 590

20.5 Deployment Descriptor and Annotation Processing 591
20.5.1 Ejb-jar Deployment Descriptor and Annotation Processing............. 591
20.5.2 .war Deployment Descriptor and Annotation Processing................. 591

20.6 The Client View and the ejb-client JAR File... 592
20.7 Requirements for Clients... 593
20.8 Example... 593
 23 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
Chapter 21 Runtime Environment .. 595
21.1 EJB 3.1 Lite ... 596
21.2 Bean Provider’s Responsibilities ... 597

21.2.1 APIs Provided by Container.. 598
21.2.2 Programming Restrictions... 598

21.3 Container Provider’s Responsibility.. 600
21.3.1 EJB 3.1 Requirements ... 601
21.3.2 JNDI Requirements ... 601
21.3.3 JTA 1.1 Requirements ... 602
21.3.4 JDBC™ 3.0 Extension Requirements ... 602
21.3.5 JMS 1.1 Requirements .. 603
21.3.6 Argument Passing Semantics .. 603
21.3.7 Other Requirements... 604

21.4 Compatibility and Migration ... 604
21.4.1 Support for Existing Applications... 604
21.4.2 Default Stateful Session Bean Concurrency Behavior...................... 604
21.4.3 Default Application Exception Subclassing Behavior 604
21.4.4 Interoperability of EJB 3.1 and Earlier Components 604

21.4.4.1 Clients written to the EJB 2.x APIs 604
21.4.4.2 Clients written to the EJB 3.x API...................................... 605
21.4.4.3 Combined use of EJB 2.x and EJB 3.x persistence APIs ... 605

21.4.5 Adapting EJB 3.x Session Beans to Earlier Client Views................. 605
21.4.5.1 Stateless Session Beans... 606
21.4.5.2 Stateful Session Beans .. 606

Chapter 22 Embeddable Usage... 607
22.1 Overview ... 607
22.2 Bootstrapping API ... 608

22.2.1 EJBContainer .. 608
22.2.2 Standard Initialization Properties .. 609

22.2.2.1 javax.ejb.embeddable.provider ... 609
22.2.2.2 javax.ejb.embeddable.modules ... 609
22.2.2.3 javax.ejb.embeddable.appName ... 610

22.2.3 Looking Up Session Bean References .. 610
22.2.4 Embeddable Container Shutdown... 610

22.3 Container Provider’s Responsibilities ... 611
22.3.1 Runtime Environment ... 611
22.3.2 Naming Lookups ... 611
22.3.3 Embeddable Container Bootstrapping .. 611
22.3.4 Concrete javax.ejb.EJBContainer Implementation Class 612

Chapter 23 Responsibilities of EJB Roles .. 613
23.1 Bean Provider’s Responsibilities ... 613

23.1.1 API Requirements ... 613
23.1.2 Packaging Requirements ... 613

23.2 Application Assembler’s Responsibilities ... 614
 11/5/09 24

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
23.3 EJB Container Provider’s Responsibilities ... 614
23.4 Persistence Provider’s Responsibilities ... 614
23.5 Deployer’s Responsibilities... 614
23.6 System Administrator’s Responsibilities .. 614
23.7 Client Programmer’s Responsibilities ... 615

Chapter 24 Related Documents .. 617

Appendix A Revision History .. 619
A.1 Early Draft ... 619
A.2 Public Draft ... 620
A.3 Proposed Final Draft.. 622
A.4 Final Release ... 624
 25 11/5/09

Enterprise JavaBeans 3.1, Final Release

 11/5/09 26

Sun Microsystems, Inc.

List of Figures

Figure 1 Session Bean Example Objects ...52
Figure 2 Web Service Client View of Stateless Session Beans Deployed in a Container57
Figure 3 Life Cycle of a Session Object. ...64
Figure 4 Session Bean Example Objects ...66
Figure 5 Life Cycle of a Stateful Session Bean Instance...89
Figure 6 Life Cycle of a Stateless Session Bean ...100
Figure 7 Life Cycle of a Singleton Session Bean ...106
Figure 8 Client view of Message-Driven Beans Deployed in a Container..137
Figure 9 Life Cycle of a Message-Driven Bean. ...147

Figure 10 Client View of Entity Beans Deployed in a Container..161
Figure 11 Client View of Entity Object Life Cycle ...168
Figure 12 View of Underlying Data Sources Accessed Through Entity Bean ...178
Figure 13 Relationship Example..208
Figure 14 Overview of the Entity Bean Runtime Execution Model..216
Figure 15 Life Cycle of an Entity Bean Instance...219
Figure 16 Multiple Clients Can Access the Same Entity Object Using Multiple Instances..................................241
Figure 17 Multiple Clients Can Access the Same Entity Object Using Single Instance.......................................242
Figure 18 Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File................263
Figure 19 Client View of Underlying Data Sources Accessed Through Entity Bean ...290
Figure 20 Overview of the Entity Bean Runtime Execution Model..292
Figure 21 Life Cycle of an Entity Bean Instance...293
Figure 22 Multiple Clients Can Access the Same Entity Object Using Multiple Instances..................................314
Figure 23 Multiple Clients Can Access the Same Entity Object Using Single Instance.......................................315
Figure 24 Updates to Simultaneous Databases..342
Figure 25 Message Sent to JMS Queue and Updates to Multiple Databases ..343
Figure 26 Message Sent to JMS Queue Serviced by Message-Driven Bean and Updates to Multiple Databases344
Figure 27 Updates to Multiple Databases in Same Transaction ..344
Figure 28 Updates on Multiple Databases on Multiple Servers ..345
Figure 29 Update of Multiple Databases from Non-Transactional Client...346
Figure 30 Transaction Diamond Scenario with Entity Object ...376
Figure 31 Transaction Diamond Scenario with a Session Bean ..378
Figure 32 Location of EJB Client Stubs. ...402
Figure 33 Heterogeneous EJB Environment ...403
Figure 34 Transaction Context Propagation ..413

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
List of Tables
Table 1 Operations Allowed in the Methods of a Stateful Session Bean...94
Table 2 Operations Allowed in the Methods of a Stateless Session Bean ...103
Table 3 Operations Allowed in the Methods of a Singleton Session Bean.. 117
Table 4 Operations Allowed in the Methods of a Message-Driven Bean..149
Table 5 Operations Allowed in the Methods of an Entity Bean ..231
Table 6 Comparison of Finder and Select Methods ...236
Table 7 Summary of Commit-Time Options..240
Table 8 Definition of the AND Operator ...280
Table 9 Definition of the OR Operator ..280

Table 10 Definition of the NOT Operator..280
Table 11 Operations Allowed in the Methods of an Entity Bean ..303
Table 12 Summary of Commit-Time Options..312
Table 13 Container’s Actions for Methods of Beans with Bean-Managed Transaction......................................366
Table 14 Transaction Attribute Summary ..370
Table 15 Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a

Bean with Container-Managed Transaction Demarcation385
Table 16 Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method of a Ses-

sion Bean with Bean-Managed Transaction Demarcation387
Table 17 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View of a

Bean with Container-Managed Transaction Demarcation388
Table 18 Handling of Exceptions Thrown by a EJB 2.1 Client View Business Method of a Session Bean with

Bean-Managed Transaction Demarcation390
Table 19 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful or Stateless or

Singleton Session Bean.391
Table 20 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with Con-

tainer-Managed Transaction Demarcation.392
Table 21 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with

Bean-Managed Transaction Demarcation.393
Table 22 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Message-Driven Bean.

393
Table 23 Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Con-

tainer-Managed Transaction Demarcation.394
Table 24 Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Bean-Man-

aged Transaction Demarcation.394
Table 25 Ejb-jar Annotation Processing Requirements ...591
Table 26 .war Annotation Processing Requirements for enterprise beans...592
Table 27 Required contents of EJB 3.1 Lite and Full EJB 3.1 API ...596
Table 28 Java 2 Platform Security Policy for a Standard EJB Container ..601
 27 11/5/09

Enterprise JavaBeans 3.1, Proposed Final Draft

Sun Microsystems, Inc.
 11/5/09 28

Enterprise JavaBeans 3.1, Final Release

Sun Microsystems, Inc.
Chapter 1 Introduction
This is the specification of the Enterprise JavaBeansTM architecture. The Enterprise JavaBeans architec-
ture is a architecture for the development and deployment of component-based business applications.
Applications written using the Enterprise JavaBeans architecture are scalable, transactional, and
multi-user secure. These applications may be written once, and then deployed on any server platform
that supports the Enterprise JavaBeans specification.

1.1 Target Audience

The target audiences for this specification are the vendors of transaction processing platforms, vendors
of enterprise application tools, vendors or object/relational mapping products, and other vendors who
want to support the Enterprise JavaBeans (EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Enterprise
JavaBeans application programmer.

1.2 What is New in EJB 3.1

The Enterprise JavaBeans 3.1 architecture extends Enterprise JavaBeans to include the following new
functionality and simplifications to the earlier EJB APIs:

• A simplified Local view that provides Session Bean access without a separate Local Business
interface.

• Packaging and deployment of EJB components directly in a .war without an ejb-jar.

• An embeddable API for executing EJB components within a Java SE environment.

• A Singleton session bean component that provides easy access to shared state, as well as appli-
cation startup/shutdown callbacks.

• Automatically created EJB Timers.

• Calendar based EJB Timer expressions.

• Asynchronous session bean invocations.
29 November 5, 2009 11:00 am

Introduction Enterprise JavaBeans 3.1, Final Release What is New in EJB 3.1

Sun Microsystems, Inc.
• The definition of a lightweight subset of Enterprise JavaBeans functionality that can be pro-
vided within Java EE Profiles such as the Java EE Web Profile.

• A portable global JNDI name syntax for looking up EJB components.

1.2.1 What Was New in EJB 3.0
The Enterprise JavaBeans 3.0 architecture extends Enterprise JavaBeans to include the following new
functionality and simplifications to the earlier EJB APIs:

• Definition of the Java language metadata annotations that can be used to annotate EJB appli-
cations. These metadata annotations are targeted at simplifying the developer’s task, at reduc-
ing the number of program classes and interfaces the developer is required to implement, and
at eliminating the need for the developer to provide an EJB deployment descriptor.

• Specification of programmatic defaults, including for metadata, to reduce the need for the
developer to specify common, expected behaviors and requirements on the EJB container. A
“configuration by exception” approach is taken whenever possible.

• Encapsulation of environmental dependencies and JNDI access through the use of annota-
tions, dependency injection mechanisms, and simple lookup mechanisms.

• Simplification of the enterprise bean types.

• Elimination of the requirement for EJB component interfaces for session beans. The required
business interface for a session bean can be a plain Java interface rather than an EJBObject,
EJBLocalObject, or java.rmi.Remote interface.

• Elimination of the requirement for home interfaces for session beans.

• Simplification of entity persistence through the Java Persistence API.[2]. Support for
light-weight domain modeling, including inheritance and polymorphism.

• Elimination of all required interfaces for persistent entities[2].

• Specification of Java language metadata annotations and XML deployment descriptor ele-
ments for the object/relational mapping of persistent entities [2].

• A query language for Java Persistence that is an extension to EJB QL, with addition of projec-
tion, explicit inner and outer join operations, bulk update and delete, subqueries, and
group-by. Addition of a dynamic query capability and support for native SQL queries.

• An interceptor facility for session beans and message-driven beans.

• Reduction of the requirements for usage of checked exceptions.

• Elimination of the requirement for the implementation of callback interfaces.
 11/5/09 30

Acknowledgements Enterprise JavaBeans 3.1, Final Release Introduction

Sun Microsystems, Inc.
1.3 Acknowledgements

The EJB 3.1 specification work is being conducted as part of JSR-318 under the Java Community Pro-
cess Program. This specification is the result of the collaborative work of the members of the EJB 3.1
Expert Group. These include the following present and former expert group members: BEA Systems:
Patrick Linskey; Ericsson AB: Peter Kristiansson, Erik van der Velden; IBM: Randy Schnier, Soloman
Barghouthi; Inria: Florent Benoit; Oracle: Jason Haley, Michael Keith, Matthew Shinn; Pramati Tech-
nologies: Deepak Anupalli; Red Hat Middleware LLC: Bill Burke, Gavin King, Carlo de Wolf; SAP
AG: Ivo Simeonov, Peter Peshev; Sybase: Evan Ireland; Sun Microsystems Inc.: Linda DeMichiel,
Kenneth Saks; Tmax Soft Inc.: Miju Byon, Wonseok Kim; Adam Bien; David Blevins; Antonio Gon-
calves; Oliver Ihns; Reza Rahman.

My colleagues at SUN also provided invaluable assistance. I would especially like to thank Linda
DeMichiel for the extensive guidance and support she has provided throughout this process. I would
also like to thank Bill Shannon, Roberto Chinnici, Mark Hapner, Lance Andersen, Marina Vatkina,
Mahesh Kannan, Cheng Fang, Hong Zhang, and Jerome Dochez.

1.4 Organization of the Specification Documents

This specification is organized into the following two documents:

• EJB Core Contracts and Requirements

• Interceptor Requirements

This EJB Core Contracts document defines the contracts and requirements for the use and implementa-
tion of Enterprise JavaBeans. These contracts include those for the EJB 3.1 API, as well as for the EJB
2.1 API, which is also required to be supported in this release. See Chapter 21 for coverage of the Enter-
prise JavaBeans API requirements.

The Interceptor Requirements document defines the contracts and requirements for the use and imple-
mentation of Interceptors. These contracts, while required by the core EJB specification, are described
in a way that is independent of EJB in order to faciliate their use by other enterprise Java technologies.
Future revisions to Interceptors will be undertaken independently of EJB.

1.5 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.
31 November 5, 2009 11:00 am

Introduction Enterprise JavaBeans 3.1, Final Release Document Conventions

Sun Microsystems, Inc.
The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.
 11/5/09 32

Overall Goals Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
Chapter 2 Overview

2.1 Overall Goals

The Enterprise JavaBeans (EJB) architecture has the following goals:

• The Enterprise JavaBeans architecture will be the standard component architecture for build-
ing object-oriented business applications in the Java™ programming language.

• The Enterprise JavaBeans architecture will be the standard component architecture for build-
ing distributed business applications in the Java™ programming language.

• The Enterprise JavaBeans architecture will support the development, deployment, and use of
web services.

• The Enterprise JavaBeans architecture will make it easy to write applications: application
developers will not have to understand low-level transaction and state management details,
multi-threading, connection pooling, or other complex low-level APIs.

• Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™ philosophy of
the Java programming language. An enterprise bean can be developed once, and then
deployed on multiple platforms without recompilation or source code modification.
33 November 5, 2009 11:00 am

Overview Enterprise JavaBeans 3.1, Final Release EJB Roles

Sun Microsystems, Inc.
• The Enterprise JavaBeans architecture will address the development, deployment, and runtime
aspects of an enterprise application’s life cycle.

• The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple
vendors to develop and deploy components that can interoperate at runtime.

• The Enterprise JavaBeans architecture will make it possible to build applications by combin-
ing components developed using tools from different vendors.

• The Enterprise JavaBeans architecture will provide interoperability between enterprise beans
and Java Platform, Enterprise Edition (Java EE) components as well as non-Java program-
ming language applications.

• The Enterprise JavaBeans architecture will be compatible with existing server platforms. Ven-
dors will be able to extend their existing products to support Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java programming lan-
guage APIs.

• The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

The purpose of the EJB 3.1 release is both to continue to achieve these goals and to improve the EJB
architecture by reducing its complexity from the enterprise application developer’s point of view.

2.2 EJB Roles

The Enterprise JavaBeans architecture defines seven distinct roles in the application development and
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture spec-
ifies the contracts that ensure that the product of each EJB Role is compatible with the product of the
other EJB Roles. The EJB specification focuses on those contracts that are required to support the
development and deployment of ISV-written enterprise beans.

In some scenarios, a single party may perform several EJB Roles. For example, the Container
Provider and the EJB Server Provider may be the same vendor. Or a single programmer may
perform the two EJB Roles of the Enterprise Bean Provider and the Application Assembler.

The following sections define the seven EJB Roles.
 11/5/09 34

EJB Roles Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
2.2.1 Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His or her
output is an ejb-jar file that contains one or more enterprise beans. The Bean Provider is responsible for
the Java classes that implement the enterprise beans’ business methods; the definition of the beans’ cli-
ent view interfaces; and declarative specification of the beans’ metadata. The beans’ metadata may take
the form of metadata annotations applied to the bean classes and/or an external XML deployment
descriptor. The beans’ metadata—whether expressed in metadata annotations or in the deployment
descriptor—includes the structural information of the enterprise beans and declares all the enterprise
beans’ external dependencies (e.g. the names and types of resources that the enterprise beans use).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider develops
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the Bean
Provider usually does not program transactions, concurrency, security, distribution, or other services
into the enterprise beans. The Bean Provider relies on the EJB container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB Role of the Application Assembler.

2.2.2 Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units. The
input to the Application Assembler is one or more ejb-jar files produced by the Bean Provider(s). The
Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along with
their application assembly instructions.

The Application Assembler can also combine enterprise beans with other types of application compo-
nents when composing an application.

The EJB specification describes the case in which the application assembly step occurs before the
deployment of the enterprise beans. However, the EJB architecture does not preclude the case that
application assembly is performed after the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise beans.
The Application Assembler works with the enterprise bean’s metadata annotations and/or deployment
descriptor and the enterprise bean’s client-view contract. Although the Assembler must be familiar with
the functionality provided by the enterprise bean’s client-view interfaces, he or she does not need to
have any knowledge of the enterprise bean’s implementation.

2.2.3 Deployer

The Deployer takes one or more ejb-jar files produced by a Bean Provider or Application Assembler
and deploys the enterprise beans contained in the ejb-jar files in a specific operational environment. The
operational environment includes a specific EJB server and container.
35 November 5, 2009 11:00 am

Overview Enterprise JavaBeans 3.1, Final Release EJB Roles

Sun Microsystems, Inc.
The Deployer must resolve all the external dependencies declared by the Bean Provider (e.g. the
Deployer must ensure that all resource manager connection factories used by the enterprise beans are
present in the operational environment, and he or she must bind them to the resource manager connec-
tion factory references declared in the metadata annotations or deployment descriptor), and must follow
the application assembly instructions defined by the Application Assembler. To perform his or her role,
the Deployer uses tools provided by the EJB Container Provider.

The Deployer’s output is a set of enterprise beans (or an assembled application that includes enterprise
beans) that have been customized for the target operational environment, and that are deployed in a spe-
cific EJB container.

The Deployer is an expert at a specific operational environment and is responsible for the deployment
of enterprise beans. For example, the Deployer is responsible for mapping the security roles defined by
the Bean Provider or Application Assembler to the user groups and accounts that exist in the opera-
tional environment in which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment tasks. The
deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the container to
manage the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additional
classes and interfaces into the EJB container.

In some cases, a qualified Deployer may customize the business logic of the enterprise beans at their
deployment. Such a Deployer would typically use the Container Provider’s tools to write relatively sim-
ple application code that wraps the enterprise bean’s business methods.

2.2.4 EJB Server Provider

The EJB Server Provider is a specialist in the area of distributed transaction management, distributed
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS vendor,
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Provider
roles are the same vendor. Therefore, it does not define any interface requirements for the EJB Server
Provider.

2.2.5 EJB Container Provider

The EJB Container Provider (Container Provider for short) provides:

• The deployment tools necessary for the deployment of enterprise beans.

• The runtime support for the deployed enterprise bean instances.
 11/5/09 36

EJB Roles Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
From the perspective of the enterprise beans, the container is a part of the target operational environ-
ment. The container runtime provides the deployed enterprise beans with transaction and security man-
agement, network distribution of remote clients, scalable management of resources, and other services
that are generally required as part of a manageable server platform.

The “EJB Container Provider’s responsibilities” defined by the EJB architecture are meant to be
requirements for the implementation of the EJB container and server. Since the EJB specification does
not architect the interface between the EJB container and server, it is left up to the vendor how to split
the implementation of the required functionality between the EJB container and server.

The expertise of the Container Provider is system-level programming, possibly combined with some
application-domain expertise. The focus of a Container Provider is on the development of a scalable,
secure, transaction-enabled container that is integrated with an EJB server. The Container Provider
insulates the enterprise bean from the specifics of an underlying EJB server by providing a simple, stan-
dard API between the enterprise bean and the container. This API is the Enterprise JavaBeans compo-
nent contract.

The Container Provider typically provides support for versioning the installed enterprise bean compo-
nents. For example, the Container Provider may allow enterprise bean classes to be upgraded without
invalidating existing clients or losing existing enterprise bean objects.

The Container Provider typically provides tools that allow the System Administrator to monitor and
manage the container and the beans running in the container at runtime.

2.2.6 Persistence Provider
The expertise of the Persistence Provider is in object/relational mapping, query processing, and caching.
The focus of the Persistence Provider is on the development of a scalable, transaction-enabled runtime
environment for the management of persistence.

The Persistence Provider provides the tools necessary for the object/relational mapping of persistent
entities to a relational database, and the runtime support for the management of persistent entities and
their mapping to the database.

The Persistence Provider insulates the persistent entities from the specifics of the underlying persistence
substrate, providing a standard API between the persistent entities and the object/relational runtime.

The Persistence Provider may be the same vendor as the EJB Container vendor or the Persistence Pro-
vider may be a third-party vendor that provides a pluggable persistence environment as described in [2].

2.2.7 System Administrator
The System Administrator is responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure that includes the EJB server and container. The System
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans appli-
cations at runtime.
37 November 5, 2009 11:00 am

Overview Enterprise JavaBeans 3.1, Final Release Enterprise Beans

Sun Microsystems, Inc.
2.3 Enterprise Beans

Enterprise JavaBeans is an architecture for component-based transaction-oriented enterprise applica-
tions.

2.3.1 Characteristics of Enterprise Beans

The essential characteristics of an enterprise bean are:

• An enterprise bean typically contains business logic that operates on the enterprise’s data.

• An enterprise bean’s instances are managed at runtime by a container.

• An enterprise bean can be customized at deployment time by editing its environment entries.

• Various service information, such as transaction and security attributes, may be specified
together with the business logic of the enterprise bean class in the form of metadata annota-
tions, or separately, in an XML deployment descriptor. This service information may be
extracted and managed by tools during application assembly and deployment.

• Client access is mediated by the container in which the enterprise bean is deployed.

• If an enterprise bean uses only the services defined by the EJB specification, the enterprise
bean can be deployed in any compliant EJB container. Specialized containers can provide
additional services beyond those defined by the EJB specification. An enterprise bean that
depends on such a service can be deployed only in a container that supports that service.

• An enterprise bean can be included in an assembled application without requiring source code
changes or recompilation of the enterprise bean.

• The Bean Provider defines a client view of an enterprise bean. The Bean Provider can manu-
ally define the client view or it can be generated automatically by application development
tools. The client view is unaffected by the container and server in which the bean is deployed.
This ensures that both the beans and their clients can be deployed in multiple execution envi-
ronments without changes or recompilation.

2.3.2 Flexible Model

The enterprise bean architecture is flexible enough to implement the following:

• An object that represents a stateless service.

• An object that represents a stateless service and that implements a web service endpoint.

• An object that represents a stateless service and whose invocation is asynchronous, driven by
the arrival of messages.
 11/5/09 38

Session, Entity, and Message-Driven Objects Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
• An object that represents a conversational session with a particular client. Such session objects
automatically maintain their conversational state across multiple client-invoked methods.

• An entity object that represents a fine-grained persistent object.

Enterprise beans that are remotely accessible components are intended to be relatively coarse-grained
business objects (e.g. shopping cart, stock quote service). Fine-grained objects (e.g. employee record,
line items on a purchase order) should be modeled as light weight persistent entities, as described in [2],
not as remotely accessible components.

Although the state management protocol defined by the Enterprise JavaBeans architecture is simple, it
provides an enterprise bean developer great flexibility in managing a bean’s state.

2.4 Session, Entity, and Message-Driven Objects

The Enterprise JavaBeans architecture defines the following types of enterprise bean objects:

• A session object.

• A message-driven object.

• An entity object.

2.4.1 Session Objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and update
such data.

• Is relatively short-lived.

• Is removed when the EJB container crashes. The client has to re-establish a new session object
to continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of session
objects concurrently.

The EJB specification defines stateful, stateless, and singleton session beans. There are differences in
the API between stateful session beans, stateless session beans, and singleton session beans.
39 November 5, 2009 11:00 am

Overview Enterprise JavaBeans 3.1, Final Release Standard Mapping to CORBA Protocols

Sun Microsystems, Inc.
2.4.2 Message-Driven Objects

A typical message-driven object has the following characteristics:

• Executes upon receipt of a single client message.

• Is asynchronously invoked.

• Can be transaction-aware.

• May update shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and update
such data.

• Is relatively short-lived.

• Is stateless.

• Is removed when the EJB container crashes. The container has to re-establish a new mes-
sage-driven object to continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of mes-
sage-driven objects concurrently.

2.4.3 Entity Objects

A typical entity object has the following characteristics:

• Is part of a domain model, providing an object view of data in the database.

• Can be long-lived (lives as long as the data in the database).

• The entity and its primary key survive the crash of the EJB container. If the state of an entity
was being updated by a transaction at the time the container crashed, the entity’s state is
restored to the state of the last committed transaction when the entity is next retrieved.

A typical EJB container and server provide a scalable runtime environment for a large number of con-
currently active entity objects.

2.5 Standard Mapping to CORBA Protocols

To help interoperability for EJB environments that include systems from multiple vendors, the EJB
specification requires compliant implementations to support the interoperability protocol based on
CORBA/IIOP for remote invocations from Java EE clients. Implementations may support other remote
invocation protocols in addition to IIOP.
 11/5/09 40

Mapping to Web Service Protocols Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
Chapter 15 summarizes the requirements for support for distribution and interoperability.

2.6 Mapping to Web Service Protocols

To support web service interoperability, the EJB specification requires compliant implementations to
support XML-based web service invocations using WSDL and SOAP or plain XML over HTTP in con-
formance with the requirements of the JAX-WS [32], JAX-RPC [25], Web Services for Java EE [31],
and Web Services Metadata for the Java Platform [30] specifications.

2.7 Pruning the EJB API

The Java EE 6 Specification has adopted the process defined by the Java SE group for “pruning” tech-
nologies from the platform in a careful and orderly way that minimizes the impact to developers using
these technologies while allowing the platform to grow even stronger.

As part of this process the EJB 3.1 Specification will propose a list of features for possible future
removal. None of the proposed removal items will actually be removed during this release. Instead, for
each feature on the proposed removal list, the next version of the EJB Specification will either remove
the feature from the release, retain it as a required component, or leave it in the “proposed removal”
state for future evaluation.

The result of successfully applying this process to a feature is not the actual deletion of the feature but
rather the conversion of the feature from a required part of the EJB API into an optional part of the EJB
API. No actual removal from the specification occurs, although the feature may be removed from prod-
ucts at the choice of the product vendor.

This specification proposes the following set of features for future removal :

• EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence

• EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence

• EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence

• Client View of an EJB 2.1 Entity Bean

• EJB QL : EJB 2.1 Query Language for Container-Managed Persistence Query Methods

• JAX-RPC Based Web Service Endpoints

• JAX-RPC Web Service Client View
41 November 5, 2009 11:00 am

Overview Enterprise JavaBeans 3.1, Final Release Relationship to Managed Bean Specification

Sun Microsystems, Inc.
2.8 Relationship to Managed Bean Specification

The Managed Beans 1.0 Specification defines the minimal requirements for container-managed objects
, otherwise known under the acronym “POJOs” (Plain Old Java Objects), within the Java EE Platform.
Managed Beans support a small set of basic services, such as resource injection, lifecycle callbacks and
interceptors.

A Session Bean component is a Managed Bean. The EJB component model extends the basic Managed
Bean model in many areas(component definition, naming, lifecycle, threading, etc.)
 11/5/09 42

Overview Enterprise JavaBeans 3.1, Final Release Client View of a Session Bean

Sun Microsystems, Inc.
Chapter 3 Client View of a Session Bean

This chapter describes the client view of a session bean. The session bean itself implements the business
logic. The bean’s container provides functionality for remote access, security, concurrency, transactions,
and so forth.

While classes implemented by the container provide the client view of the session bean, the container
itself is transparent to the client.

3.1 Overview

For a client, a session object is a non-persistent object that implements some business logic running on
the server. One way to think of a session object is as a logical extension of the client program that runs
on the server. A typical session object is not shared among multiple clients.

A client never directly accesses instances of the session bean’s class. A client accesses a session object
through the session bean’s client view.

The client of a session bean may be a local client, a remote client, or a web service client, depending on
which of these views is provided by the bean and used by the client.
43 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
A remote client of an session bean can be another enterprise bean deployed in the same or different con-
tainer; or it can be an arbitrary Java program, such as an application, applet, or servlet. The client view
of a session bean can also be mapped to non-Java client environments, such as CORBA clients that are
not written in the Java programming language.

The interface used by a remote client of a session bean is implemented by the container as a remote
business interface (or a remote EJBObject interface), and the remote client view of a session bean is
location-independent. A client running in the same JVM as the session object uses the same API as a
client running in a different JVM on the same or different machine.

Terminology note: This specification uses the term remote business interface to refer to the business
interface of an EJB 3.x session bean that supports remote access. The term remote interface is used to
refer to the remote component interface of the EJB 2.1 client view. The term local business interface
refers to the local business interface of an EJB 3.x session bean that supports local access. The term
local interface is used to refer to the local component interface of the EJB 2.1 client view.

Use of a session bean’s local client view entails the collocation of the local client and the session. The
local client of an enterprise bean must be collocated in the same container as the bean. The local client
view is not location-independent.

The client of a stateless session bean or singleton session bean may be a web service client. Only a
stateless session bean or singleton session bean may provide a web service client view. A web service
client makes use of the enterprise bean’s web service client view, as described by a WSDL document.
The bean’s client view web service endpoint is in terms of a JAX-WS endpoint [32] or JAX-RPC end-
point interface [25]. Web service clients are discussed in Sections 3.2.4 and 3.5.

While it is possible to provide more than one client view for a session bean, typically only one will be
provided.

The considerations that should be taken into account in determining the client view to be used for a ses-
sion bean are further described in Section 3.2, “Local, Remote, and Web Service Client Views”.

A client can invoke a session bean synchronously or asynchronously. An asynchronous method can
return a Future<V> object that allows the client to retrieve a result value, check for exceptions, or
attempt to cancel an in-progress invocation.

From its creation until destruction, a session object lives in a container. The container provides security,
concurrency, transactions, swapping to secondary storage, and other services for the session object
transparently to the client.

Each session object has an identity which, in general, does not survive a crash and restart of the con-
tainer, although a high-end container implementation can mask container and server crashes to a remote
or web service client.

Multiple enterprise beans can be installed in a container. The container allows the clients of session
beans that provide local or remote client views to obtain the business interfaces and/or home interfaces
of the installed enterprise beans through dependency injection or to look them up via JNDI.

The client view of a session object is independent of the implementation of the session bean and the
container.
 11/5/09 44

Local, Remote, and Web Service Client Views Enterprise JavaBeans 3.1, Final Release Client View of a Session Bean

Sun Microsystems, Inc.
3.2 Local, Remote, and Web Service Client Views

This section describes some of the considerations the Bean Provider should take into account in deter-
mining the client view to provide for an enterprise bean.

3.2.1 Remote Clients

In EJB 3.x, a remote client accesses a session bean through the bean’s remote business interface. For a
session bean client and component written to the EJB 2.1 and earlier APIs, the remote client accesses
the session bean through the session bean’s remote home and remote component interfaces.

Compatibility Note: The EJB 2.1 and earlier API required that a remote client access the stateful or
stateless session bean by means of the session bean’s remote home and remote component interfaces.
These interfaces remain available for use with EJB 3.x, and are described in Section 3.6.

The remote client view of an enterprise bean is location independent. A client running in the same JVM
as a bean instance uses the same API to access the bean as a client running in a different JVM on the
same or different machine.

The arguments and results of the methods of the remote business interface are passed by value.

3.2.2 Local Clients

Session beans may have local clients. A local client is a client that is collocated in the same JVM with
the session bean that provides the local client view and which may be tightly coupled to the bean. A
local client of a session bean may be another enterprise bean or a web component.

Access to an enterprise bean through the local client view requires the collocation in the same JVM of
both the local client and the enterprise bean that provides the local client view. The local client view
therefore does not provide the location transparency provided by the remote client view.

Access to an enterprise bean through the local client view is only required to be supported for local cli-
ents packaged within the same application as the enterprise bean that provides the local client view.
Compliant implementations of this specification may optionally support access to the local client view
of an enterprise bean from a local client packaged in a different application. The configuration require-
ments for inter-application access to the local client view are vendor-specific and are outside the scope
of this specification. Applications relying on inter-application access to the local client view are
non-portable.

In EJB 3.x, a local client accesses a session bean through the bean’s local business interface or through
a no-interface client view representing all the public methods of the bean class. For a session bean or
entity bean client and component written to the EJB 2.1 and earlier APIs, the local client accesses the
enterprise bean through the bean’s local home and local component interfaces. The container object that
implements a local business interface or the no-interface local view is a local Java object.
45 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Local, Remote, and Web Service Client Views

Sun Microsystems, Inc.
Compatibility Note: The EJB 2.1 and earlier API required that a local client access the stateful or state-
less session bean by means of the session bean’s local home and local component interfaces. These
interfaces remain available for use with EJB 3.x, and are described in Section 3.6.

The arguments and results of the methods of the local client view are passed “by reference”[1]. Enter-
prise beans that provide a local client view should therefore be coded to assume that the state of any
Java object that is passed as an argument or result is potentially shared by caller and callee.

The Bean Provider must be aware of the potential sharing of objects passed through invoca-
tions of the local client view. In particular, the Bean Provider must be careful that the state of
one enterprise bean is not assigned as the state of another. In general, the references that are
passed across invocations of the local client view cannot be used outside of the immediate call
chain and must never be stored as part of the state of another enterprise bean. The Bean Pro-
vider must also exercise caution in determining which objects to pass across the local view.
This caution applies particularly in the case where there is a change in transaction or security
context.

3.2.3 Choosing Between a Local or Remote Client View

The following considerations should be taken into account in determining whether a local or remote
access should be used for an enterprise bean.

• The remote programming model provides location independence and flexibility with regard to
the distribution of components in the deployment environment. It provides a loose coupling
between the client and the bean.

• Remote calls involve pass-by-value. This copy semantics provides a layer of isolation between
caller and callee, and protects against the inadvertant modification of data. The client and the
bean may be programmed to assume this parameter copying.

• Remote calls are potentially expensive. They involve network latency, overhead of the client
and server software stacks, argument copying, etc. Remote calls are typically programmed in a
coarse-grained manner with few interactions between the client and bean.

• The objects that are passed as parameters on remote calls must be serializable.

• When the EJB 2.1 and earlier remote home and remote component interfaces are used, the nar-
rowing of remote types requires the use of javax.rmi.PortableRemoteOb-
ject.narrow rather than Java language casts.

• Remote calls may involve error cases due to communication, resource usage on other servers,
etc., which are not expected in local calls. When the EJB 2.1 and earlier remote home and
remote component interfaces are used, the client has to explicitly program handlers for han-
dling the java.rmi.RemoteException.

[1] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of that primitive
type; an argument variable of a reference type hold a reference to the object. See [28].
 11/5/09 46

Local, Remote, and Web Service Client Views Enterprise JavaBeans 3.1, Final Release Client View of a Session Bean

Sun Microsystems, Inc.
• Because of the overhead of the remote programming model, it is typically used for relatively
coarse-grained component access.

• Local calls involve pass-by-reference. The client and the bean may be programmed to rely on
pass-by-reference semantics. For example, a client may have a large document which it wants
to pass on to the bean to modify, and the bean further passes on. In the local programming
model the sharing of state is possible. On the other hand, when the bean wants to return a data
structure to the client but the bean does not want the client to modify it, the bean explicitly cop-
ies the data structure before returning it, while in the remote programming model the bean does
not copy the data structure because it assumes that the system will do the copy.

• Because local calls involve pass-by-reference, the local client and the enterprise bean provid-
ing the local client view are collocated.

• The collocation entailed by the local programming model means that the enterprise bean can-
not be deployed on a node different from that of its client—thus restricting the distribution of
components.

• Because the local programming model provides more lightweight access to a component, it
better supports more fine-grained component access.

Note that although collocation of the remote client and the enterprise bean may allow the con-
tainer to reduce the overhead of calls through a remote business interface or remote compo-
nent interface, such calls are still likely to be less efficient than calls made using a local
interface because any optimizations based on collocation must be done transparently.

The choice between the local and the remote programming model is a design decision that the Bean
Provider makes when developing the enterprise bean.

While it is possible to provide both a remote client view and a local client view for an enterprise bean,
more typically only one or the other will be provided.

3.2.4 Web Service Clients
Stateless session beans and Singleton session beans may have web service clients.

A web service client accesses a session bean through the web service client view. The web service client
view is described by the WSDL document for the web service that the bean implements. WSDL is an
XML format for describing a web service as a set of endpoints operating on messages. The abstract
description of the service is bound to an XML based protocol (SOAP [27]) and underlying transport
(HTTP or HTTPS) by means of which the messages are conveyed between client and server. (See refer-
ences [25], [26], [30], [31], [32]).

The web service methods of a session bean provide the basis of the web service client view of the bean
that is exported through WSDL. See references [30] and [25] for a description of how Java language
metadata annotations may be used to specify a session bean’s web services client view.
47 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release EJB Container

Sun Microsystems, Inc.
Compatibility Note: EJB 2.1 required the Bean Provider to define a web service endpoint interface for a
stateless session bean when he or she wished to expose the functionality of the bean as a web service
endpoint through WSDL. This requirement to define the web service endpoint interface is removed in
EJB 3.0 and later. See [30].

A bean’s web service client view may be initially defined by a WSDL document and then mapped to a
web service endpoint that conforms to this, or an existing bean may be adapted to provide a web service
client view. Reference [31] describes various design-time scenarios that may be used for EJB web ser-
vice endpoints.

The web service client view of an enterprise bean is location independent and remotable.

Web service clients may be Java clients and/or clients not written in the Java programming language. A
web service client that is a Java client accesses the web service by means of the JAX-WS or JAX-RPC
client APIs. Access through web service clients occurs through SOAP 1.1, SOAP 1.2 or plain XML
over HTTP(S).

While it is possible to provide a web service client view in addition to other client views for an enter-
prise bean, more typically only one will be provided. There is no prohibition against using the same
interface as both a Remote business interface and a web service endpoint interface. In that case it is the
Bean Developer’s responsibility to ensure that the interface conforms to the type requirements of each
client view through which it is exposed.

3.3 EJB Container

An EJB container (container for short) is a system that functions as the “container” for enterprise beans.
Multiple enterprise beans can be deployed in the same container. The container is responsible for mak-
ing the business interfaces and/or home interfaces of its deployed enterprise beans available to the client
through dependency injection and/or through lookup in the JNDI namespace.

3.4 Client View of Session Beans Written to the EJB 3.x
Simplified API

The EJB 3.x local or remote client of a session bean written to the EJB 3.x API accesses a session bean
through its business interface. The business interface of an EJB 3.x session bean is an ordinary Java
interface, regardless of whether local or remote access is provided for the bean. In particular, the EJB
3.x session bean business interface is not one of the interface types required by earlier versions of the
EJB specification (i.e., EJBObject or EJBLocalObject interface). A local client may also access a ses-
sion bean through a no-interface view that exposes all public methods of the bean class.

3.4.1 Obtaining a Session Bean’s Business Interface

A client can obtain a session bean’s business interface through dependency injection or lookup in the
JNDI namespace.
 11/5/09 48

Client View of Session Beans Written to the EJB 3.x Simplified APIEnterprise JavaBeans 3.1, Final Release Client View of a Session

Sun Microsystems, Inc.
For example, the business interface Cart for the CartBean session bean may be obtained using
dependency injection as follows:

@EJB Cart cart;

The Cart business interface could also be looked up using JNDI as shown in the following code seg-
ment using the lookup method provided by the EJBContext interface. In this example, a reference to
the client bean’s SessionContext object is obtained through dependency injection:

@Resource SessionContext ctx;
...
Cart cart = (Cart)ctx.lookup(“cart”);

In both cases, the syntax used in obtaining the reference to the Cart business interface is independent
of whether the business interface is local or remote. In the case of remote access, the actual location of a
referenced enterprise bean and EJB container are, in general, transparent to the client using the remote
business interface of the bean.

3.4.2 Obtaining a Reference to the No-interface View

A client can obtain a reference to a Session Bean’s No-interface View through dependency injection or
lookup in the JNDI namespace.

For example, the No-interface view of the CartBean session bean with bean class com.acme.CartBean
may be obtained using dependency injection as follows :

@EJB CartBean cart;

The CartBean No-interface view could also be looked up via JNDI as shown in the following code seg-
ment using the lookup method provided by the EJBContext interface. In this example, a reference to
the client bean’s SessionContext is obtained through dependency injection:

@Resource SessionContext ctx;
...
CartBean cart = (CartBean)ctx.lookup(“cart”);

Despite the fact that the client reference for the No-interface view has type <bean class> , the client
never directly uses the new operator to acquire the reference.

3.4.3 Session Bean’s Business Interface

The session bean’s interface is an ordinary Java interface. It contains the business methods of the ses-
sion bean.

A reference to a session bean’s business interface may be passed as a parameter or return value of a
business interface method. If the reference is to a session bean’s local business interface, the reference
may only be passed as a parameter or return value of a local business interface method or a No-interface
view method.
49 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Client View of Session Beans Written to the

Sun Microsystems, Inc.
The business interface of a stateful session bean typically contains a method to initialize the state of the
session object and a method to indicate that the client has finished using the session object and that it
can be removed. See Chapter 4, “Session Bean Component Contract”.

It is invalid to reference a session object that does not exist. If a stateful session bean has been removed,
attempted invocations on the stateful session bean business interface result a javax.ejb.NoSuchE-
JBException.[2] If a Singleton session bean did not successfully initialize, attempted invocations on
the singleton session bean business interface result in a javax.ejb.NoSuchEJBException.

The container provides an implementation of a session bean’s business interface such that when the cli-
ent invokes a method on the instance of the business interface, the business method on the session bean
instance and any interceptor methods are invoked as needed.

The container makes the session bean’s business interface available to the EJB 3.x client through depen-
dency injection and through lookup in the JNDI namespace. Section 16.5 describes in further detail how
clients can obtain references to EJB business interfaces.

3.4.4 Session Bean’s No-Interface View

A Session Bean’s no-interface view is a variation of the Local view that exposes the public methods of
the bean class without the use of a separate business interface.

A reference to the no-interface view may be passed as a parameter or return value of any Local business
interface or no-interface view method.

The container provides an implementation of a reference to a no-interface view such that when the cli-
ent invokes a method on the reference, the business method on the session bean instance and any inter-
ceptor methods are invoked as needed. As with the session bean remote and local views, a client
acquires a no-interface view reference via lookup or injection only. A client does not directly instantiate
(use the new operator on) the bean class to acquire a reference to the no-interface view.

Only public methods of the bean class (and any super-classes) may be invoked through the no-interface
view. Attempted invocations of methods with any other access modifiers via the no-interface view ref-
erence must result in a javax.ejb.EJBException.

When interacting with a reference to the no-interface view, the client must not make any assumptions
regarding the internal implementation of the reference, such as any instance-specific state that may be
present in the reference. Although the reference object is type-compatible with the corresponding bean
class type, there is no prescribed relationship between the internal implementation of the reference and
the implementation of the bean instance.

The developer of an enterprise bean that exposes a no-interface view must not make any assumptions
about the number of times the bean class no-arg constructor will be called. For example, it is possible
that the acquisition of a client reference to the no-interface view will result in the invocation of the-
bean-class constructor. It is recommended that the bean developer place component initialization logic
in a @PostConstruct method instead of the bean class no-arg constructor.

[2] This may not apply to stateless session beans; see Section 4.7.
 11/5/09 50

Client View of Session Beans Written to the EJB 3.x Simplified APIEnterprise JavaBeans 3.1, Final Release Client View of a Session

Sun Microsystems, Inc.
It is invalid to reference a session object that does not exist. If a stateful session bean has been removed,
attempted invocations on the no-interface view reference must result in a javax.ejb.NoSuchE-
JBException. If a Singleton session bean did not successfully initialize, attempted invocations on
the singleton no-interface view reference result in a javax.ejb.NoSuchEJBException.

3.4.5 Client View of Session Object’s Life Cycle
From the point of view of the client, a session object exists once the client has obtained a reference to its
business interface—whether through dependency injection or from lookup of the business interface in
JNDI.

A client that has a reference to a session object’s business interface can then invoke business methods
on the interface and/or pass the reference as a parameter or return value of a business interface
method.[3]

A client may remove a stateful session bean by invoking a method of its business interface designated
as a Remove method.

The lifecycle of a stateless session bean does not require that it be removed by the client. Removal of a
stateless session bean instance is performed by the container, transparently to the client.

The lifecycle of a singleton session bean does not require that it be removed by the client. Removal of a
singleton session bean instance is performed by the container, transparently to the client.

The contracts for session bean lifecycle are described in Chapter 4, “Session Bean Component Con-
tract”.

3.4.6 Example of Obtaining and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

[3] Note that the EJB 3.x session bean business interface is not an EJBObject. It is not valid to pass a reference to the remote business
interface through a bean’s remote component interface.
51 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Client View of Session Beans Written to the

Sun Microsystems, Inc.
Figure 1 Session Bean Example Objects

A client obtains a reference to a Cart session object, which provides a shopping service, by means of
dependency injection or using JNDI lookup. The client then uses this session object to fill the cart with
items and to purchase its contents. Cart is a stateful session.

In this example, the client obtains a reference to the Cart’s business interface through dependency injec-
tion. The client then uses the business interface to initialize the session object and add a few items to it.
The startShopping method is a business method that is provided for the initialization of the session
object.

@EJB Cart cart;
...
cart.startShopping();
cart.addItem(66);
cart.addItem(22);

Finally the client purchases the contents of the shopping cart, and finishes the shopping activity.[4]

cart.purchase();
cart.finishShopping();

[4] It is part of the logic of an application designed using stateful session beans to designate a method that causes the removal of the
stateful session (and thus allows for the reclamation of resources used by the session bean). This example assumes that the fin-
ishShopping method is such a Remove method. See Section 4.6 for further discussion.

CartBeanclient Cart

container
 11/5/09 52

Client View of Session Beans Written to the EJB 3.x Simplified APIEnterprise JavaBeans 3.1, Final Release Client View of a Session

Sun Microsystems, Inc.
3.4.7 Session Object Identity

A client can test two EJB 3.x Remote/Local view references for identity by means of the Object.equals
and Object.hashCode methods.

3.4.7.1 Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at the time the object is
created. A client of the stateful session bean business interface can determine if two business interface
or no-interface view references refer to the same session object by use of the equals method.

For example,

@EJB Cart cart1;
@EJB Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must return false
 ...
}

All stateful session bean references to the same business interface for the same stateful session bean
instance will be equal. All references to the no-interface view of the same stateful session bean instance
will be equal. Stateful session bean references to different interface types or between an interface type
and a no-interface view or to different session bean instances will not have the same identity.

3.4.7.2 Stateless Session Beans

All business object references of the same interface type for the same stateless session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same stateless session bean have the same object identity.

For example,

@EJB Cart cart1;
@EJB Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must also return true
 ...
}

53 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Client View of Session Beans Written to the

Sun Microsystems, Inc.
The equals method always returns true when used to compare references to the same business inter-
face type of the same stateless session bean. The equals method always returns true when used to com-
pare references to the no-interface view of the same stateless session bean. Stateless session bean
references to either different business interface types or between an interface type and a no-interface
view or to different session beans will not be equal.

3.4.7.3 Singleton Session Beans

All business object references of the same interface type for the same singleton session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same singleton session bean have the same object identity.

For example,

@EJB Shared shared1;
@EJB Shared shared2;
...
if (shared1.equals(shared1)) { // this test must return true
 ...
}
...
if (shared1.equals(shared2)) { // this test must also return true
 ...
}

The equals method always returns true when used to compare references to the same business inter-
face type of the same singleton session bean. The equals method always returns true when used to com-
pare references to the no-interface view of the same singleton session bean. Session bean references to
either different business interface types or between an interface type and a no-interface view or to dif-
ferent session beans will not be equal.

3.4.8 Asynchronous Invocations
By default, session bean invocations through the Remote, Local, and no-interface views are synchro-
nous. The client blocks for the duration of the invocation and is returned control only after all invoca-
tion processing has completed. Clients can achieve asynchronous invocation behavior by invoking
session bean methods that have been designed to support asynchrony.

When a client invokes an asynchronous method, the container returns control to the client immediately
and continues processing the invocation on a separate thread of execution.

The client should expect to receive a system exception (in the form of a javax.ejb.EJBExcep-
tion) on the client thread if the container has problems allocating the internal resources required to
support the asynchronous method.[5] If a system exception is received on the client thread, the client can
expect that the container will not be able to dispatch the asynchronous method. The client may wish to
retry the asynchronous method at a later time.

[5] If the business interface is a remote business interface that extends java.rmi.Remote, a java.rmi.RemoteExcep-
tion is received instead.
 11/5/09 54

Client View of Session Beans Written to the EJB 3.x Simplified APIEnterprise JavaBeans 3.1, Final Release Client View of a Session

Sun Microsystems, Inc.
If no system exception is received, then the client can expect that the container will make an attempt to
dispatch the asynchronus method. An exception resulting from the asynchronous method execution(e.g.
an authorization failure, transaction commit failure, application exception, etc.) will be available via the
Future<V> object.

3.4.8.1 Return Values

Asynchronous methods have a return type of void or Future<V>, where V represents the result value
of the asynchronous invocation.

For Future<V>, the object returned from the client invocation is a container provided object. This
object allows the client to retrieve the invocation result value, discover any invocation exception, or
attempt to cancel the asynchronous invocation.

All methods of the java.util.concurrent.Future interface are supported. Unless otherwise
noted, the behavior matches that described in its javadoc entry [34].

3.4.8.1.1 Future.cancel(boolean mayInterruptIfRunning)

If a client calls cancel on its Future object, the container will attempt to cancel the associated asyn-
chronous invocation only if that invocation has not already been dispatched. There is no guarantee that
an asynchronous invocation can be cancelled, regardless of how quickly cancel is called after the cli-
ent receives its Future object. If the asynchronous invocation can not be cancelled, the method must
return false. If the asynchronous invocation is successfully cancelled, the method must return true.

The mayInterruptIfRunning flag controls whether, in the case that the asynchronous invocation
can not be cancelled, the target enterprise bean should have visibility to the client’s cancel attempt. If
the mayInterruptIfRunning is set to true, then subsequent calls to the SessionCon-
text.wasCancelCalled method from within the associated dispatched asynchronous invocation
must return true. If the mayInterruptIfRunning is set to false, then subsequent calls to the
SessionContext.wasCancelCalled method from within the associated dispatched asynchro-
nous invocation must return false.

Note that all the client Future cancel semantics (isCancelled, CancellationException,
etc.) depend only on the result of Future.cancel. If the dispatched asynchronous method does
decide to short circuit its processing as a result of checking SessionContext, it's up to the Bean
Developer to decide how to convey that information to the client. Typically, that is done through a spe-
cial return value or exception delivered via Future.get().

3.4.8.1.2 Future.get

The client calls one of the two Future.get methods in order to retrieve the result value or resulting
exception from the associated asynchronous invocation. The specification recommends that unless the
client successfully cancels the asynchronous invocation it should call get on every Future object it
receives. If a call to get successfully returns a result value or throws an ExecutionException, all
subsequent calls to get on the same Future object must result in that same behavior.
55 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release The Web Service Client View of a Session

Sun Microsystems, Inc.
An EJB Container Provider is permitted to define a timeout value that governs the maximum amount of
time the container maintains result values for completed asynchronous invocations. The configuration
of such a timeout is beyond the scope of this specification.

3.4.9 Concurrent Access to Session Bean References

It is permissable to acquire a session bean reference and attempt to invoke the same reference object
concurrently from multiple threads. However, the resulting client behavior on each thread depends on
the concurrency semantics of the target bean. See Section 4.3.14 and Section 4.8.5 for details of the con-
currency behavior for session beans.

3.5 The Web Service Client View of a Session Bean

From the perspective of the client, the existence of the stateless session bean or singleton session bean is
completely hidden behind the web service endpoint that the bean implements.

The web service client’s access to the web service functionality provided by a session bean occurs
through a web service endpoint. In the case of Java clients, this endpoint is accessed as a JAX-WS or
JAX-RPC service endpoint using the JAX-WS or JAX-RPC client view APIs, as described in [32] and
[25].

The following diagram illustrates the view that is provided to Java EE web service clients of a stateless
session bean through the JAX-WS client view APIs.
 11/5/09 56

The Web Service Client View of a Session BeanEnterprise JavaBeans 3.1, Final Release Client View of a Session Bean

Sun Microsystems, Inc.
Figure 2 Web Service Client View of Stateless Session Beans Deployed in a Container

3.5.1 JAX-WS Web Service Clients

The Java EE web service client obtains a reference to the service instance of the
javax.xml.ws.Service class through dependency injection or using JNDI. The service class can
be a generic javax.xml.ws.Service class or a generated service class which extends the
javax.xml.ws.Service class. The service instance is then used to obtain a port object for the web
service endpoint. The mechanisms and APIs for client web service access are described in the JAX-WS
specification [32] and in the Web Services for Java EE specification [31].

Client

Container

Stateless session
bean

Stateless
session bean
instances

Service class

Web service endpoint
57 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release The Web Service Client View of a Session

Sun Microsystems, Inc.
The following example illustrates how a JAX-WS client obtains a reference to a web service endpoint,
obtains a port object for the web service endpoint, and invokes a method on that endpoint.

@WebServiceRef
public StockQuoteService stockQuoteService;
...
StockQuoteProvider sqp =

stockQuoteService.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice(“ACME”);
...

The use of service references and the WebServiceRef annotation are described in further detail in
[32].

3.5.2 JAX-RPC Web Service Clients

The JAX-RPC web service client obtains a reference to the service object that implements the
javax.xml.rpc.Service interface through dependency injection or using JNDI. The service
interface can be a generic javax.xml.rpc.Service interface or a generated service interface
which extends the javax.xml.rpc.Service interface. The service interface is then used to obtain
a stub or proxy that implements the session bean’s web service endpoint interface. The mechanisms and
APIs for client web service access are described in the JAX-RPC specification [25] and in the Web Ser-
vices for Java EE specification [31].

The following example illustrates how a Java EE client looks up a web service in JNDI using a logical
name called a service reference (specified using the service-ref element), obtains a stub instance
for a web service endpoint, and invokes a method on that endpoint.

Context ctx = new InitialContext();
com.example.StockQuoteService sqs = (com.example.StockQuoteService)

ctx.lookup(“java:comp/env/service/StockQuoteService”);
com.example.StockQuoteProvider sqp =

sqs.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice(“ACME”);
...

The use of service references and the service-ref deployment descriptor element are described in
further detail in [31].

The JAX-RPC Web Service Client view has been proposed for future removal. See Section 2.7 for more
details.
 11/5/09 58

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.1, Final Release Cli-

Sun Microsystems, Inc.
3.6 Remote and Local Client View of Session Beans Written to
the EJB 2.1 Client View API

The remainder of this chapter describes the Session Bean client view defined by the EJB 2.1 and earlier
specifications. Support for the definition and use of these earlier client interfaces is required to be pro-
vided by implementations of the EJB 3.1 specification. The EJB 2.1 Remote and Local client view is
not supported for singleton session beans.

3.6.1 Locating a Session Bean’s Home Interface

The EJB 2.1 and earlier specifications require that the client first obtain a reference to a session bean’s
home interface, and then use the home interface to obtain a reference to the bean’s component interface.
This earlier programming model continues to be supported in EJB 3.1. Both dependency injection and
use of the EJBContext lookup method may be used as an alternative to the JNDI APIs to obtain a ref-
erence to the home interface.

For example, an EJB 3.x client, com.acme.example.MySessionBean, might obtain a reference
to a bean’s home interface as follows:

@EJB CartHome cartHome;

This home interface could be looked up in JNDI using the EJBContext lookup method as shown in the
following code segment:

@Resource SessionContext ctx;
...
CartHome cartHome =

(CartHome)ctx.lookup(“com.acme.example.MySessionBean/cartHome”);

When the EJBContext lookup method is used to look up a home interface, the use of
javax.rmi.PortableRemoteObject.narrow is not required.

The following code segments illustrate how the home interface is obtained when the JNDI APIs are
used directly, as was required in the EJB 2.1 programming model. For example, the remote home inter-
face for the Cart session bean can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“java:comp/env/ejb/cart”),
CartHome.class);

If the Cart session bean provides a local client view instead of a remote client view and CartHome is
a local home interface, this lookup might be as follows:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)

initialContext.lookup(“java:comp/env/ejb/cart”);
59 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.
3.6.2 Session Bean’s Remote Home Interface

This section is specific to session beans that provide a remote client view using the remote and remote
home interfaces.

This was the only way of providing a remote client view in EJB 2.1 and earlier releases. The
remote client view provided by the business interface in EJB 3.1 as described in Section 3.4 is
now to be preferred.

The container provides the implementation of the remote home interface for each session bean that
defines a remote home interface that is deployed in the container. The object that implements a session
bean’s remote home interface is called a session EJBHome object. The container makes the session
bean’s remote home interface available to the client through dependency injection or through lookup in
the JNDI namespace.

The remote home interface allows a client to do the following:

• Create a new session object.

• Remove a session object.

• Get the javax.ejb.EJBMetaData interface for the session bean. The
javax.ejb.EJBMetaData interface is intended to allow application assembly tools to
discover information about the session bean, and to allow loose client/server binding and cli-
ent-side scripting.

• Obtain a handle for the remote home interface. The home handle can be serialized and written
to stable storage. Later, possibly in a different JVM, the handle can be deserialized from stable
storage and used to obtain back a reference of the remote home interface.

The life cycle of the distributed object implementing the remote home interface (the EJBHome object)
or the local Java object implementing the local home interface (the EJBLocalHome object) is con-
tainer-specific. A client application should be able to obtain a home interface, and then use it multiple
times, during the client application’s lifetime.

A client can pass a remote home object reference to another application. The receiving application can
use the home interface in the same way that it would use a remote home object reference obtained via
JNDI.

3.6.2.1 Creating a Session Object

A home interface defines one or more create<METHOD> methods, one for each way to create a ses-
sion object. The arguments of the create methods are typically used to initialize the state of the cre-
ated session object.

The return type of a create<METHOD> method on the remote home interface is the session bean’s
remote interface.
 11/5/09 60

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.1, Final Release Cli-

Sun Microsystems, Inc.
The following example illustrates a remote home interface that defines two create<METHOD> meth-
ods:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)
 throws RemoteException, BadAccountException,

CreateException;
Cart createLargeCart(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

}

The following example illustrates how a client creates a new session object using a cre-
ate<METHOD> method of the CartHome interface:

cartHome.create(“John”, “7506”);

3.6.2.2 Removing a Session Object

A remote client may remove a session object using the remove() method of the
javax.ejb.EJBObject interface, or the remove(Handle handle) method of the
javax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBHome.remove(Object primaryKey) method on a session results in a
javax.ejb.RemoveException.

3.6.3 Session Bean’s Local Home Interface

This section is specific to session beans that provide a local client view using the local and local home
interfaces.

This was the only way of providing a local client view in EJB 2.1 and earlier releases. The
local client view provided by the business interface in EJB 3.1 as described in Section 3.4 is
now to be preferred.

The container provides the implementation of the local home interface for each session bean that
defines a local home interface that is deployed in the container. The object that implements a session
bean’s local home interface is called a session EJBLocalHome object. The container makes the session
bean’s local home interface available to the client through JNDI.

The local home interface allows a local client to do the following:

• Create a new session object.

• Remove a session object.
61 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.
A client can pass a local home object reference to another application through its local interface. A local
home object reference cannot be passed as an argument or result of a method on an enterprise bean’s
remote home or remote interface.

3.6.3.1 Creating a Session Object

A local home interface defines one or more create<METHOD> methods, one for each way to create a
session object. The arguments of the create methods are typically used to initialize the state of the
created session object.

The return type of a create<METHOD> method on the local home interface is the session bean’s local
interface.

The following example illustrates a local home interface that defines two create<METHOD> meth-
ods:

public interface CartHome extends javax.ejb.EJBLocalHome {
Cart create(String customerName, String account)
 throws BadAccountException, CreateException;
Cart createLargeCart(String customerName, String account)

throws BadAccountException, CreateException;
}

The following example illustrates how a client creates a new session object using a cre-
ate<METHOD> method of the CartHome interface:

cartHome.create(“John”, “7506”);

3.6.3.2 Removing a Session Object

A local client may remove a session object using the remove() method of the javax.ejb.EJBLo-
calObject interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBLocalHome.remove(Object primaryKey) method on a session results in
a javax.ejb.RemoveException.

3.6.4 EJBObject and EJBLocalObject

A remote or local client that uses the EJB 2.1 client view APIs uses the session bean’s component inter-
face to access a session bean instance. The class that implements the session bean’s component interface
is provided by the container. Instances of a session bean’s remote interface are called session EJBOb-
jects. Instances of a session bean’s local interface are called session EJBLocalObjects.

A session EJBObject supports:

• The business logic methods of the object. The session EJBObject delegates invocation of a
business method to the session bean instance.
 11/5/09 62

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.1, Final Release Cli-

Sun Microsystems, Inc.
• The methods of the javax.ejb.EJBObject interface. These methods allow the client to:
• Get the session object’s remote home interface.
• Get the session object’s handle.
• Test if the session object is identical with another session object.
• Remove the session object.

A session EJBLocalObject supports:

• The business logic methods of the object. The session EJBLocalObject delegates invocation of
a business method to the session bean instance.

• The methods of the javax.ejb.EJBLocalObject interface. These methods allow the
client to:

• Get the session object’s local home interface.
• Test if the session object is identical with another session object.
• Remove the session object.

The implementation of the methods defined in the javax.ejb.EJBObject and
javax.ejb.EJBLocalObject interfaces is provided by the container. They are not delegated to
the instances of the session bean class.

3.6.5 Object Identity

Session objects are intended to be private resources used only by the client that created them. For this
reason, session objects, from the client’s perspective, appear anonymous. In contrast to entity objects,
which expose their identity as a primary key, session objects hide their identity. As a result, the EJBOb-
ject.getPrimaryKey() method results in a java.rmi.RemoteException and the EJBLo-
calObject.getPrimaryKey() method results in a javax.ejb.EJBException, and the
EJBHome.remove(Object primaryKey) and the EJBLocalHome.remove(Object pri-
maryKey) methods result in a javax.ejb.RemoveException if called on a session bean. If the
EJBMetaData.getPrimaryKeyClass()method is invoked on a EJBMetaData object for a
session bean, the method throws the java.lang.RuntimeException.

Since all session objects hide their identity, there is no need to provide a finder for them. The home
interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle to per-
sistent storage. When the handle is later deserialized, the session object it returns will work as long as
the session object still exists on the server. (An earlier timeout or server crash may have destroyed the
session object.)

A handle is not a capability, in the security sense, that would automatically grant its holder the right to
invoke methods on the object. When a reference to a session object is obtained from a handle, and then
a method on the session object is invoked, the container performs the usual access checks based on the
caller’s principal.
63 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.
3.6.6 Client view of Session Object’s Life Cycle

From the point of view of a local or remote client using the EJB 2.1 and earlier client view API, the life
cycle of a session object is illustrated below.

Figure 3 Life Cycle of a Session Object.

A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.

3.6.6.1 References to Session Object Remote Interfaces

A client that has a reference to a session object’s remote interface can then do any of the following:

• Invoke business methods defined in the session object’s remote interface.

• Get a reference to the session object’s remote home interface.

• Get a handle for the session object.

• Pass the reference as a parameter or return value within the scope of the client.

does not exist
and

not referenced
does not exist

and
referenced

exists
and

not referenced

exists
and

referenced

release reference

object.remove(),

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException or

home.remove(...),

container crash,

handle.getEJBObject()

or
container crash

system exception in bean,
bean timeout,

or bean timeout

home.create<METHOD>(...)

NoSuchObjectLocalException
 11/5/09 64

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.1, Final Release Cli-

Sun Microsystems, Inc.
• Remove the session object. A container may also remove the session object automatically
when the session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted remote invocations on a stateful
session object that does not exist result in a java.rmi.NoSuchObjectException.[6]

3.6.6.2 References to Session Object Local Interfaces

A client that has a reference to a session object’s local interface can then do any of the following:

• Invoke business methods defined in the session object’s local interface.

• Get a reference to the session object’s local home interface.

• Pass the reference as a parameter or return value of a local interface method.

• Remove the session object. A container may also remove the session object automatically
when the session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted invocations on a stateful session
object that does not exist result in javax.ejb.NoSuchObjectLocalException.[7]

A client can pass a local object reference or local home object reference to another application through
its local interface. A local object reference or local home object reference cannot be passed as an argu-
ment or result of a method on an enterprise bean’s remote home or remote interface.

3.6.7 Creating and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

[6] This may not apply to stateless session beans; see Section 4.7.
[7] This may not apply to stateless session beans; see Section 4.7.
65 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.
Figure 4 Session Bean Example Objects

A client creates a remote Cart session object, which provides a shopping service, using a cre-
ate<METHOD> method of the Cart’s remote home interface. The client then uses this session object
to fill the cart with items and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping session tempo-
rarily for a day or two, and later complete the session. The client might implement this feature by get-
ting the session object’s handle, saving the serialized handle in persistent storage, and using it later to
reestablish access to the original Cart.

For the following example, we start by looking up the Cart’s remote home interface in JNDI. We then
use the remote home interface to create a Cart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.createLargeCart(...);
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at a later time so we serialize a handle to this cart ses-
sion object and store it in a file:

Handle cartHandle = cart.getHandle();
// serialize cartHandle, store in a file...

CartBeanclient

Cart

CartHome

container
 11/5/09 66

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.1, Final Release Cli-

Sun Microsystems, Inc.
Finally we deserialize the handle at a later time, re-create the reference to the cart session object, and
purchase the contents of the shopping cart:

Handle cartHandle = ...; // deserialize from a file...
Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(

cartHandle.getEJBObject(), Cart.class);
cart.purchase();
cart.remove();

3.6.8 Object Identity

3.6.8.1 Stateful Session Beans
A stateful session object has a unique identity that is assigned by the container at create time.

A remote client can determine if two remote object references refer to the same session object by invok-
ing the isIdentical(EJBObject otherEJBObject) method on one of the references. A local
client can determine if two local object references refer to the same session object by invoking the
isIdentical(EJBLocalObject otherEJBLocalObject) method.

The following example illustrates the use of the isIdentical method for a stateful session object.

FooHome fooHome = ...; // obtain home of a stateful session bean
Foo foo1 = fooHome.create(...);
Foo foo2 = fooHome.create(...);

if (foo1.isIdentical(foo1)) {// this test must return true
...

}

if (foo1.isIdentical(foo2)) {// this test must return false
...

}

3.6.8.2 Stateless Session Beans

All session objects of the same stateless session bean within the same home have the same object iden-
tity, which is assigned by the container. If a stateless session bean is deployed multiple times (each
deployment results in the creation of a distinct home), session objects from different homes will have a
different identity.

The isIdentical(EJBObject otherEJBObject) and isIdentical(EJBLocalOb-
ject otherEJBLocalObject) methods always returns true when used to compare object refer-
ences of two session objects of the same stateless session bean.
67 November 5, 2009 11:00 am

Client View of a Session Bean Enterprise JavaBeans 3.1, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.
The following example illustrates the use of the isIdentical method for a stateless session object.

FooHome fooHome = ...; // obtain home of a stateless session bean
Foo foo1 = fooHome.create();
Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) {// this test returns true
...

}

if (foo1.isIdentical(foo2)) {// this test returns true
...

}

3.6.8.3 getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result of getPrima-
ryKey() on a session EJBObject reference results in java.rmi.RemoteException. The result
of getPrimaryKey() on a session EJBLocalObject reference results in javax.ejb.EJBExcep-
tion.

3.6.9 Type Narrowing
A client program that is intended to be interoperable with all compliant EJB container implementations
must use the javax.rmi.PortableRemoteObject.narrow method to perform type-narrow-
ing of the client-side representations of the remote home and remote interfaces.[8]

Note: Programs using the cast operator for narrowing the remote and remote home interfaces are likely
to fail if the container implementation uses RMI-IIOP as the underlying communication transport.

[8] Use of javax.rmi.PortableRemoteObject.narrow is not needed when the EJBContext lookup method is used to look up the remote
home interface.
 11/5/09 68

Overview Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Chapter 4 Session Bean Component Contract

This chapter specifies the contract between a session bean and its container. It defines the life cycle of
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s respon-
sibilities for managing session bean state.

4.1 Overview

A session bean instance is an instance of the session bean class. It holds the session object’s state.

A session bean instance is an extension of the client that creates it:

• In the case of a stateful session bean, its fields contain a conversational state on behalf of the
session object’s client. This state describes the conversation represented by a specific cli-
ent/session object pair.

• It typically reads and updates data in a database on behalf of the client.

• In the case of a stateful session bean, its lifetime is controlled by the client.
69 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final ReleaseConversational State of a Stateful Session Bean

Sun Microsystems, Inc.
A container may also terminate a session bean instance’s life after a deployer-specified time-
out or as a result of the failure of the server on which the bean instance is running. For this
reason, a client should be prepared to recreate a new session object if it loses the one it is
using.

Typically, a session object’s conversational state is not written to the database. A session bean developer
simply stores it in the session bean instance’s fields and assumes its value is retained for the lifetime of
the instance. A developer may use an extended persistence context to store a stateful session bean’s per-
sistent conversational state. See the document “Java Persistence API” of this specification [2].

A session bean that does not make use of the Java Persistence API must explicitly manage cached data-
base data. A session bean instance must write any cached database updates prior to a transaction com-
pletion, and it must refresh its copy of any potentially stale database data at the beginning of the next
transaction. A session bean must also refresh any java.sql Statement objects before they are used in
a new transaction context. Use of the Java Persistence API provides a session bean with automatic man-
agement of database data, including the automatic flushing of cached database updates upon transaction
commit. See [2].

The container manages the life cycle of the session bean instances. It notifies the instances when bean
action may be necessary, and it provides a full range of services to ensure that the session bean imple-
mentation is scalable and can support a large number of clients.

A session bean can be invoked synchronously or asynchronously.

A session bean may be either:

• stateless—the session bean instances contain no conversational state between methods; any
instance can be used for any client.

• stateful—the session bean instances contain conversational state which must be retained across
methods and transactions.

• singleton—a single session bean instance is shared between clients and supports concurrent
access.

4.2 Conversational State of a Stateful Session Bean

The conversational state of a stateful session object is defined as the session bean instance’s field val-
ues, its associated interceptors and their instance field values, plus the transitive closure of the objects
from these instances’ fields reached by following Java object references.

To efficiently manage the size of its working set, a session bean container may need to temporarily
transfer the state of an idle stateful session bean instance to some form of secondary storage. The trans-
fer from the working set to secondary storage is called instance passivation. The transfer back is called
activation.
 11/5/09 70

Conversational State of a Stateful Session BeanEnterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
In advanced cases, a session object’s conversational state may contain open resources, such as open
sockets and open database cursors. A container cannot retain such open resources when a session bean
instance is passivated. A developer of a stateful session bean must close and open the resources in the
PrePassivate and PostActivate lifecycle callback interceptor methods.[9]

A container may only passivate a stateful session bean instance when the instance is not in a transaction.

A container must not passivate a stateful session bean with an extended persistence context unless the
following conditions are met:[10]

• All the entities in the persistence context are serializable.

• The EntityManager is serializable.

A stateless session bean is never passivated.

A singleton session bean is never passivated.

4.2.1 Instance Passivation and Conversational State

The Bean Provider is required to ensure that the PrePassivate method leaves the instance fields and
the fields of its associated interceptors ready to be serialized by the container. The objects that are
assigned to the instance’s non-transient fields and the non-transient fields of its interceptors
after the PrePassivate method completes must be one of the following.

• A serializable object[11].

• A null.

• A reference to an enterprise bean’s business interface.

• A reference to an enterprise bean’s no-interface view.

• A reference to an enterprise bean’s remote interface, even if the stub class is not serializable.

• A reference to an enterprise bean’s remote home interface, even if the stub class is not serializ-
able.

• A reference to an entity bean’s local interface, even if it is not serializable.

• A reference to an entity bean’s local home interface, even if it is not serializable.

• A reference to the SessionContext object, even if it is not serializable.

[9] Note that this requirement does not apply to the EntityManager and EntityManagerFactory objects.
[10] The container is not permitted to destroy a stateful session bean instance because it does not meet these requirements.
[11] Note that the Java Serialization protocol dynamically determines whether or not an object is serializable. This means that it is pos-

sible to serialize an object of a serializable subclass of a non-serializable declared field type.
71 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final ReleaseConversational State of a Stateful Session Bean

Sun Microsystems, Inc.
• A reference to the environment naming context (that is, the java:comp/env JNDI context)
or any of its subcontexts.

• A reference to the UserTransaction interface.

• A reference to a resource manager connection factory.

• A reference to a container-managed EntityManager object, even if it is not serializable.

• A reference to an EntityManagerFactory object obtained via injection or JNDI lookup,
even if it is not serializable.

• A reference to a javax.ejb.Timer object.

• An object that is not directly serializable, but becomes serializable by replacing the references
to an enterprise bean’s business interface, an enterprise bean’s home and component interfaces,
the references to the SessionContext object, the references to the java:comp/env
JNDI context and its subcontexts, the references to the UserTransaction interface, and
the references to the EntityManager and/or EntityManagerFactory by serializable
objects during the object’s serialization.

This means, for example, that the Bean Provider must close all JDBC™ connections in the PrePas-
sivate method and assign the instance’s fields storing the connections to null.

The last bulleted item covers cases such as storing Collections of component interfaces in the conversa-
tional state.

The Bean Provider must assume that the content of transient fields may be lost between the PrePas-
sivate and PostActivate notifications. Therefore, the Bean Provider should not store in a
transient field a reference to any of the following objects: SessionContext object; environ-
ment JNDI naming context and any its subcontexts; business interfaces; home and component inter-
faces; EntityManager interface; EntityManagerFactory interface; UserTransaction
interface.

The restrictions on the use of transient fields ensure that containers can use Java Serialization during
passivation and activation.

The following are the requirements for the container.

The container performs the Java programming language Serialization (or its equivalent) of the
instance’s state (and its interceptors’ state) after it invokes the PrePassivate method on the instance
and its interceptors.

The container must be able to properly save and restore the reference to the business interfaces and
home and component interfaces of the enterprise beans stored in the instance’s state even if the classes
that implement the object references are not serializable.

The container must be able to properly save and restore references to timers stored in the instance’s state
even if the classes that implement the timers are not serializable.
 11/5/09 72

Conversational State of a Stateful Session BeanEnterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
The container may use, for example, the object replacement technique that is part of the
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to external-
ize the home and component references.

If the session bean instance stores in its conversational state an object reference to the
javax.ejb.SessionContext interface, the container must be able to save and restore the refer-
ence across the instance’s passivation. The container can replace the original SessionContext
object with a different and functionally equivalent SessionContext object during activation.

If the session bean instance stores in its conversational state an object reference to the
java:comp/env JNDI context or its subcontext, the container must be able to save and restore the
object reference across the instance’s passivation. The container can replace the original object with a
different and functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to the UserTransac-
tion interface, the container must be able to save and restore the object reference across the instance’s
passivation. The container can replace the original object with a different and functionally equivalent
object during activation.

If the session bean instance stores in its conversational state an object reference to a container-managed
EntityManager or to an EntityManagerFactory obtained via injection or JNDI lookup, the
container must be able to save and restore the object reference across the instance’s passivation.

The container may destroy a session bean instance if the instance does not meet the requirements for
serialization after PrePassivate.

While the container is not required to use the Serialization protocol for the Java programming language
to store the state of a passivated session instance, it must achieve the equivalent result. The one excep-
tion is that containers are not required to reset the value of transient fields during activation[12].
Declaring the session bean’s fields as transient is, in general, discouraged.

4.2.2 The Effect of Transaction Rollback on Conversational State

A session object’s conversational state is not transactional. It is not automatically rolled back to its ini-
tial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state and the
state of the underlying database, the bean developer (or the application development tools used by the
developer) must use the afterCompletion notification to manually reset its state.

[12] This is to allow the container to swap out an instance’s state through techniques other than the Java Serialization protocol. For
example, the container’s Java Virtual Machine implementation may use a block of memory to keep the instance’s variables, and
the container swaps the whole memory block to the disk instead of performing Java Serialization on the instance.
73 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.
4.3 Protocol Between a Session Bean Instance and its
Container

Containers themselves make no actual service demands on the session bean instances. The container
makes calls on a bean instance to provide it with access to container services and to deliver notifications
issued by the container.

4.3.1 Required Session Bean Metadata

A session bean must be annotated or denoted in the deployment descriptor as a stateless or stateful or
singleton session bean. A stateless session bean must be annotated with the Stateless annotation or
denoted in the deployment descriptor as a stateless session bean. A stateful session bean must be anno-
tated with the Stateful annotation or denoted in the deployment descriptor as a stateful session bean.
A singleton session bean must be annotated with the Singleton annotation or denoted in the deploy-
ment descriptor as a singleton session bean. The Stateful and Singleton and Stateless
annotations are component-defining annotations and are applied to the bean class.

4.3.2 Dependency Injection

A session bean may use dependency injection mechanisms to acquire references to resources or other
objects in its environment (see Chapter 16, “Enterprise Bean Environment”). If a session bean makes
use of dependency injection, the container injects these references after the bean instance is created, and
before any business methods are invoked on the bean instance. If a dependency on the SessionCon-
text is declared, or if the bean class implements the optional SessionBean interface (see Section
4.3.5), the SessionContext is also injected at this time. If dependency injection fails, the bean
instance is discarded.

Under the EJB 3.1 API, the bean class may acquire the SessionContext interface through
dependency injection without having to implement the SessionBean interface. In this case,
the Resource annotation (or resource-env-ref deployment descriptor element) is
used to denote the bean’s dependency on the SessionContext. See Chapter 16, “Enter-
prise Bean Environment”.

4.3.3 The SessionContext Interface

If the bean specifies a dependency on the SessionContext interface (or if the bean class imple-
ments the SessionBean interface), the container must provide the session bean instance with a Ses-
sionContext. This gives the session bean instance access to the instance’s context maintained by the
container. The SessionContext interface has the following methods:

• The getCallerPrincipal method returns the java.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the session bean instance’s caller has a particular
role.
 11/5/09 74

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.
• The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback. Only instances of a session bean with
container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback. Only instances of a session bean with container-managed transaction
demarcation can use this method.

• The getUserTransaction method returns the javax.transaction.UserTrans-
action interface. The instance can use this interface to demarcate transactions and to obtain
transaction status. Only instances of a session bean with bean-managed transaction demarca-
tion can use this method.

• The getTimerService method returns the javax.ejb.TimerService interface.
Only stateless session beans and singleton session beans can use this method. Stateful session
beans cannot be timed objects.

• The getMessageContext method returns the javax.xml.rpc.handler.Mes-
sageContext interface of a stateless session bean that implements a JAX-RPC web service
endpoint. Only stateless session beans with web service endpoint interfaces can use this
method.

• The getBusinessObject(Class businessInterface)method returns a business
object reference to the session bean’s business interface or no-interface view. In the case of the
no-interface view, the argument is of type <bean class>. Only session beans with an EJB 3.x
business interface or no-interface view can call this method.

• The getInvokedBusinessInterface method returns the session bean business inter-
face or no-interface view(bean class) type through which the bean was invoked.

• The getEJBObject method returns the session bean’s remote interface. Only session beans
with a remote EJBObject interface can call this method.

• The getEJBHome method returns the session bean’s remote home interface. Only session
beans with a remote home interface can call this method.

• The getEJBLocalObject method returns the session bean’s local interface. Only session
beans with a local EJBLocalObject interface can call this method.

• The getEJBLocalHome method returns the session bean’s local home interface. Only ses-
sion beans with a local home interface can call this method.

• The lookup method enables the session bean to look up its environment entries in the JNDI
naming context.

• The wasCancelCalled method enables an asynchronous session bean method to check
whether the client invoked its Future.cancel method. SessionContext.wasCan-
celCalled only returns true if the cancel method was invoked on the client Future
object corresponding to the currently executing business method and the mayInterruptI-
fRunning parameter was set to true.
75 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.
• The getContextData method enables a business method, lifecycle callback method, or timeout
method to retrieve any interceptor/webservices context associated with its invocation.

4.3.4 Session Bean Lifecycle Callback Interceptor Methods
The following lifecycle event callbacks are supported for session beans. Lifecycle callback interceptor
methods may be defined directly on the bean class or on a separate interceptor class. See Section 4.9.3
and Chapter 12.

• PostConstruct

• PreDestroy

• PostActivate

• PrePassivate

The PostConstruct callback invocations occur before the first business method invocation on the
bean. This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor methods execute in an unspecified security con-
text. The PostConstruct lifecycle callback interceptor methods for stateless and stateful session
beans execute in an unspecified transaction context. The PostConstruct lifecycle callback intercep-
tor methods for singleton beans execute in a transaction context determined by the bean’s transaction
management type and any applicable transaction attribute.

The PreDestroy callback notification signals that the instance is in the process of being removed by
the container. In the PreDestroy lifecycle callback interceptor methods, the instance typically
releases the resources that it has been holding.

The PreDestroy lifecycle callback interceptor methods execute in an unspecified security context.
The PreDestroy lifecycle callback interceptor methods for stateless and stateful session beans exe-
cute in an unspecified transaction context. The PreDestroy lifecycle callback interceptor methods
for singleton beans execute in a transaction context determined by the bean’s transaction management
type and any applicable transaction attribute.

The PrePassivate and PostActivate lifecycle callback interceptor methods are only called on
stateful session bean instances.

The PrePassivate callback notification signals the intent of the container to passivate the instance.
The PostActivate notification signals the instance it has just been reactivated. Because containers
automatically maintain the conversational state of a stateful session bean instance when it is passivated,
these notifications are not needed for most session beans. Their purpose is to allow stateful session
beans to maintain those open resources that need to be closed prior to an instance’s passivation and then
reopened during an instance’s activation.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in an
unspecified transaction and security context.
 11/5/09 76

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.
4.3.5 The Optional SessionBean Interface

The session bean class is not required to implement the SessionBean interface or the Serializ-
able interface. Interceptor classes for the bean are likewise not required to implement the Serial-
izable interface.

Compatibility Note: The SessionBean interface was required to be implemented by the session bean
class in earlier versions of the Enterprise JavaBeans specification. In EJB 3.x, the functionality previ-
ously provided by the SessionBean interface is available to the bean class through selective use of
dependency injection (of the SessionContext) and optional lifecycle callback interceptor methods.

The SessionBean interface defines four methods: setSessionContext, ejbRemove, ejb-
Passivate, and ejbActivate.

The setSessionContext method is called by the bean’s container to associate a session bean
instance with its context maintained by the container. Typically a session bean instance retains its ses-
sion context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the con-
tainer. In the ejbRemove method, the instance typically releases the same resources that it releases in
the ejbPassivate method.

Under the EJB 3.x API, the bean class may optionally define a PreDestroy lifecycle call-
back interceptor method for notification of the container’s removal of the bean instance.

The ejbPassivate notification signals the intent of the container to passivate the instance. The
ejbActivate notification signals the instance it has just been reactivated. Their purpose is to allow
stateful session beans to maintain those open resources that need to be closed prior to an instance’s pas-
sivation and then reopened during an instance’s activation. The ejbPassivate and ejbActivate
methods are only called on stateful session bean instances.

Under the EJB 3.x API, the bean class may optionally define PrePassivate and/or Post-
Activate lifecycle callback interceptor methods for notification of the passivation/activa-
tion of the bean instance.

This specification requires that the ejbRemove, ejbActivate, and ejbPassivate methods of
the SessionBean interface, and the ejbCreate method of a stateless session bean be treated as
PreDestroy, PostActivate, PrePassivate and PostConstruct life cycle callback inter-
ceptor methods, respectively.

If the session bean implements the SessionBean interface, the PreDestroy annotation can only be
applied to the ejbRemove method; the PostActivate annotation can only be applied to the
ejbActivate method; the PrePassivate annotation can only be applied to the ejbPassivate
method. Similar requirements apply to use of deployment descriptor metadata as an alternative to the
use of annotations.
77 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.
4.3.6 Use of the MessageContext Interface by Session Beans
A stateless session bean that implements a web service endpoint using the JAX-RPC contracts accesses
the JAX-RPC MessageContext interface by means of the SessionContext.getMessage-
Context method. The MessageContext interface allows the stateless session bean instance to see
the SOAP message for the web service endpoint, as well as the properties set by the JAX-RPC SOAP
message handlers, if any. The stateless session bean may use the MessageContext interface to set
properties for the JAX-RPC message response handlers, if any.

A session bean that implements a web service endpoint using the JAX-WS contracts should use the
JAX-WS WebServiceContext, which can be injected by use of the Resource annotation. The
WebServiceContext interface allows the session bean instance to see the SOAP message for the
web service endpoint, as well as the properties set by the JAX-WS message handlers, if any. The session
bean may use the WebServiceContext interface to set properties for the JAX-WS message han-
dlers, if any. See [32]. The JAX-WS MessageContext is also accessible to interceptors for session bean
web service endpoints. See Section 12.6.

4.3.7 The Optional Session Synchronization Notifications for Stateful Session Beans

A stateful session bean class can optionally implement the javax.ejb.SessionSynchroniza-
tion interface or annotate methods using the individual @AfterBegin, @BeforeCompletion,
and @AfterCompletion annotations. The deployment descriptor may also be used to declare the
individual session synchronization methods. These provide the session bean instances with transaction
synchronization notifications. The instances can use these notifications, for example, to manage data-
base data they may cache within transactions—e.g., if the Java Persistence API is not used. A stateful
session bean class may use either the javax.ejb.SessionSynchronization interface OR the
session synchronization annotations, but not both.

The afterBegin notification signals a session bean instance that a new transaction has begun. The
container invokes this method before the first business method within a transaction (which is not neces-
sarily at the beginning of the transaction). The afterBegin notification is invoked with the transac-
tion context. The instance may do any database work it requires within the scope of the transaction.

The beforeCompletion notification is issued when a session bean instance’s client has completed
work on its current transaction but prior to committing the resource managers used by the instance. At
this time, the instance should write out any database updates it has cached. The instance can cause the
transaction to roll back by invoking the setRollbackOnly method on its session context.

The afterCompletion notification signals that the current transaction has completed. A completion
status of true indicates that the transaction has committed. A status of false indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may need to
manually reset its state if a rollback occurred.

All container providers must support the session synchronization notifications. It is optional only for the
bean implementor. If a bean class implements the SessionSynchronization interface, the con-
tainer must invoke the afterBegin, beforeCompletion, and afterCompletion notifica-
tions as required by the specification. If the bean implementor uses the session synchronization
annotations, the container must invoke only the notifications corresponding to the annotations that have
been used.
 11/5/09 78

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.
A session synchronization method can have public, private, protected, or package level
access. A session synchronization method must not be declared as final or static.

Only a stateful session bean with container-managed transaction demarcation can receive SessionSyn-
chronization notifications. Stateless session beans and Singleton session beans must not implement the
SessionSynchronization interface or use the session synchronization annotations.

There is no need for a session bean with bean-managed transaction demarcation to rely on the synchro-
nization call backs because the bean is in control of the commit—the bean knows when the transaction
is about to be committed and it knows the outcome of the transaction commit.

4.3.8 Timeout Callbacks for Stateless and Singleton Session Beans
A stateless session bean or singleton session bean can be registered with the EJB Timer Service for
time-based event notifications. The container invokes the appropriate bean instance timeout callback
method when a timer for the bean has expired. See Chapter 18, “Timer Service”. Stateful session beans
cannot be registered with the EJB Timer Service, and therefore should not implement timeout callback
methods.

4.3.9 Business Method Delegation

The session bean’s business interface, no-interface view, component interface, or web service endpoint
defines the business methods callable by a client.

The container classes that implement these are generated by the container tools. The class that
implements the session bean’s business interface and the class that implements the session
bean’s no-interface view and the class that implements a session bean’s component interface
delegate an invocation of a business method to the matching business method that is imple-
mented in the session bean class. The class that handles requests to the web service endpoint
invokes the session bean method that matches the web service method corresponding to the
SOAP request.

4.3.10 Session Bean Creation

The container creates an instance of a session bean as follows. First, the container calls the bean class’s
newInstance method to create a new session bean instance. Second, the container performs any
dependency injection as specified by metadata annotations on the bean class or by the deployment
descriptor. This includes the bean’s SessionContext, if applicable. Third, the container calls the
PostConstruct lifecycle callback interceptor methods for the bean, if any. The additional steps
described below apply if the session bean is invoked through the EJB 2.1 client view APIs.
79 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.
4.3.10.1 Stateful Session Beans

If the bean is a stateful session bean and the client has used one of the create<METHOD> methods
defined in the session bean’s home or local home interface to create the bean, the container then calls
the instance’s initialization method whose signature matches the signature of the create<METHOD>
invoked by the client, passing to the method the input parameters sent from the client. If the bean class-
was written to the EJB 3.x API, and has been adapted for use with an earlier client view, this initializa-
tion method is a matching Init method, as designated by use of the Init annotation, or
init-method deployment descriptor element[13]. If the bean class was written to the EJB 2.1 or ear-
lier API, this initialization method is a matching ejbCreate<METHOD> method, as described in Sec-
tion 4.9.5.

Each stateful session bean class that has a home interface must have at least one such initialization
method. The number and signatures of a session bean’s initialization methods are specific to each ses-
sion bean class. Since a stateful session bean represents a specific, private conversation between the
bean and its client, its initialization parameters typically contain the information the client uses to cus-
tomize the bean instance for its use.

4.3.10.2 Stateless Session Beans

A stateless session bean that has an EJB 2.1 local or remote client view has a single create method on
its home interface. In this case, EJB 2.1 required the stateless session bean class to have a single ejb-
Create method have no arguments. Under EJB 3.1, it is not required that a stateless session bean have
an ejbCreate method, even when it has a home interface. An EJB 3.1 stateless session bean class
may have a PostConstruct method, as described in Section 4.3.4.

If the stateless session bean instance has an ejbCreate method, the container treats the ejbCreate
method as the instance’s PostConstruct method, and, in this case, the PostConstruct annota-
tion (or deployment descriptor metadata) can only be applied to the bean’s ejbCreate method.

Since stateless session bean instances are typically pooled, the time of the client’s invocation of
the create method need not have any direct relationship to the container’s invocation of the
PostConstruct/ejbCreate method on the stateless session bean instance.

A stateless session bean that provides only a web service client view has no create method. If the
ejbCreate method required by EJB 2.1 is present, it is likewise treated by the container as the
instance’s PostConstruct method, and is invoked when the container needs to create a new session
bean instance in order to service a client request.

4.3.11 Stateful Session Bean Removal

[13] Any initialization methods defined for the bean by means of the init-method deployment descriptor element apply in addition
to those defined by means of annotations.
 11/5/09 80

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.
A stateful session bean written to the EJB 3.x API typically has one or more remove methods desig-
nated by means of the Remove annotation or remove-method deployment descriptor element.[14]

Invocation of the remove method causes the removal of the stateful session bean after the remove
method successfully completes. If the Remove annotation specifies the value of retainIfExcep-
tion as true, and the Remove method throws an application exception, the instance is not removed.
The retain-if-exception subelement of the remove-method deployment descriptor element
may be explicitly specified to override the retainIfException value specified or defaulted by the
Remove annotation.

4.3.12 Stateful Session Bean Timeout

A Bean Developer or Deployer may optionally assign a timeout value to a stateful session bean. This
value is the amount of time a stateful session bean is permitted to remain idle (not receive any client
invocations) before being removed by the container. Removal due to timeout must not occur while the
bean is in the method-ready-in-tx state. (See stateful session bean diagram in Section 4.6)

The stateful session bean timeout is specified using the @StatefulTimeout annotation on the bean
class. It may also be specified using the stateful-timeout deployment descriptor element. A tim-
eout value of -1 indicates that the bean must not be removed due to timeout for as long as the applica-
tion is deployed. A timeout value of 0 indicates that the bean is immediately eligible for removal after
becoming idle.

If a stateful session bean timeout is not designated using this standard metadata, the container deter-
mines when to end the lifetime of the bean, possibly based on vendor-specific configuration. The details
of such configuration are beyond the scope of the specification.

A stateful session bean instance is not eligible for timeout while it is associated with a transaction or
while it is processing a business method or callback. The full stateful session bean life cycle is covered
in Section 4.6.

4.3.13 Business Method Interceptor Methods for Session Beans

The AroundInvoke interceptor methods are supported for session beans. These interceptor methods
may be defined on the bean class and/or on interceptor classes, and apply to the handling of the invoca-
tion of the business methods of the bean’s business interface, no-interface view, component interface,
and/or web service endpoint.

For stateful session beans that use the session synchronization notifications, afterBegin occurs
before any AroundInvoke method invocation, and beforeCompletion after all AroundIn-
voke invocations are finished.

Interceptors are described in Chapter 12, “Interceptors”.

[14] Any remove methods defined for the bean by means of the remove-method deployment descriptor element apply in addition
to those defined by means of annotations.
81 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.
4.3.14 Serializing Session Bean Methods

The following requirements apply to Stateless and Stateful session beans. See Section 4.8.5 for Single-
ton session bean concurrency requirements.

The container serializes calls to each stateful and stateless session bean instance. Most containers will
support many instances of a session bean executing concurrently; however, each instance sees only a
serialized sequence of method calls. Therefore, a stateful or stateless session bean does not have to be
coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the business method interceptor
methods, lifecycle callback interceptor methods, timeout callback methods, beforeCompletion,
and so on), and it must serialize these callbacks with the client-invoked business method calls.

By default, clients are allowed to make concurrent calls to a stateful session object and the container is
required to serialize such concurrent requests. Note that the container never permits multi-threaded
access to the actual stateful session bean instance. For this reason, Read/Write method locking meta-
data, as well as the bean-managed concurrency mode, are not applicable to stateful session beans and
must not be used. See Section 4.8.5 for a description of how these mode/locking types apply to Single-
ton session beans.

The Bean Developer may optionally specify that concurrent client requests to a stateful session bean are
prohibited. This is done using the @AccessTimeout annotation or access-timeout deployment
descriptor element with a value of 0. In this case, if a client-invoked business method is in progress on
an instance when another client-invoked call, from the same or different client, arrives at the same
instance of a stateful session bean, if the second client is a client of the bean’s business interface or
no-interface view, the concurrent invocation must result in the second client receiving a
javax.ejb.ConcurrentAccessException[15]. If the EJB 2.1 client view is used, the con-
tainer must throw a java.rmi.RemoteException if the second client is a remote client, or a
javax.ejb.EJBException if the second client is a local client.

There is no need for any restrictions against concurrent client access to stateless session beans because
the container routes each request to a different instance of the stateless session bean class.

4.3.14.1 Stateful Session Bean Concurrent Access Timeouts

@AccessTimeout is used to specify the amount of time a stateful session bean request should block
in the case that it can’t immediately access a bean instance that is already processing a different request.
If an access attempt times out, the container throws a javax.ejb.ConcurrentAccessTimeou-
tException to the client.

@AccessTimeout can be specified on a business method or on a bean class (or super-class).
@AccessTimeout specified on a class applies the access timeout to all business methods of that
class. If @AccessTimeout is specified on both a class and on a business method of that class, the
method-level annotation takes precedence.

[15] The javax.ejb.ConcurrentAccessException is a subclass of the javax.ejb.EJBException. If the business
interface is a remote business interface that extends java.rmi.Remote, the client will receive the java.rmi.RemoteEx-
ception instead.
 11/5/09 82

Global JNDI Access Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
An @AccessTimeout value of -1 indicates that a concurrent client request will block indefinitely
until it can proceed.

4.3.15 Transaction Context of Session Bean Methods

The implementation of a method defined in a session bean’s business interface or component interface
or no-interface view, a web service method, timeout callback method, or singleton PostCon-
struct/PreDestroy lifecycle callback interceptor method, is invoked in the scope of a transaction
determined by the transaction attribute specified in the bean’s metadata annotations or deployment
descriptor.

A session bean’s afterBegin and beforeCompletion methods are always called with the same
transaction context as the business methods executed between the afterBegin and beforeCom-
pletion methods.

A session bean’s newInstance, setSessionContext, other dependency injection methods, life
cycle callback interceptor methods, and afterCompletion methods are called with an unspecified
transaction context. Refer to section 13.6.5 for how the container executes methods with an unspecified
transaction context.

For example, it would be wrong to perform database operations within a stateful session bean’s Post-
Construct or PreDestroy lifecycle callback interceptor methods and to assume that the opera-
tions are part of the client’s transaction. The PostConstruct and PreDestroy methods for
stateful and stateless session beans are not controlled by a transaction attribute because handling roll-
backs in these methods would greatly complicate the session instance’s state diagram.

4.4 Global JNDI Access

The Java EE Platform Specification defines a standardized global JNDI namespace and a series of
related namespaces that map to the various scopes of a Java EE application. These namespaces can be
used by applications to portably retrieve references to components and resources. This specification
defines the JNDI names by which session beans are required to be registered within these namespaces.

4.4.1 Syntax

Each portable session bean global JNDI name has the following syntax :

java:global[/<app-name>]/<module-name>/<bean-name>[!<fully-quali-
fied-interface-name>]

<app-name> only applies if the session bean is packaged within an .ear file. It defaults to the base
name of the .ear file with no filename extension, unless specified by the application.xml deploy-
ment descriptor.
83 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Global JNDI Access

Sun Microsystems, Inc.
<module-name> is the name of the module in which the session bean is packaged. In a stand-alone
ejb-jar file or .war file, the <module-name> defaults to the base name of the module with any
filename extension removed. In an ear file, the <module-name> defaults to the pathname of the
module with any filename extension removed, but with any directory names included. The default
<module-name> can be overriden using the module-name element of ejb-jar.xml (for ejb-jar
files) or web.xml (for .war files).

<bean-name> is the ejb-name of the enterprise bean. For enterprise beans defined via annotation, it
defaults to the unqualified name of the session bean class, unless specified in the contents of the
Stateless/Stateful/Singleton annotation name() attribute. For enterprise beans defined via
ejb-jar.xml, it’s specified in the <ejb-name> deployment descriptor element.

The container registers a separate JNDI name entry for each local business interface, each remote busi-
ness interface, and any no-interface view, 2.x local home interface, and 2.x remote home interface. For
the no-interface view, the last portion of the entry name is the fully-qualified bean class name.

In addition to the previous requirements, if the bean exposes only one of the applicable client inter-
faces(or alternatively has only a no-interface view), the container registers an entry for that view with
the following syntax :

java:global[/<app-name>]/<module-name>/<bean-name>

The container is also required to make session bean JNDI names available through the java:app and
java:module namespaces.

4.4.1.1 java:app

The java:app prefix allows a component executing within a Java EE application to access an appli-
cation-specific namespace. The resulting syntax is :

java:app/<module-name>/<bean-name>[!<fully-qualified-interface-name>]

Note that <module-name> is a required part of the syntax, even for names based on session bean
components packaged within a stand-alone module.

4.4.1.1.1 javax.ejb.embeddable.appName

This property specifies an application name for the EJB modules executing within the embeddable con-
tainer. If specified, the property value applies to the <app-name> portion of the portable global JNDI
name syntax. It is recommended that this property be set whenever an embeddable container is executed
with more than one ejb module.

The property name is defined as javax.ejb.embeddable.EJBContainer.APP_NAME.

See Section 22.2 for more on the embeddable API.
 11/5/09 84

Global JNDI Access Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.4.1.2 java:module

The java:module prefix allows a component executing within a Java EE application to access a mod-
ule-specific namespace. The resulting syntax is :

java:module/<bean-name>[!<fully-qualified-interface-name>]

Note that the existence of global JNDI names for the Local and no-interface client views does not imply
that cross-application access to those entries is required. See Section 3.2.2 for more details.

4.4.2 Examples

The following examples show the resulting global JNDI names for various session beans.

4.4.2.1 Session bean exposing a single local business interface

package com.acme;

@Stateless
public class FooBean implements Foo { ... }

If FooBean is packaged in fooejb.jar without a deployment descriptor and deployed as a
stand-alone module, the resulting JNDI name entries are :

java:global/fooejb/FooBean
java:global/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean
java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooejb.jar within fooapp.ear , without the use of any deployment
descriptors, the resulting global JNDI name entries are :

java:global/fooapp/fooejb/FooBean
java:global/fooapp/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean
java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo
85 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Global JNDI Access

Sun Microsystems, Inc.
If FooBean is packaged in a stand-alone .war fooweb.war, without the use of any deployment
descriptors, the resulting global JNDI name entries are :

java:global/fooweb/FooBean
java:global/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean
java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooweb.war within fooapp.ear , without the use of any deployment
descriptors, the resulting global JNDI name entries are :

java:global/fooapp/fooweb/FooBean
java:global/fooapp/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean
java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

4.4.2.2 Session bean exposing multiple client views

package com.acme;

@Singleton(name=”Shared”)
@LocalBean
@Remote(com.acme.SharedRemote.class)
public class SharedBean { ... }

If SharedBean is packaged in shared.jar without a deployment descriptor and deployed as a
stand-alone module, the resulting global JNDI name entries are :

java:global/shared/Shared!com.acme.SharedBean
java:global/shared/Shared!com.acme.SharedRemote

java:app/shared/Shared!com.acme.SharedBean
java:app/shared/Shared!com.acme.SharedRemote

java:module/Shared!com.acme.SharedBean
java:module/Shared!com.acme.SharedRemote
 11/5/09 86

Asynchronous Methods Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.5 Asynchronous Methods

A session bean can expose methods with asynchronous client invocation semantics. For asynchronous
invocations, control returns to the client before the container dispatches the invocation to a bean
instance. An asynchronous method is a business method exposed through one or more of the Remote
business, Local business, or no-interface session bean views.

Asynchronous methods can return a Future<V> object that allows the client to retrieve a result value,
check for exceptions, or attempt to cancel an in-progress invocation.

4.5.1 Metadata

The @Asynchronous annotation is used to designate which business methods are asynchronous.

@Asynchronous can be applied to a particular business method of a bean class(or superclass), or at
the class level of a bean-class (or superclass) . If @Asynchronous is applied at the class level, all
business methods declared on that specific class are asynchronous.

Asynchronous methods can also be designated via the deployment descriptor.

Asynchronous method invocation semantics only apply to the no-interface, Local business, and Remote
business client views. Business methods exposed through the EJB 2.x Local , EJB 2.x Remote, and Web
Service client views must not be designated as asynchronous.

4.5.2 Method Requirements

The client return type of an asynchronous method is either void or java.util.concur-
rent.Future<V>, where V is the result value type.

An asynchronous method with return type void must not declare any application exceptions.An asyn-
chronous method with return type Future<V> is permitted to declare application exceptions.

4.5.2.1 Business Interfaces

The method signature of an asychronous method on a business interface has return type void or
Future<V>, where V is the result value type.

4.5.2.2 Bean Classes

The method signature of an asynchronous method on a bean-class has return type void or
Future<V>, where V is the result value type.

The Bean Developer makes the result value of an asynchronous invocation available to the client by
returning a Future<V> object for which both get() methods return the result value. A concrete
Future<V> implemention called javax.ejb.AsyncResult<V> is provided by the container as
a convenience. AsyncResult<V> has a constructor that takes the result value as a parameter.
87 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Asynchronous Methods

Sun Microsystems, Inc.
Example :

@Asynchronous
public Future<Integer> performCalculation(...) {

// ... do calculation

Integer result = ...;

return new AsyncResult<Integer>(result);
}

Note that the Future<V> object returned from the bean class method (including any instance of
AsyncResult<V>) is only used as a way to pass the result value to the container. This object is not
given directly to the caller, since by definition the caller already has a container-generated Future<V>
object that was returned from the original EJB reference invocation.

A client can request that an asynchronous invocation be cancelled by calling the Future<v>.can-
cel(boolean mayInterruptIfRunning) method. A Bean Developer can check whether the
client has requested cancellation by calling the SessionContext.wasCancelCalled() method
within the context of the asynchronous method. See Section 3.4.8 for a complete description of the cli-
ent Future contract.

4.5.3 Transactions
Client transaction context does not propagate with an asynchronous method invocation. From the Bean
Developer’s view, there is never a transaction context flowing in from the client. This means, for exam-
ple, that the semantics of the REQUIRED transaction attribute on an asynchronous method are exactly
the same as REQUIRES_NEW.

4.5.4 Security
Caller security principal propagates with an asynchronous method invocation. Caller security principal
propagation behaves exactly the same for asynchronous method invocations as it does for synchronous
session bean invocations.

4.5.5 Client Exception Behavior
Client exception behavior depends on whether the asynchronous method has return type void or
Future<V>.

If the asynchronous method has return type void, then once control has returned from the client’s
method call no exceptions occurring during the processing of the invocation will be delivered to the cli-
ent. For this reason, asynchronous methods with return type void must not declare Application excep-
tions.

If the asynchronous method has return type Future<V>, an exception thrown from the processing of
the asynchronous method invocation is accessible to the client via the getCause() method of a
java.util.concurrent.ExecutionException thrown from either Future.get()
method.
 11/5/09 88

Stateful Session Bean State Diagram Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.6 Stateful Session Bean State Diagram

The following figure illustrates the life cycle of a stateful session bean instance.

Figure 5 Life Cycle of a Stateful Session Bean Instance

tx method

commitafterBegin()

1. beforeCompletion()

does not
 exist

method ready passive

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks, if any

PreDestroy callbacks, if any

Remove method
chosen as LRU victim

non-tx method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

method

2. afterCompletion(true)
afterCompletion(false)

rollback

tx method non-tx or different tx method
ERROR

timeout

or timeout

instance throws system
exception from any method

create<METHOD>(args)

PrePassivate callbacks, if any

PostActivate callbacks, if any

dependency injection,
business interface lookup, or

4. Init method, or
 ejbCreate<METHOD>, if any

89 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.
The following steps describe the life cycle of a stateful session bean instance:

• A session bean instance’s life starts when a client obtains a reference to a stateful session bean
instance through dependency injection or JNDI lookup, or when the client invokes a cre-
ate<METHOD> method on the session bean’s home interface. This causes the container to
invoke newInstance on the session bean class to create a new session bean instance. Next,
the container performs any dependency injection as specified by metadata annotations on the
bean class or by the deployment descriptor. The container then calls the PostConstruct
lifecycle callback interceptor method(s) for the bean, if any. Finally, if the session bean was
written to the EJB 2.1 client view, the container invokes the matching ejbCre-
ate<METHOD> or Init method on the instance. The container then returns the session
object reference to the client. The instance is now in the method ready state.
NOTE: When a stateful session bean is looked up or otherwise obtained through the explicit
JNDI lookup mechanisms, the container must provide a new stateful session bean instance, as
required by the Java EE specification (Section “Java Naming and Directory Interface (JNDI)
Naming Context” [12]).

• The session bean instance is now ready for client’s business methods. Based on the transaction
attributes in the session bean’s metadata annotations and/or deployment descriptor and the
transaction context associated with the client’s invocation, a business method is executed
either in a transaction context or with an unspecified transaction context (shown as “tx
method” and “non-tx method” in the diagram). See Chapter 13 for how the container deals
with transactions.

• A non-transactional method is executed while the instance is in the method ready state.

• An invocation of a transactional method causes the instance to be included in a transaction.
When the session bean instance is included in a transaction, the container issues the after-
Begin method on it. The afterBegin method is invoked on the instance before any busi-
ness method or business method interceptor method is executed as part of the transaction. The
instance becomes associated with the transaction and will remain associated with the transac-
tion until the transaction completes.

• Session bean methods invoked by the client in this transaction can now be delegated to the
bean instance. An error occurs if a client attempts to invoke a method on the session object and
the bean’s metadata annotations and/or deployment descriptor for the method requires that the
container invoke the method in a different transaction context than the one with which the
instance is currently associated or in an unspecified transaction context.

• If a transaction commit has been requested, the transaction service notifies the container of the
commit request before actually committing the transaction, and the container issues a befor-
eCompletion on the instance. When beforeCompletion is invoked, the instance
should write any cached updates to the database[16]. If a transaction rollback had been
requested instead, the rollback status is reached without the container issuing a beforeCom-
pletion. The container may not call the beforeCompletion method if the transaction
has been marked for rollback (nor does the instance write any cached updates to the database).

[16] Note that if the Java Persistence API is used, the persistence provider will use the beforeCompletion notification to automatically
flush any updates to the container-managed persistence context to the database. See [2].
 11/5/09 90

Stateful Session Bean State Diagram Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
• The transaction service then attempts to commit the transaction, resulting in either a commit or
rollback.

• When the transaction completes, the container issues afterCompletion on the instance,
specifying the status of the completion (either commit or rollback). If a rollback occurred, the
bean instance may need to reset its conversational state back to the value it had at the begin-
ning of the transaction.

• The container’s caching algorithm may decide that the bean instance should be evicted from
memory. (This could be done at the end of each method, or by using an LRU policy). The con-
tainer invokes the PrePassivate lifecycle callback interceptor method(s) for the bean
instance, if any. After this completes, the container saves the instance’s state to secondary stor-
age. A session bean can be passivated only between transactions, and not within a transaction.

• While the instance is in the passivated state, the container may remove the session object after
the expiration of a timeout specified by the Deployer. All object references and handles for the
session object become invalid. If a client attempts to invoke a method on the bean’s business
interface, the container will throw the javax.ejb.NoSuchEJBException[17]. If the EJB
2.1 client view is used, the container will throw the java.rmi.NoSuchObjectExcep-
tion if the client is a remote client, or the javax.ejb.NoSuchObjectLocalExcep-
tion if the client is a local client.

• If a client invokes a session object whose session bean instance has been passivated, the con-
tainer will activate the instance. To activate the session bean instance, the container restores the
instance’s state from secondary storage and invokes the PostActivate method for the
instance, if any.

• The session bean instance is again ready for client methods.

• When the client calls a business method of the bean that has been designated as a Remove
method, or a remove method on the home or component interface, the container invokes
PreDestroy lifecycle callback interceptor method(s) (if any) for the bean instance after the
Remove method completes.[18] This ends the life of the session bean instance and the associ-
ated session object. If a client subsequently attempts to invoke a method on the bean’s business
interface, the container will throw the javax.ejb.NoSuchEJBException[19]. If the EJB
2.1 client view is used, any subsequent attempt causes the java.rmi.NoSuchObjectEx-
ception to be thrown if the client is a remote client, or the javax.ejb.NoSuchOb-
jectLocalException if the client is a local client. (The
java.rmi.NoSuchObjectException is a subclass of the java.rmi.RemoteEx-
ception; the javax.ejb.NoSuchObjectLocalException is a subclass of the
javax.ejb.EJBException). Note that a container can also invoke the PreDestroy
method on the instance without a client call to remove the session object after the lifetime of
the EJB object has expired. If the Remove method completes successfully or if the Remove

[17] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.NoSuchObject-
Exception is thrown to the client instead.

[18] If the Remove annotation specifies the value of retainIfException as true, and the Remove method throws an applica-
tion exception, the instance is not removed (and the PreDestroy lifecycle callback interceptor methods are not invoked).

[19] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.NoSuchObject-
Exception is thrown to the client instead.
91 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.
methods throws an application exception for which retainIfException is not true or if a
system exception is thrown, session synchronization methods are not called on the bean
instance. If an application exception is thrown for which retainIfException is true, the
bean is neither destroyed nor discarded, and session synchronization methods, if any, are called
on the instance at the end of transaction.

The container must call the afterBegin, beforeCompletion, and afterComple-
tion methods if the session bean class implements, directly or indirectly, the SessionSyn-
chronization interface, or if the bean class uses the session synchronization annotations.
The container does not call these methods if the session bean class does not implement the
SessionSynchronization interface or use the session synchronization annotations.

4.6.1 Operations Allowed in the Methods of a Stateful Session Bean Class

Table 1 defines the methods of a stateful session bean class from which the session bean instances can
access the methods of the javax.ejb.SessionContext interface, the java:comp/env envi-
ronment naming context, resource managers, Timer methods, the EntityManager and Entity-
ManagerFactory methods, and other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and that
access is not allowed in Table 1, the container must throw the java.lang.IllegalStateExcep-
tion.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity manager
or entity manager factory, and that access is not allowed in Table 1, the behavior is undefined by the
EJB architecture.

If a session bean instance attempts to invoke a method of the Timer interface and the access is not
allowed in Table 1, the container must throw the java.lang.IllegalStateException.
 11/5/09 92

Stateful Session Bean State Diagram Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
93 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.
Table 1 Operations Allowed in the Methods of a Stateful Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection
methods (e.g., setSes-
sionContext)

SessionContext methods: getEJBHome,
getEJBLocalHome, lookup
JNDI access to java:comp/env

SessionContext methods: getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, Pre-
Destroy, PrePassivate,
PostActivate lifecycle
callback interceptor
methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

business method
from business inter-
face or from no-inter-
face view or from
component interface;
business method inter-
ceptor method

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
getRollbackOnly, isCallerInRole, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject,
getInvokedBusinessInterface, was-
CancelCalled, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getInvokedBusiness-
Interface, wasCancelCalled,
getUserTransaction, lookup, getCon-
textData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods
 11/5/09 94

Stateful Session Bean State Diagram Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Notes:

• The PostConstruct, PreDestroy, PrePassivate, PostActivate, Init, and/or
ejbCreate<METHOD>, ejbRemove, ejbPassivate, and ejbActivate methods of
a session bean with container-managed transaction demarcation execute with an unspecified
transaction context. Refer to Subsection 13.6.5 for how the container executes methods with an
unspecified transaction context.

• In some cases, lifecycle callback interceptor methods initiated solely by the container without
an associated client invocation run in an unspecified security context. E.g., a @PostCon-
struct method callback invoked as a side-effect of injection of an EJB 3.x remote or local
business interface reference. However, the container is still required to permit calls to these
methods according to the rules in this table.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext
interface should be used only in the session bean methods that execute in the context of a trans-
action. The container must throw the java.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

afterBegin
beforeCompletion

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
getRollbackOnly, isCallerInRole, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods

N/A
(a bean with bean-managed transaction
demarcation cannot implement the Ses-
sionSynchronization interface or use the
session synchronization annotations)

afterCompletion

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, lookup, getContext-
Data

JNDI access to java:comp/env

Table 1 Operations Allowed in the Methods of a Stateful Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation
95 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.
The reasons for disallowing the operations in Table 1 follow:

• Invoking the getBusinessObject method is disallowed if the session bean does not
define an EJB 3.x business interface and does not define a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean
does not define an EJB 3.x business interface and does not define a no-interface view. It is also
disallowed if the current business method was not invoked through a business interface or the
no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean
does not define a remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the
session bean does not define a local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the container does not have a meaningful transaction context,
and to all session beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean methods
for which the container does not have a meaningful transaction context and/or client security
context.

• The UserTransaction interface is unavailable to enterprise beans with container-managed
transaction demarcation.

• The TimerService interface is unavailable to stateful session beans.

• Invoking the getMessageContext method is disallowed for stateful session beans.

• Invoking the getEJBObject and getEJBLocalObject methods is disallowed in the
session bean methods in which there is no session object identity established for the instance.

4.6.2 Dealing with Exceptions
A RuntimeException that is not an application exception thrown from any method of the session
bean class (including the business methods and the lifecycle callback interceptor methods invoked by
the container) results in the transition to the “does not exist” state. Exception handling is described in
detail in Chapter 14. See section 12.5.1 for the rules pertaining to lifecycle callback interceptor methods
when more than one such method applies to the bean class.
 11/5/09 96

Stateful Session Bean State Diagram Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
From the client perspective, the corresponding session object does not exist any more. If a client subse-
quently attempts to invoke a method on the bean’s business interface or the no-interface view, the con-
tainer will throw the javax.ejb.NoSuchEJBException[20]. If the EJB 2.1 client view is used,
the container will throw the java.rmi.NoSuchObjectException if the client is a remote client,
or the javax.ejb.NoSuchObjectLocalException if the client is a local client.

4.6.3 Missed PreDestroy Calls

The Bean Provider cannot assume that the container will always invoke the PreDestroy lifecycle
callback interceptor method(s) (or ejbRemove method) for a session bean instance. The following
scenarios result in the PreDestroy lifecycle callback interceptor method(s) not being called for an
instance:

• A crash of the EJB container.

• A system exception thrown from the instance’s method to the container.

• A timeout of client inactivity while the instance is in the passive state. The timeout is speci-
fied by the Deployer in an EJB container implementation-specific way.

If resources are allocated in a PostConstruct lifecycle callback interceptor method (or ejbCre-
ate<METHOD> method) and/or in the business methods, and normally released in a PreDestroy
lifecycle callback interceptor method, these resources will not be automatically released in the above
scenarios. The application using the session bean should provide some clean up mechanism to periodi-
cally clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the session bean
stores the shopping cart content in a database, the application should provide a program that runs peri-
odically and removes “abandoned” shopping carts from the database.

4.6.4 Restrictions for Transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked busi-
ness methods. The restrictions are enforced by the container and must be observed by the client pro-
grammer.

• A session bean instance can participate in at most a single transaction at a time.

• If a session bean instance is participating in a transaction, it is an error for a client to invoke a
method on the session object such that the transaction attribute specified in the bean’s metadata
annotations and/or the deployment descriptor would cause the container to execute the method
in a different transaction context or in an unspecified transaction context. In such a case, the
javax.ejb.EJBException will be thrown to a client of the bean’s business interface[21].

[20] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.NoSuchObject-
Exception is thrown to the client instead.

[21] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-
tion is thrown to the client instead.
97 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateless Session Beans

Sun Microsystems, Inc.
If the EJB 2.1 client view is used, the container throws the java.rmi.RemoteException
to the client if the client is a remote client, or the javax.ejb.EJBException if the client
is a local client.

• If a session bean instance is participating in a transaction, it is an error for a client to invoke the
remove method on the session object’s home or component interface object. The container
must detect such an attempt and throw the javax.ejb.RemoveException to the client.
The container should not mark the client’s transaction for rollback, thus allowing the client to
recover. Note that this restriction only applies to the remove method on the session object’s
home or component interface, not to the invocation of @Remove methods.

4.7 Stateless Session Beans

Stateless session beans are session beans whose instances have no conversational state. This means that
all bean instances are equivalent when they are not involved in servicing a client-invoked method.

The term “stateless” signifies that an instance has no state for a specific client. However, the instance
variables of the instance can contain the state across client-invoked method calls. Examples of such
state include an open database connection and an object reference to an enterprise bean object.

The Bean Provider must exercise caution if retaining any application state across method
calls. In particular, references to common bean state should not be returned through multiple
local interface method calls.

Because all instances of a stateless session bean are equivalent, the container can choose to delegate a
client-invoked method to any available instance. This means, for example, that the container may dele-
gate the requests from the same client within the same transaction to different instances, and that the
container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client load. Due
to client “think time,” this number is typically much smaller than the number of active clients. Passiva-
tion is not needed or used for stateless sessions. The container creates another stateless session bean
instance if one is needed to handle an increase in client work load. If a stateless session bean is not
needed to handle the current client work load, the container can destroy it.

Because stateless session beans minimize the resources needed to support a large population of clients,
depending on the implementation of the container, applications that use stateless session beans may
scale somewhat better than those using stateful session beans. However, this benefit may be offset by
the increased complexity of the client application that uses the stateless beans.
 11/5/09 98

Stateless Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Compatibility Note: Local and remote clients using the EJB 2.1 client view interfaces use the create
and remove methods on the home interface of a stateless session bean in the same way as on a stateful
session bean. To the EJB 2.1 client, it appears as if the client controls the life cycle of the session object.
However, the container handles the create and remove calls without necessarily creating and
removing an EJB instance. The home interface of a stateless session bean must have one create
method that takes no arguments. The create method of the remote home interface must return the ses-
sion bean’s remote interface. The create method of the local home interface must return the session
bean’s local interface. There can be no other create methods in the home interface.

There is no fixed mapping between clients and stateless instances. The container simply delegates a cli-
ent’s work to any available instance that is method-ready.

A stateless session bean must not implement the javax.ejb.SessionSynchronization inter-
face or use the session synchronization annotations.

4.7.1 Stateless Session Bean State Diagram

When a client calls a method on a stateless session object or invokes a method on a stateless session
bean through its web service client view, the container selects one of its method-ready instances and
delegates the method invocation to it.

The following figure illustrates the life cycle of a stateless session bean instance.
99 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateless Session Beans

Sun Microsystems, Inc.
Figure 6 Life Cycle of a Stateless Session Bean

The following steps describe the life cycle of a session bean instance:

• A stateless session bean instance’s life starts when the container invokes the newInstance
method on the session bean class to create a new session bean instance. Next, the container
performs any dependency injection as specified by metadata annotations on the bean class or
by the deployment descriptor. The container then calls the PostConstruct lifecycle call-
back interceptor methods for the bean, if any. The container can perform the instance creation
at any time—there is no direct relationship to a client’s invocation of a business method or the
create method.

• The session bean instance is now ready to be delegated a business method call from any client
or a call from the container to a timeout callback method.

• When the container no longer needs the instance (usually when the container wants to reduce
the number of instances in the method-ready pool), the container invokes the PreDestroy
lifecycle callback interceptor methods for it, if any. This ends the life of the stateless session
bean instance.

does not
 exist

method-ready
 pool

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks,

PreDestroy callbacks, if any

method timeout callback method

method()
newInstance()

action initiated by client
action initiated by container

if any
 11/5/09 100

Stateless Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.7.2 Operations Allowed in the Methods of a Stateless Session Bean Class

Table 2 defines the methods of a stateless session bean class in which the session bean instances can
access the methods of the javax.ejb.SessionContext interface, the java:comp/env envi-
ronment naming context, resource managers, TimerService and Timer methods, the Entity-
Manager and EntityManagerFactory methods, and other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the
access is not allowed in Table 2, the container must throw the java.lang.IllegalStateExcep-
tion.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and
the access is not allowed in Table 2, the container must throw the java.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity manager
or entity manager factory, and the access is not allowed in Table 2, the behavior is undefined by the EJB
architecture.
101 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateless Session Beans

Sun Microsystems, Inc.
.

 11/5/09 102

Stateless Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Table 2 Operations Allowed in the Methods of a Stateless Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection-
methods (e.g., setSes-
sionContext)

SessionContext methods: getEJBHome,
getEJBLocalHome, lookup
JNDI access to java:comp/env

SessionContext methods: getEJBHome,
getEJBLocalHome, lookup
JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back interceptor
methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getEJBObject,
getEJBLocalObject, getTimerService,
lookup, getContextData

JNDI access to java:comp/env
EntityManagerFactory access

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getEJBObject,
getEJBLocalObject, getUserTransac-
tion, getTimerService, lookup, get-
ContextData

JNDI access to java:comp/env
EntityManagerFactory access

business method
from business inter-
face or from no-inter-
face view or from
component interface;
business method inter-
ceptor method

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
getInvokedBusinessInterface, was-
CancelCalled, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, getInvokedBusi-
nessInterface, wasCancelCalled,
lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods
103 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Stateless Session Beans

Sun Microsystems, Inc.
business method
from web service end-
point

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
getMessageContext, lookup, getCon-
textData

Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, getMessageContext,
lookup, getContextData

UserTransaction methods
Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

timeout callback
method

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
lookup, getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, lookup, getContext-
Data

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

Table 2 Operations Allowed in the Methods of a Stateless Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation
 11/5/09 104

Stateless Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext
interface should be used only in the session bean methods that execute in the context of a trans-
action. The container must throw the java.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing operations in Table 2:

• Invoking the getBusinessObject method is disallowed if the session bean does not
define an EJB 3.x business interface and does not define a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean
does not define an EJB 3.x business interface and does not define a no-interface view. It is also
disallowed if the current business method was not invoked through a business interface or the
no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean
does not define a remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the
session bean does not define a local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the container does not have a meaningful transaction context,
and for all session beans with bean-managed transaction demarcation.

• Invoking the getMessageContext method is disallowed in session bean methods that
were not invoked by the container through the session bean’s web service endpoint. The get-
MessageContext method returns the javax.xml.rpc.handler.MessageCon-
text interface of a stateless session bean that implements a JAX-RPC web service endpoint.

• Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the
session bean methods for which the container does not have a meaningful transaction context
and/or client security context.

• The UserTransaction interface is unavailable to session beans with container-managed
transaction demarcation.

4.7.3 Dealing with Exceptions
A RuntimeException that is not an application exception thrown from any method of the enterprise
bean class (including the business methods and the lifecycle callback interceptor methods invoked by
the container) results in the transition to the “does not exist” state. Exception handling is described in
detail in Chapter 14. See section 12.5.1 for the rules pertaining to lifecycle callback interceptor methods
when more than one such method applies to the bean class.

From the client perspective, the session object continues to exist. The client can continue accessing the
session object because the container can delegate the client’s requests to another instance.
105 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
4.8 Singleton Session Beans

A Singleton session bean is a session bean component that is instantiated once per application. In cases
where the container is distributed over many virtual machines, each application will have one bean
instance of the Singleton for each JVM.

Once instantiated, a Singleton session bean instance lives for the duration of the application in which it
is created. It maintains its state between client invocations but that state is not required to survive con-
tainer shutdown or crash.

A Singleton session bean is intended to be shared and supports concurrent access.

A Singleton session bean must not implement the javax.ejb.SessionSynchronization
interface or use the session synchronization annotations.

Figure 7 Life Cycle of a Singleton Session Bean

The following steps describe the life cycle of a singleton session bean instance:

• A singleton session bean instance’s life starts when the container invokes the newInstance
method on the session bean class to create the singleton bean instance. Next, the container per-

does not
 exist

 method-ready

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks,

PreDestroy callbacks, if any

method timeout callback method

method()
newInstance()

action initiated by client
action initiated by container

if any
 11/5/09 106

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
forms any dependency injection as specified by the metadata annotations on the bean class or
by the deployment descriptor. The container then calls the PostConstruct lifecycle callback
interceptor methods for the bean, if any.

• The singleton bean instance is now ready to be delegated a business method call from any cli-
ent or a call from the container to a timeout callback method.

• When the application is shutting down, the container invokes the PreDestroy lifecycle callback
interceptor methods on the singleton, if any. This ends the life of the singleton session bean
instance.

4.8.1 Singleton Initialization
By default, the container is responsible for deciding when to initialize a Singleton bean instance. How-
ever, the bean developer can optionally configure the Singleton for eager initialization. If the Startup
annotation appears on the Singleton bean class or if the Singleton has been designated via the deploy-
ment descriptor as requiring eager initialization, the container must initialize the Singleton bean
instance during the application startup sequence. The container must initialize all such startup-time Sin-
gletons before any external client requests (that is, client requests originating outside of the application)
are delivered to any enterprise bean components in the application.

The following example shows a Singleton with startup logic that initializes its shared state :

@Startup
@Singleton
public class SharedBean implements Shared {

private SharedData state;

@PostConstruct
void init() {

// initialize shared data
...

}

...
}

In some cases, explicit initialization ordering dependencies exist between multiple Singleton compo-
nents in an application. The DependsOn annotation is used to express these dependencies. A
DependsOn dependency is used in cases where one Singleton must initialize before one or more other
Singletons. The container ensures that all Singleton beans with which a Singleton has a DependsOn
relationship have been initialized before PostConstruct is called.

Note that if one Singleton merely needs to invoke another Singleton from its PostConstruct
method, no explicit ordering metadata is required. In that case, the first Singleton would merely use an
ejb reference to invoke the target Singleton. There, the acquisition of the ejb reference (either through
injection or lookup) does not necessarily imply the actual creation of the corresponding Singleton bean
instance.
107 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
The following examples illustrate the use of DependsOn metadata :

@Singleton
public class B { ... }

@DependsOn(“B”)
@Singleton
public class A { ... }

This tells the container to guarantee that Singleton B is initialized before Singleton A. The DependsOn
value attribute holds one or more strings, where each specifies the ejb-name of the target Singleton
using the same syntax as the @EJB beanName() attribute.

@Singleton
public class B { ... }

@Singleton
public class C { ... }

@DependsOn({“B”, “C”})
@Singleton
public class A { ... }

This tells the container to guarantee that Singletons B and C are initialized before Singleton A. In the
case of multiple values, the ordering in which the target ejb-names are listed is not preserved at runtime.
E.g., if Singleton B has an ordering dependency on Singleton C, it is Singleton B’s responsibility to
explicitly capture that in its own metadata.

// two Singleton components packaged in different ejb-jars within
// the same .ear

// packaged in b.jar
@Singleton
public class B { ... }

// packaged in a.jar
@DependsOn(“b.jar#B”)
@Singleton
public class A { ... }

This shows the use of the fully-qualified ejb-name syntax to refer to a Singleton component packaged
within a different module in the same application.

Circular dependencies within DependsOn metadata are not permitted. Circular dependencies are not
required to be detected by the container but may result in a deployment error.
 11/5/09 108

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.8.2 Singleton Destruction

Any Singleton instance that successfully completes initialization is explicitly removed by the container
during application shutdown. At this time the container invokes the PreDestroy lifecycle callback
interceptor methods on the singleton, if any. The container ensures that all singleton beans with which a
Singleton has a DependsOn relationship are still available during PreDestroy. After PreDestroy
completes the container ends the life of the singleton bean instance.

4.8.3 Transaction Semantics of Initialization and Destruction

PostConstruct and PreDestroy methods of Singletons with container-managed transactions are transac-
tional. From the bean developer’s view there is no client of a PostConstruct or PreDestroy method.

A PostConstruct or PreDestroy method of a Singleton with container-managed transactions has transac-
tion attribute REQUIRED, REQUIRES_NEW, or NOT_SUPPORTED (Required , RequiresNew, or
NotSupported if the deployment descriptor is used to specify the transaction attribute).

Note that the container must start a new transaction if the REQUIRED (Required) transaction
attribute is used. This guarantees, for example, that the transactional behavior of the PostConstruct
method is the same regardless of whether it is initialized eagerly at container startup time or as a side
effect of a first client invocation on the Singleton. The REQUIRED transaction attribute value is
allowed so that specification of a transaction attribute for the Singleton PostConstruct/PreDestroy
methods can be defaulted.

4.8.4 Singleton Error Handling
Errors occurring during Singleton initialization are considered fatal and must result in the discarding of
the Singleton instance. Possible initialization errors include injection failure, a system exception thrown
from a PostConstruct method, or the failure of a PostConstruct method container-managed
transaction to successfully commit. If a singleton fails to initialize, attempted invocations on the
Singleton result in an exception as defined by Section 3.4.3 and Section 3.4.4 .

The same Singleton bean instance must remain active until application shutdown. Unlike instances of
other component types, system exceptions thrown from business methods or callbacks of a Singleton do
not result in the destruction of the Singleton instance.

4.8.5 Singleton Concurrency
From the client’s perspective, a Singleton bean always supports concurrent access. In general, a Single-
ton client does not have to concern itself with whether other clients might be accessing the Singleton at
the same time.

From the bean developer’s perspective, there are two approaches for controlling Singleton concurrency
behavior :

• container-managed concurrency : the container controls concurrent access to the bean instance
based on method-level locking metadata
109 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
• bean-managed concurrency : the container allows full concurrent bean instance access and
defers state synchronization responsibility to the bean developer

When designing a Singleton session bean, the developer must decide whether the bean will use con-
tainer managed or bean managed concurrency. Typically Singleton beans will be specified to have con-
tainer managed concurrency demarcation. This is the default if no concurrency management type is
specified. A Singleton bean can be designed to use either container managed concurrency or bean man-
aged concurrency but it cannot use both.

The lifecycle of any interceptor classes associated with a Singleton have the same lifecycle and concur-
rency behavior as that Singleton. Each interceptor class will be instantiated once per Singleton bean
instance. Any state stored in an instance of an interceptor class associated with a Singleton should be
considered when devising the concurrency plan for the bean.

It is legal to store Java EE objects that do not support concurrent access (e.g. Entity Managers, Stateful
Session Bean references) within Singleton bean instance state. However, it is the responsibility of the
Bean Developer to ensure such objects are not accessed by more than one thread at a time.

Independent of the bean’s concurrency management type, the container must ensure that no concurrent
access to the Singleton bean instance occurs until after the instance has successfully completed its ini-
tialization sequence, including any @PostConstruct lifecycle callback method(s). The container
must temporarily block any Singleton access attempts that arrive while the Singleton is still initializing.

Singleton beans support reentrant calls. That is, where an outbound call from a Singleton method results
in a loopback call to the Singleton on the same thread. Reentrant Singletons should be programmed and
used with caution. Special locking semantics apply to loopback calls on Singletons with container-man-
aged concurrency (detailed below).

4.8.5.1 Container Managed Concurrency

With Container Managed Concurrency demarcation, the container is responsible for controlling concur-
rent access to the bean instance based on method-level locking metadata. Each business method or tim-
eout method is associated with either a Read(shared) lock or Write (exclusive) lock.

If the container invokes a method associated with a Read lock, any number of other concurrent invoca-
tions on Read methods are allowed to access the bean instance simultaneously.

If the container invokes a method associated with a Write lock, no other concurrent invocations will
be allowed to proceed until the initial Write method’s processing completes.

A concurrent access attempt that is not allowed to proceed due to locking is blocked until it can make
forward progress. Timeouts can be specified via metadata so that a blocked request can be rejected if a
lock is not acquired within a certain amount of time. If a Singleton invocation is rejected due to lock
timeout the ConcurrentAccessTimeoutException is thrown to the client.

This specification only mandates the basic Read/Write locking semantics outlined above. There are
many policy decisions that a container could make to affect the performance of the locking scheme for a
given application. For example :
 11/5/09 110

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
• Determining whether to grant forward progress to a Read method or Write method, when
both readers and writers are waiting, at the time that a write method completes.

• Determining whether to allow additional readers while one or more readers is active and a
writer is waiting.

The exact set of additional read/write locking policy decisions supported by a container provider and
the configuration requirements for those policies are outside the scope of this specification.

4.8.5.1.1 Reentrant Locking Behavior

Special locking semantics apply to loopback calls on Singletons with container-managed concurrency.

If a loopback call occurs on a Singleton that already holds a Write lock on the same thread :

• If the target of the loopback call is a Read method, the Read lock must always be granted
immediately, without releasing the original Write lock.

• If the target of the loopback call is a Write method, the call must proceed immediately, with-
out releasing the original Write lock.

If a loopback call occurs on a Singleton that holds a Read lock on the same thread (but does not also
hold a Write lock on the same thread) :

• If the target of the loopback call is a Read method, the call must proceed immediately, without
releasing the original Read lock.

• If the target of the loopback call is a Write method, a javax.ejb.IllegalLoopback-
Exception must be thrown to the caller.

4.8.5.2 Bean Managed Concurrency

With Bean Managed Concurrency demarcation, the container allows full concurrent access to the Sin-
gleton bean instance. It is the responsibility of the bean developer to guard its state as necessary against
synchronization errors due to concurrent access. The bean developer is permitted to use the Java lan-
guage level synchronization primitives such as synchronized and volatile for this purpose.

4.8.5.3 Specification of a Concurrency Management Type

By default, a singleton bean has container managed concurrency demarcation if the concurrency man-
agement type is not specified. The Bean Provider of a singleton bean can use the ConcurrencyMan-
agement annotation on the bean class to declare the bean’s concurrency management type.

Alternatively, the Bean Provider can use the deployment descriptor to specify the bean’s concurrency
management type. If the deployment descriptor is used, it is only necessary to explicitly specify the
bean’s concurrency management type if bean managed concurrency is used.
111 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
The concurrency management type of a Singleton is determined by the Bean Provider. The application
assembler is not permitted to use the deployment descriptor to override a bean’s concurrency manage-
ment type regardless of whether it has been explicitly specified or defaulted by the Bean Provider. (See
Chapter 19 for information about the deployment descriptor.)

4.8.5.4 Specification of the Container Managed Concurrency Metadata for a Bean’s
Methods

The Bean Provider of a Singleton bean with container managed concurrency demarcation may specify
locking metadata for the enterprise bean’s methods. By default, the value of the lock associated with a
method of a bean with container managed concurrency demarcation is Write(exclusive), and the concur-
rency lock attribute does not need to be explicitly specified in this case.

A concurrency locking attribute is a value associated with each of the following methods:

• a method of a bean’s business interface

• a method of a bean’s no-interface view

• a timeout callback method

• a web service endpoint method

The concurrency locking attribute specifies how the container must manage concurrency when a client
invokes the method.

Concurrency locking attributes are specified for the following methods:

• For a bean written to the EJB 3.x client view API, the concurrency locking attributes are spec-
ified for those methods of the bean class that correspond to the bean’s business interface, the
direct and indirect superinterfaces of the business interface, methods exposed through the
no-interface view, and for timeout callback methods, if any.

• For a bean that provides a web service client view, the concurrency locking attributes are spec-
ified for those methods of the bean class that correspond to the bean’s web service endpoint
methods, and for timeout callback methods, if any.

By default, if a concurrency locking attribute annotation is not specified for a method of a Singleton
bean with container managed concurrency demarcation, the value of the concurrency locking attribute
for the method is defined to be Write.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to spec-
ify the concurrency locking attributes (or as a means to supplement or override metadata annotations for
concurrency locking attributes). Concurrency locking attributes specified in the deployment descriptor
are assumed to override or supplement concurrency locking attributes specified in annotations. If a con-
currency locking attribute value is not specified in the deployment descriptor, it is assumed that the con-
currency locking attribute specified in annotations applies, or — in the case that no annotation has been
specified —that the value is Write.
 11/5/09 112

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
The application assembler is permitted to override the concurrency locking attribute values using the
bean’s deployment descriptor. The deployer is also permitted to override the concurrency locking
attribute values at deployment time. Caution should be exercised when overriding the concurrency lock-
ing attributes of an application, as the concurrency structure of an application is typically intrinsic to the
semantics of the application.

4.8.5.5 Specification of Concurrency Locking Attributes with Metadata Annotations
The following is the description of the rules for the specification of concurrency attributes using Java
language metadata annotations.

The Lock(READ) and Lock(WRITE)annotations are used to specify a concurrency locking
attributes.

The concurrency locking attributes for the methods of a bean class may be specified on the class, the
business methods of the class, or both.

Specifying the Lock annotation on the bean class means that it applies to all applicable business meth-
ods of the class. If the concurrency locking attribute is not specified, it is assumed to be
Lock(WRITE). The absence of a concurrency attribute specification on the bean class is equivalent to
the specification of Lock(WRITE)on the bean class.

A concurrency locking attribute may be specified on a method of the bean class to override the concur-
rency locking attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply:

• A concurrency locking attribute specified on a superclass S appplies to the business methods
defined by S. If a class-level concurrency attribute is not specified on S, it is equivalent to
specification of Lock(WRITE)on S.

• A concurrency locking attribute may be specified on a business method M defined by class S
to override for method M the concurrency locking attribute value explicitly or implicitly spec-
ified on the class S.

• If a method M of class S overrides a business method defined by a superclass of S, the concur-
rency locking attribute of M is determined by the above rules as applied to class S.
113 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
Example:

@Lock(READ)
public class SomeClass {

public void aMethod () { ... }
public void bMethod () { ... }
...

}

@Singleton public class ABean extends SomeClass implements A {

public void aMethod () { ... }

@Lock(WRITE)
public void cMethod () { ... }

...
}

Assuming aMethod, bMethod, cMethod of Singleton bean ABean are methods of business inter-
face A, their concurrency locking attributes are Lock(WRITE), Lock(READ), and
Lock(WRITE)respectively.

4.8.5.5.1 Concurrent Access Timeouts

A concurrent access attempt that can not immediately acquire the appropriate lock is blocked until it can
make forward progress. @AccessTimeout is used to specify the amount of time the access attempt
should be blocked before timing out. Access timeouts only apply to methods eligible for concurrency
locks on a Singleton bean with container managed concurrency. If an access attempt times out, the con-
tainer throws a javax.ejb.ConcurrentAccessTimeoutException to the client.

@AccessTimeout can be specified on a business method or on a bean class (or super-class). An
@AccessTimeout specified on a class applies the access timeout to all business methods of that
class. If @AccessTimeout is specified on both a class and on a business method of that class, the
method-level annotation takes precedence.

An @AccessTimeout value of -1 indicates that the client request will block indefinitely until forward
progress can be made.

An @AccessTimeout value of 0 indicates that concurrent access is not allowed. Access attempts on
methods with a timeout value of 0 result in a javax.ejb.ConcurrentAccessException.
 11/5/09 114

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.8.6 Operations Allowed in the Methods of a Singleton Session Bean

Table 3 defines the methods of a singleton session bean class in which the session bean instances can
access the methods of the javax.ejb.SessionContext interface, the java:comp/env envi-
ronment naming context, resource managers, TimerService and Timer methods, the Entity-
Manager and EntityManagerFactory methods, and other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the
access is not allowed in Table 3, the container must throw the java.lang.IllegalStateExcep-
tion.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and
the access is not allowed in Table 3, the container must throw the java.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity manager
or entity manager factory, and the access is not allowed in Table 3, the behavior is undefined by the EJB
architecture.
115 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
 11/5/09 116

Singleton Session Beans Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Table 3 Operations Allowed in the Methods of a Singleton Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection-
methods

SessionContext methods: lookup
JNDI access to java:comp/env

SessionContext methods: lookup
JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back interceptor
methods

SessionContext methods: getBusinessOb-
ject, getRollbackOnly, setRollback-
Only, getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getUserTransaction, getTim-
erService, lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManager access
EntityManagerFactory access
TimerService and Timer methods

business method
from business inter-
face or from no-inter-
face view ; business
method interceptor
method

SessionContext methods: getBusinessOb-
ject, getCallerPrincipal, isCallerIn-
Role, getRollbackOnly,
setRollbackOnly, getTimerService,
getInvokedBusinessInterface, was-
CancelCalled, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getCallerPrincipal, isCallerIn-
Role, getUserTransaction,
getTimerService, getInvokedBusi-
nessInterface, wasCancelCalled,
lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods
117 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release Singleton Session Beans

Sun Microsystems, Inc.
business method
from web service end-
point

SessionContext methods: getBusinessOb-
ject, , getCallerPrincipal, isCallerIn-
Role, getRollbackOnly,
setRollbackOnly, getTimerService,
getMessageContext, lookup, getCon-
textData

Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject,, getCallerPrincipal, isCallerIn-
Role, getUserTransaction,
getTimerService, getMessageContext,
lookup, getContextData

UserTransaction methods
Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

timeout callback
method

SessionContext methods: getBusinessOb-
ject, getCallerPrincipal, isCallerIn-
Role, getRollbackOnly,
setRollbackOnly, getTimerService,
lookup, getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

SessionContext methods: getBusinessOb-
ject, getCallerPrincipal, isCallerIn-
Role, getUserTransaction,
getTimerService, lookup, getContext-
Data

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer methods

Table 3 Operations Allowed in the Methods of a Singleton Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation
 11/5/09 118

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext
interface should be used only in the session bean methods that execute in the context of a trans-
action. The container must throw the java.lang.IllegalStateException if the
methods are invoked while the current business method is not executing in the context of a
transaction.

The reasons for disallowing operations in Table 3:

• Invoking the getBusinessObject method is disallowed if the session bean does not
define an EJB 3.x business interface and does not define a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean
does not define an EJB 3.x business interface and does not define a no-interface view. It is also
disallowed if the current business method was not invoked through a business interface or the
no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed since a singleton
session bean does not support the EJB 2.x Remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed since
a singleton session bean does not support the EJB 2.x Local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the container does not have a meaningful transaction context,
and for all session beans with bean-managed transaction demarcation.

• Invoking the getMessageContext method is disallowed in session bean methods that
were not invoked by the container through the session bean’s web service endpoint. The get-
MessageContext method returns the javax.xml.rpc.handler.MessageCon-
text interface of a stateless session bean that implements a JAX-RPC web service endpoint.

• Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the
session bean methods for which the container does not have a meaningful transaction context
and/or client security context.

• The UserTransaction interface is unavailable to session beans with container-managed
transaction demarcation.

4.9 The Responsibilities of the Bean Provider

This section describes the responsibilities of the session Bean Provider to ensure that a session bean can
be deployed in any EJB container.
119 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
4.9.1 Classes and Interfaces

The session Bean Provider is responsible for providing the following class files[22]:

• Session bean class.

• Session bean’s business interface(s), if the session bean provides an EJB 3.x local or remote
client view.

• Session bean’s remote interface and remote home interface, if the session bean provides an
EJB 2.1 remote client view.

• Session bean’s local interface and local home interface, if the session bean provides an EJB 2.1
local client view.

• Session bean’s web service endpoint interface, if any.

• Interceptor classes, if any.

The Bean Provider for a session bean that provides a web service client view may also define JAX-WS
or JAX-RPC message handlers for the bean. The requirements for such message handlers are defined in
[31] and [32].

4.9.2 Session Bean Class

The following are the requirements for the session bean class:

• The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.

• The class must have a public constructor that takes no parameters. The container uses this
constructor to create instances of the session bean class.

• The class must not define the finalize() method.

• The class must implement the bean’s business interface(s) or the methods of the bean’s busi-
ness interface(s), if any.

• The class must implement the business methods of the bean’s EJB 2.1 client view interfaces, if
any. [23]

Optionally:

• The class may implement, directly or indirectly, the javax.ejb.SessionBean inter-
face.[24]

[22] Note that the interfaces provided by the Bean Provider may have been generated by tools.
[23] Note that the EJB 2.x client view is not supported for Singleton session beans.
 11/5/09 120

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
• If the class is a stateful session bean, it may implement the javax.ejb.SessionSyn-
chronization interface or use one or more of the session synchronization annotations.

• The class may implement the session bean’s web service endpoint or component interface.

• If the class is a stateless session bean, it may implement the javax.ejb.TimedObject
interface. See Chapter 18, “Timer Service”.

• The class may implement the ejbCreate method(s).

• The session bean class may have superclasses and/or superinterfaces. If the session bean has
superclasses, the business methods, lifecycle callback interceptor methods, the timeout call-
back methods, the methods implementing the optional session synchronization notifications,,
the Init or ejbCreate<METHOD> methods, the Remove methods, and the methods of the
SessionBean interface, may be defined in the session bean class, or in any of its super-
classes.

• The session bean class is allowed to implement other methods (for example helper methods
invoked internally by the business methods) in addition to the methods required by the EJB
specification.

4.9.2.1 Session Bean Superclasses

A session bean class is permitted to have superclasses that are themselves session bean classes. How-
ever, there are no special rules that apply to the processing of annotations or the deployment descriptor
for this case. For the purposes of processing a particular session bean class, all superclass processing is
identical regardless of whether the superclasses are themselves session bean classes. In this regard, the
use of session bean classes as superclasses merely represents a convenient use of implementation inher-
itance, but does not have component inheritance semantics.

As an example, the client views exposed by a particular session bean are not inherited by a subclass that
also happens to define a session bean.

@Stateless
public class A implements Foo { ... }

@Stateless
public class B extends A implements Bar { ... }

Assuming Foo and Bar are local business interfaces and there is no associated deployment descriptor,
session bean A exposes local business interface Foo and session bean B exposes local business interface
Bar, but not Foo.

[24] Except for Singleton beans.
121 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
Session bean B would need to explicitly include Foo in its set of exposed views for that interface to
apply. For example:

@Stateless
public class A implements Foo { ... }

@Stateless
public class B extends A implements Foo, Bar { ... }

4.9.3 Lifecycle Callback Interceptor Methods
PostConstruct, PreDestroy, PrePassivate, and PostActivate lifecycle callback inter-
ceptor methods may be defined for session beans. If PrePassivate or PostActivate lifecycle
callbacks are defined for stateless session beans or singleton beans, they are ignored.[25]

Compatibility Note: If the PostConstruct lifecycle callback interceptor method is the ejbCreate
method, if the PreDestroy lifecycle callback interceptor method is the ejbRemove method, if the
PostActivate lifecycle callback interceptor method is the ejbActivate method, or if the Pre-
Passivate lifecycle callback interceptor method is the ejbPassivate method, these callback
methods must be implemented on the bean class itself (or on its superclasses). Except for these cases,
the method names can be arbitrary, but must not start with “ejb” to avoid conflicts with the callback
methods defined by the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an interceptor class
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defined in
Section 12.5, “Interceptors for LifeCycle Event Callbacks” .

4.9.4 Session Synchronization Methods

The bean class (or superclass) of a stateful session bean may use one or more of the session synchroni-
zation annotations @AfterBegin, @BeforeCompletion, and @AfterCompletion. Each bean
has at most one session synchronization method for each of the three annotation types. In the case of
method overriding of session synchronization methods declared by annotations, the most derived
method takes precedence. The signatures of the session synchronization methods must follows these
rules :

• The method must not be declared as final or static.

• The method may have any access type : public, private, protected, or package-level.

• The return type must be void.

• The @AfterBegin and @BeforeCompletion methods must take 0 arguments.

• The @AfterCompletion method must take a single argument of type boolean.

[25] Note that this might result from the use of default interceptors, for example.
 11/5/09 122

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.9.5 ejbCreate<METHOD> Methods

The session bean class of a session bean that has a home interface may define one or more ejbCre-
ate<METHOD> methods. These ejbCreate methods are intended for use only with the EJB 2.1
components. The signatures of the ejbCreate methods must follow these rules:

• The method name must have ejbCreate as its prefix.

• The method must be declared as public.

• The method must not be declared as final or static.

• The return type must be void.

• The method arguments must be legal types for RMI/IIOP if there is a create<METHOD> cor-
responding to the ejbCreate<METHOD> method on the session bean’s remote home inter-
face.

• A stateless session bean may define only a single ejbCreate method, with no arguments.

• The throws clause may define arbitrary application exceptions, possibly including the
javax.ejb.CreateException.

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw the java.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB
1.1 or EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another RuntimeException to indicate non-application exceptions to the container (see Section
14.2.2). An EJB 2.0 and later compliant enterprise bean should not throw the java.rmi.Remote-
Exception from the ejbCreate method .

4.9.6 Business Methods

The session bean class may define zero or more business methods whose signatures must follow these
rules:

• The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts with
the callback methods used by the EJB architecture.

• The business method must be declared as public.

• The method must not be declared as final or static.

• The argument and return value types for a method must be legal types for RMI/IIOP if the
method corresponds to a business method on the session bean’s remote business interface or
remote interface.
123 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
• The argument and return value types for a method must be legal types for JAX-WS / JAX-RPC
if the method is a web service method or corresponds to a method on the session bean’s web
service endpoint.

• The throws clause may define arbitrary application exceptions.

Note : Callback methods are permitted to have public access type. This raises the question of whether
a callback method can also be exposed as a business method through one or more client views. Doing so
is not prohibited, but should be done with caution. The runtime context(e.g. transaction context, caller
principal, operations allowed, etc.) for a method invoked as a callback can differ significantly from the
context for the same method invoked via a client invocation. As a general rule, callback methods should
not be exposed as business methods. Therefore, it is recommended that all non-business methods be
assigned an access type other than public.

Compatibility Note: EJB 1.0 allowed the business methods to throw the java.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or
EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another RuntimeException to indicate non-application exceptions to the container (see Section
14.2.2). An EJB 2.0 or later compliant enterprise bean should not throw the java.rmi.RemoteEx-
ception from a business method.

4.9.7 Session Bean’s Business Interface

The following are the requirements for the session bean’s business interface:

• The interface must not extend the javax.ejb.EJBObject or javax.ejb.EJBLo-
calObject interface.

• If the business interface is a remote business interface, the argument and return values must be
of valid types for RMI/IIOP. The remote business interface is not required or expected to be a
java.rmi.Remote interface. The throws clause should not include the
java.rmi.RemoteException. The methods of the business interface may only throw
the java.rmi.RemoteException if the interface extends java.rmi.Remote.

• The interface is allowed to have superinterfaces.

• If the interface is a remote business interface, its methods must not expose local interface
types, timers or timer handles, or the managed collection classes that are used for EJB 2.1
entity beans with container-managed persistence as arguments or results.

• The bean class must implement the interface or the interface must be designated as a local or
remote business interface of the bean by means of the Local or Remote annotation or in the
deployment descriptor. The following rules apply:

• If the bean does not expose any other business interfaces (Local, Remote) or
No-Interface view, and the bean class implements a single interface, that interface is
assumed to be the business interface of the bean. This business interface will be a
local interface unless the interface is designated as a remote business interface by use
 11/5/09 124

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
of the Remote annotation on the bean class or interface or by means of the deploy-
ment descriptor.

• A bean class is permitted to have more than one interface. If a bean class has more
than one interface—excluding the interfaces listed below—any business interface of
the bean class must be explicitly designated as a business interface of the bean by
means of the Local or Remote annotation on the bean class or interface or in the
deployment descriptor.

• The following interfaces are excluded when determining whether the bean class has
more than one interface: java.io.Serializable; java.io.Externaliz-
able; any of the interfaces defined by the javax.ejb package.

• The same business interface cannot be both a local and a remote business interface of
the bean.[26]

• While it is expected that the bean class will typically implement its business inter-
face(s), if the bean class uses annotations or the deployment descriptor to designate its
business interface(s), it is not required that the bean class also be specified as imple-
menting the interface(s).

4.9.8 Session Bean’s No-Interface View
The following are the requirements for a session bean that exposes a no-interface view :

• The bean class must designate that it exposes a no-interface view via its bean class definition
or in the deployment descriptor. The following rules apply :

• If the bean does not expose any other client views (Local, Remote, No-Interface, 2.x
Remote Home, 2.x Local Home, Web Service) and its implements clause is empty,
the bean defines a no-interface view.

• If the bean exposes at least one other client view, the bean designates that it exposes a
no-interface view by means of the @LocalBean annotation on the bean class or in
the deployment descriptor.

• The following interfaces are excluded when determining whether the bean exposes a
no-interface view : java.io.Serializable; java.io.Externalizable;
any of the interfaces defined by the javax.ejb package.

• All public methods of the bean class and any superclasses are exposed as business methods
through the no-interface view. [Note : This includes callback methods. The Bean Developer
should exercise caution when choosing to expose callback methods as business methods
through the no-interface view. The runtime context(e.g. transaction context, caller principal,
operations allowed, etc.) for a method invoked as a callback can differ significantly from the
context for the same method invoked via a client invocation. In general, callback methods
should not be exposed as business methods. Therefore, it is recommended that all non-business
methods be assigned an access type other than public.]

• The throws clause of a bean class method exposed through the no-interface view must not
include the java.rmi.RemoteException.

[26] It is also an error if the Local and/or Remote annotations are specified both on the bean class and on the referenced interface
and the values differ.
125 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
• All methods of the bean class and any superclasses must not be declared final.

4.9.9 Session Bean’s Remote Interface

The following are the requirements for the session bean’s remote interface:

• The interface must extend the javax.ejb.EJBObject interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that
their argument and return values must be of valid types for RMI/IIOP, and their throws
clauses must include the java.rmi.RemoteException.

• The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
to the RMI/IIOP rules for the definition of remote interfaces.

• For each method defined in the remote interface, there must be a matching method in the ses-
sion bean’s class. The matching method must have:

• The same name.
• The same number and types of arguments, and the same return type.
• All the exceptions defined in the throws clause of the matching method of the ses-

sion bean class must be defined in the throws clause of the method of the remote
interface.

• The remote interface methods must not expose local interface types, local home interface
types, timers or timer handles, or the managed collection classes that are used for entity beans
with container-managed persistence as arguments or results.

4.9.10 Session Bean’s Remote Home Interface

The following are the requirements for the session bean’s remote home interface:

• The interface must extend the javax.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that
their argument and return values must be of valid types for RMI/IIOP, and that their throws
clauses must include the java.rmi.RemoteException.

• The remote home interface is allowed to have superinterfaces. Use of interface inheritance is
subject to the RMI/IIOP rules for the definition of remote interfaces.

• A session bean’s remote home interface must define one or more create<METHOD> meth-
ods. A stateless session bean must define exactly one create method with no arguments.

• Each create method of a stateful session bean must be named create<METHOD>, and it
must match one of the Init methods or ejbCreate<METHOD> methods defined in the ses-
 11/5/09 126

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
sion bean class. The matching Init method or ejbCreate<METHOD> method must have
the same number and types of arguments. (Note that the return type is different.) The create
method for a stateless session bean must be named “create” but need not have a matching
“ejbCreate” method.

• The return type for a create<METHOD> method must be the session bean’s remote interface
type.

• All the exceptions defined in the throws clause of an ejbCreate<METHOD> method of
the session bean class must be defined in the throws clause of the matching cre-
ate<METHOD> method of the remote home interface.

• The throws clause must include javax.ejb.CreateException.

4.9.11 Session Bean’s Local Interface

The following are the requirements for the session bean’s local interface:

• The interface must extend the javax.ejb.EJBLocalObject interface.

• The throws clause of a method defined in the local interface must not include the
java.rmi.RemoteException.

• The local interface is allowed to have superinterfaces.

• For each method defined in the local interface, there must be a matching method in the session
bean’s class. The matching method must have:

• The same name.
• The same number and types of arguments, and the same return type.
• All the exceptions defined in the throws clause of the matching method of the ses-

sion bean class must be defined in the throws clause of the method of the local
interface.

4.9.12 Session Bean’s Local Home Interface

The following are the requirements for the session bean’s local home interface:

• The interface must extend the javax.ejb.EJBLocalHome interface.

• The throws clause of a method in the local home interface must not include the
java.rmi.RemoteException.

• The local home interface is allowed to have superinterfaces.

• A session bean’s local home interface must define one or more create<METHOD> methods.
A stateless session bean must define exactly one create method with no arguments.
127 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
• Each create method of a stateful session bean must be named create<METHOD>, and it
must match one of the Init methods or ejbCreate<METHOD> methods defined in the ses-
sion bean class. The matching Init method or ejbCreate<METHOD> method must have
the same number and types of arguments. (Note that the return type is different.) The create
method for a stateless session bean must be named “create” but need not have a matching
“ejbCreate” method.

• The return type for a create<METHOD> method must be the session bean’s local interface
type.

• All the exceptions defined in the throws clause of an ejbCreate<METHOD> method of
the session bean class must be defined in the throws clause of the matching cre-
ate<METHOD> method of the local home interface.

• The throws clause must include javax.ejb.CreateException.

4.9.13 Session Bean’s Web Service Endpoint Interface

EJB 3.1 does not require the definition of a web service endpoint interface for session beans that imple-
ment a web service endpoint.

The following are requirements for stateless session beans with JAX-RPC web service endpoint inter-
faces. The JAX-WS and Web Services for Java EE specifications do not require that a separate interface
be defined for a web service endpoint. The requirements for web service endpoints under JAX-WS and
Web Services for Java EE are given in [32] and [31].

The following are the requirements for a stateless session bean’s web service endpoint interface. The
web service endpoint interface must follow the rules for JAX-RPC service endpoint interfaces [25].

• The web service endpoint interface must extend the java.rmi.Remote interface.

• The methods defined in the interface must follow the rules for JAX-RPC service endpoint
interfaces. This means that their argument and return values must be of valid types for
JAX-RPC, and their throws clauses must include the java.rmi.RemoteException.
The throws clause may additionally include application exceptions.
Note that JAX-RPC Holder classes may be used as method parameters. The JAX-RPC specifi-
cation requires support for Holder classes as part of the standard Java mapping of WSDL
operations in order to handle out and inout parameters. Holder classes implement the
javax.xml.rpc.holders.Holder interface. See the JAX-RPC specification [25] for
further details.

• For each method defined in the web service endpoint interface, there must be a matching
method in the session bean’s class. The matching method must have:

• The same name.
• The same number and types of arguments, and the same return type.
• All the exceptions defined in the throws clause of the matching method of the ses-

sion bean class must be defined in the throws clause of the method of the web ser-
vice endpoint interface.
 11/5/09 128

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
• The web service endpoint interface must not include an EJBObject or EJBLocalObject as
either a parameter or return type. An array or JAX-RPC value type must not include an
EJBObject or EJBLocalObject as a contained element. The web service endpoint interface
methods must not expose business interface types, local or remote interface types, local or
remote home interface types, timers or timer handles, or the managed collection classes that
are used for entity beans with container-managed persistence as arguments or results or as
fields of value types.

• JAX-RPC serialization rules apply for any value types that are used by the web service end-
point interface. If it is important that Java serialization semantics apply, the Bean Provider
should use the restricted set of JAX-RPC value types for which the semantics of Java serializa-
tion apply under JAX-RPC serialization. See the JAX-RPC specification [25] for details.

• The web service endpoint interface must not include constant (as public final static)
declarations.

• The Bean Provider must designate the web service endpoint interface in the deployment
descriptor by means of the service-endpoint element. The service endpoint itself is only
exposed within a web service if it is referenced by a web service deployment descriptor as
defined by [31].

JAX-RPC Web Service Endpoints have been proposed for future removal. See Section 2.7 for more
details.

4.10 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support a session bean. The Con-
tainer Provider is responsible for providing the deployment tools and for managing the session bean
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

4.10.1 Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional classes
when the session bean is deployed. The tools obtain the information that they need for generation of the
additional classes by introspecting the classes and interfaces provided by the Bean Provider and by
examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the session bean’s business interface.

• A class that implements the session bean’s no-interface view.
129 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
• A class that implements the session bean’s remote home interface (session EJBHome class).

• A class that implements the session bean’s remote interface (session EJBObject class).

• A class that implements the session bean’s local home interface (session EJBLocalHome
class).

• A class that implements the session bean’s local interface (session EJBLocalObject class).

• A class that implements the session bean’s web service endpoint.

• A class that implements the return value of an asynchronous method with return type
Future<V>.

The deployment tools may also generate a class that mixes some container-specific code with the ses-
sion bean class. This code may, for example, help the container to manage the bean instances at runtime.
The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business methods
and is used to customize the business logic to an existing operational environment. For example, a
wrapper for a debit function on the AccountManager bean may check that the debited amount
does not exceed a certain limit.

4.10.2 Generation of WSDL
Reference [31] describes the generation of a WSDL document for a web service endpoint. The Java to
WSDL mapping must adhere to the requirements of JAX-RPC or JAX-WS [32].

4.10.3 Session Business Interface Implementation Class

The container’s implementation of the session business interface, which is generated by the deployment
tools, implements the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the passive
state), invoke any business method interceptor methods, and invoke the matching business method on
the instance.

The container provider is responsible for providing the implementation of the equals and hashCode
methods for the business interface, in conformance with the requirements of section 3.6.5.

4.10.4 No-Interface View Reference Class
The container’s implementation of the no-interface view reference, which is generated by the deploy-
ment tools, implements the business methods that are exposed to the no-interface view client.

The implementation of each business method must activate the instance(if the instance is in the passive
state), invoke any business method interceptor methods, and invoke the matching business method on
the instance.
 11/5/09 130

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
The container provider is responsible for providing the implementation of the equals and hashCode
methods for no-interface view reference, in conformance with the requirements of section [3.6.5].

4.10.5 Session EJBHome Class

The session EJBHome class, which is generated by the deployment tools, implements the session bean’s
remote home interface. This class implements the methods of the javax.ejb.EJBHome interface
and the create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method.

4.10.6 Session EJBObject Class

The session EJBObject class, which is generated by the deployment tools, implements the session
bean’s remote interface. It implements the methods of the javax.ejb.EJBObject interface and the
business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the passive
state), invoke any business method interceptor methods, and invoke the matching business method on
the instance.

4.10.7 Session EJBLocalHome Class

The session EJBLocalHome class, which is generated by the deployment tools, implements the session
bean’s local home interface. This class implements the methods of the javax.ejb.EJBLocalHome
interface and the create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method.

4.10.8 Session EJBLocalObject Class

The session EJBLocalObject class, which is generated by the deployment tools, implements the session
bean’s local interface. It implements the methods of the javax.ejb.EJBLocalObject interface
and the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the passive
state), invoke any business method interceptor methods, and invoke the matching business method on
the instance.
131 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
4.10.9 Web Service Endpoint Implementation Class
The implementation class for a stateless session bean’s web service endpoint is generated by the con-
tainer’s deployment tools. This class must handle requests to the web service endpoint, unmarshall the
SOAP request, invoke any business method interceptor methods, and invoke the stateless session bean
method that matches the web service endpoint method that corresponds to the request.

4.10.10 Asynchronous Client Future<V> Return Value Implementation Class
The object returned from an asynchronous method with return type Future<V> is implemented by the
container’s deployment tools.

4.10.11 Handle Classes

The deployment tools are responsible for implementing the handle classes for the session bean’s remote
home and remote interfaces.

4.10.12 EJBMetaData Class

The deployment tools are responsible for implementing the class that provides metadata to the remote
client view contract. The class must be a valid RMI Value class and must implement the
javax.ejb.EJBMetaData interface.

4.10.13 Non-reentrant Instances

The container must ensure that only one thread can be executing a stateless or stateful session bean
instance at any time. Therefore, stateful and stateless session beans do not have to be coded as reentrant.
One implication of this rule is that an application cannot make loopback calls to a stateless or stateful
session bean instance.

4.10.14 Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and excep-
tion handling, as described in Chapters 13, 17, and 14, respectively.

4.10.15 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints
The container must support the use of JAX-WS and JAX-RPC message handlers for web service end-
points. Container requirements for support of message handlers are specified in [32] and [31].

If message handlers are present, they must be invoked before any business method interceptor methods.
 11/5/09 132

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
4.10.16 SessionContext

The container must implement the SessionContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the session bean’s remote inter-
face type. Specifically, the bean instance does not have to use the PortableRemoteObject.nar-
row method for the type conversion.

The container must implement the EJBContext.lookup method such that when the lookup
method is used to look up a bean’s remote home interface, a bean instance can use the Java language
cast to convert the returned value to a session bean’s remote home interface type. Specifically, the bean
instance does not have to use the PortableRemoteObject.narrow method for the type conver-
sion.
133 November 5, 2009 11:00 am

Session Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
 11/5/09 134

Overview Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
Chapter 5 Message-Driven Bean Component
Contract

This chapter specifies the contract between a message-driven bean and its container. It defines the life
cycle of the message-driven bean instances.

This chapter defines the developer’s view of message-driven bean state management and the container’s
responsibility for managing message-driven bean state.

5.1 Overview

A message-driven bean is an asynchronous message consumer. A message-driven bean is invoked by
the container as a result of the arrival of a message at the destination or endpoint that is serviced by the
message-driven bean. A message-driven bean instance is an instance of a message-driven bean class. A
message-driven bean is defined for a single messaging type, in accordance with the message listener
interface it employs.

To a client, a message-driven bean is a message consumer that implements some business logic running
on the server. A client accesses a message-driven bean by sending messages to the destination or end-
point for which the message-driven bean class is the message listener.
135 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Goals

Sun Microsystems, Inc.
Message-driven beans are anonymous. They have no client-visible identity.

Message-driven bean instances have no conversational state. This means that all bean instances are
equivalent when they are not involved in servicing a client message.

A message-driven bean instance is created by the container to handle the processing of the messages for
which the message-driven bean is the consumer. Its lifetime is controlled by the container.

A message-driven bean instance has no state for a specific client. However, the instance variables of the
message-driven bean instance can contain state across the handling of client messages. Examples of
such state include an open database connection and a reference to an enterprise bean.

5.2 Goals

The goal of the message-driven bean model is to make developing an enterprise bean that is asynchro-
nously invoked to handle the processing of incoming messages as simple as developing the same func-
tionality in any other message listener.

A further goal of the message-driven bean model is to allow for the concurrent processing of a stream of
messages by means of container-provided pooling of message-driven bean instances.

5.3 Client View of a Message-Driven Bean

To a client, a message-driven bean is simply a message consumer. The client sends messages to the des-
tination or endpoint for which the message-driven bean is the message listener just as it would to any
other destination or endpoint. The message-driven bean, as a message consumer, handles the processing
of the messages.

From the perspective of the client, the existence of a message-driven bean is completely hidden behind
the destination or endpoint for which the message-driven bean is the message listener. The following
diagram illustrates the view that is provided to a message-driven bean’s clients.
 11/5/09 136

Client View of a Message-Driven Bean Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
Figure 8 Client view of Message-Driven Beans Deployed in a Container

A client’s JNDI name space may be configured to include the destinations or endpoints of mes-
sage-driven beans installed in multiple EJB containers located on multiple machines on a network. The
actual locations of an enterprise bean and EJB container are, in general, transparent to the client using
the enterprise bean.

References to message destinations can be injected, or they can be looked up in the client’s JNDI
namespace.

For example, the reference to the queue for a JMS message-driven bean might be injected as follows.

@Resource Queue stockInfoQueue;

Client destination

Container

Message-driven
bean

Message-
driven bean
instances

or endpoint
137 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.
Alternatively, the queue for the StockInfo JMS message-driven bean might be located using the fol-
lowing code segment:

Context initialContext = new InitialContext();
Queue stockInfoQueue = (javax.jms.Queue)initialContext.lookup

(“java:comp/env/jms/stockInfoQueue”);

The remainder of this section describes the message-driven bean life cycle in detail and the protocol
between the message-driven bean and its container.

5.4 Protocol Between a Message-Driven Bean Instance and its
Container

From its creation until destruction, a message-driven bean instance lives in a container. The container
provides security, concurrency, transactions, and other services for the message-driven bean. The con-
tainer manages the life cycle of the message-driven bean instances, notifying the instances when bean
action may be necessary, and providing a full range of services to ensure that the message-driven bean
implementation is scalable and can support the concurrent processing of a large number of messages.

From the Bean Provider’s point of view, a message-driven bean exists as long as its container does. It is
the container’s responsibility to ensure that the message-driven bean comes into existence when the
container is started up and that instances of the bean are ready to receive an asynchronous message
delivery before the delivery of messages is started.

Containers themselves make no actual service demands on the message-driven bean instances. The calls
a container makes on a bean instance provide it with access to container services and deliver notifica-
tions issued by the container.

Since all instances of a message-driven bean are equivalent, a client message can be delivered to any
available instance.

5.4.1 Required MessageDrivenBean Metadata

A message-driven bean must be annotated with the MessageDriven annotation or denoted in the
deployment descriptor as a message-driven bean.

5.4.2 The Required Message Listener Interface
The message-driven bean class must implement the appropriate message listener interface for the mes-
saging type that the message-driven bean supports or specify the message listener interface using the
MessageDriven metadata annotation or the messaging-type deployment descriptor element.
The specific message listener interface that is implemented by a message-driven bean class distin-
guishes the messaging type that the message-driven bean supports.
 11/5/09 138

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final Release Message-Driven Bean

Sun Microsystems, Inc.
The message-driven bean class’s implementation of the javax.jms.MessageListener
interface distinguishes the message-driven bean as a JMS message-driven bean.

The bean’s message listener method (e.g., onMessage in the case of javax.jms.MessageLis-
tener) is called by the container when a message has arrived for the bean to service. The message lis-
tener method contains the business logic that handles the processing of the message.

A bean’s message listener interface may define more than one message listener method. If the
message listener interface contains more than one method, it is the resource adapter that
determines which method is invoked. See [15].

If the message-driven bean class implements more than one interface other than java.io.Serial-
izable, java.io.Externalizable, or any of the interfaces defined by the javax.ejb pack-
age, the message listener interface must be specified by the messageListenerInterface
element of the MessageDriven annotation or the messaging-type element of the mes-
sage-driven deployment descriptor element.

5.4.3 Dependency Injection

A message-driven bean may use dependency injection mechanisms to acquire references to resources or
other objects in its environment (see Chapter 16, “Enterprise Bean Environment”). If a message-driven
bean makes use of dependency injection, the container injects these references after the bean instance is
created, and before any message-listener methods are invoked on the bean instance. If a dependency on
the MessageDrivenContext is declared, or if the bean class implements the optional Mes-
sageDrivenBean interface (see Section 5.4.6), the MessageDrivenContext is also injected at
this time. If dependency injection fails, the bean instance is discarded.

Under the EJB 3.x API, the bean class may acquire the MessageDrivenContext interface
through dependency injection without having to implement the MessageDrivenBean inter-
face. In this case, the Resource annotation (or resource-env-ref deployment
descriptor element) is used to denote the bean’s dependency on the MessageDrivenCon-
text. See Chapter 16, “Enterprise Bean Environment”.

5.4.4 The MessageDrivenContext Interface

If the bean specifies a dependency on the MessageDrivenContext interface (or if the bean class
implements the MessageDrivenBean interface), the container must provide the message-driven
bean instance with a MessageDrivenContext. This gives the message-driven bean instance access
to the instance’s context maintained by the container. The MessageDrivenContext interface has
the following methods:

• The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback. Only instances of a message-driven bean
with container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback. Only instances of a message-driven bean with container-managed
transaction demarcation can use this method.
139 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.
• The getUserTransaction method returns the javax.transaction.UserTrans-
action interface that the instance can use to demarcate transactions, and to obtain transaction
status. Only instances of a message-driven bean with bean-managed transaction demarcation
can use this method.

• The getTimerService method returns the javax.ejb.TimerService interface.

• The getCallerPrincipal method returns the java.security.Principal that is
associated with the invocation.

• The isCallerInRole method is inherited from the EJBContext interface.

• The getEJBHome and getEJBLocalHome methods are inherited from the EJBContext
interface. Message-driven bean instances must not call these methods.

• The lookup method enables the message-driven bean to look up its environment entries in
the JNDI naming context.

• The getContextData method enables a business method, lifecycle callback method, or timeout
method to retrieve any interceptor/webservices context associated with its invocation.

5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods
The following lifecycle event callbacks are supported for message-driven beans. Callback methods may
be defined directly on the bean class or on a separate interceptor class[27]. See Section 5.6.5.

• PostConstruct

• PreDestroy

The PostConstruct callback occurs before the first message listener method invocation on the
bean. This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor method executes in an unspecified transaction
and security context.

The PreDestroy callback occurs at the time the bean is removed from the pool or destroyed.

The PreDestroy lifecycle callback interceptor method executes in an unspecified transaction and
security context.

5.4.6 The Optional MessageDrivenBean Interface

The message-driven bean class is not required to implement the javax.ejb.MessageDriven-
Bean interface.

[27] If PrePassivate or PostActivate lifecycle callbacks are defined for message-driven beans, they are ignored.
 11/5/09 140

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final Release Message-Driven Bean

Sun Microsystems, Inc.
Compatibility Note: The MessageDrivenBean interface was required by earlier versions of the Enter-
prise JavaBeans specification. In EJB 3.x, the functionality previously provided by the MessageDriven-
Bean interface is available to the bean class through selective use of dependency injection (of the
MessageDrivenContext) and optional lifecycle callback methods.

The MessageDrivenBean interface defines two methods, setMessageDrivenContext and
ejbRemove.

The setMessageDrivenContext method is called by the bean’s container to associate a mes-
sage-driven bean instance with its context maintained by the container. Typically a message-driven bean
instance retains its message-driven context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the con-
tainer. In the ejbRemove method, the instance releases the resources that it is holding.

Under the EJB 3.x API, the bean class may optionally define a PreDestroy callback method
for notification of the container’s removal of the bean instance.

This specification requires that the ejbRemove and the ejbCreate methods of a message-driven
bean be treated as the PreDestroy and PostConstruct lifecycle callback methods, respectively.
If the message-driven bean implements the MessageDrivenBean interface, the PreDestroy
annotation can only be applied to the ejbRemove method. Similar requirements apply to use of
deployment descriptor metadata as an alternative to the use of annotations.

5.4.7 Timeout Callbacks
A message driven bean can be registered with the EJB timer service for time-based event notifications.
The container invokes the appropriate bean instance timeout callback method when a timer for the bean
has expired. See Chapter 18, “Timer Service”.

5.4.8 Message-Driven Bean Creation

The container creates an instance of a message-driven bean in three steps. First, the container calls the
bean class’ newInstance method to create a new message-driven bean instance. Second, the con-
tainer injects the bean’s MessageDrivenContext, if applicable, and performs any other depen-
dency injection as specified by metadata annotations on the bean class or by the deployment descriptor.
Third, the container calls the instance’s PostConstruct lifecycle callback methods, if any. See Sec-
tion 5.6.5.
141 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.
Compatibility Note: EJB 2.1 required the message-driven bean class to implement the ejbCreate
method. This requirement has been removed in EJB 3.x. If the message-driven bean class implements
the ejbCreate method, the ejbCreate method is treated as the bean’s PostConstruct method,
and the PostConstruct annotation can only be applied to the ejbCreate method.

5.4.9 Message Listener Interceptor Methods for Message-Driven Beans

The AroundInvoke business method interceptor methods are supported for message-driven beans.
These interceptor methods may be defined on the bean class or on a interceptor class and apply to the
handling of the invocation of the bean’s message listener method(s).

Interceptors are described in Chapter 12, “Interceptors”.

5.4.10 Serializing Message-Driven Bean Methods

The container serializes calls to each message-driven bean instance. Most containers will support many
instances of a message-driven bean executing concurrently; however, each instance sees only a serial-
ized sequence of method calls. Therefore, a message-driven bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacks (e.g., lifecycle callback interceptor
methods and timeout callback methods), and it must serialize these callbacks with the message listener
method calls.

5.4.11 Concurrency of Message Processing

A container allows many instances of a message-driven bean class to be executing concurrently, thus
allowing for the concurrent processing of a stream of messages. No guarantees are made as to the exact
order in which messages are delivered to the instances of the message-driven bean class, although the
container should attempt to deliver messages in order when it does not impair the concurrency of mes-
sage processing. Message-driven beans should therefore be prepared to handle messages that are out of
sequence: for example, the message to cancel a reservation may be delivered before the message to
make the reservation.

5.4.12 Transaction Context of Message-Driven Bean Methods

A bean’s message listener and timeout callback methods are invoked in the scope of a transaction deter-
mined by the transaction attribute specified in the bean’s metadata annotations or deployment descrip-
tor. If the bean is specified as using container-managed transaction demarcation, either the REQUIRED
or the NOT_SUPPORTED transaction attribute must be used for the message listener methods, and
either the REQUIRED, REQUIRES_NEW, or the NOT_SUPPORTED transaction attribute for timeout
callback methods. See Chapter 13, “Support for Transactions”
 11/5/09 142

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final Release Message-Driven Bean

Sun Microsystems, Inc.
When a message-driven bean using bean-managed transaction demarcation uses the javax.trans-
action.UserTransaction interface to demarcate transactions, the message receipt that causes
the bean to be invoked is not part of the transaction. If the message receipt is to be part of the transac-
tion, container-managed transaction demarcation with the REQUIRED transaction attribute must be
used.

The newInstance method, setMessageDrivenContext, the message-driven bean’s depen-
dency injection methods, and lifecycle callback methods are called with an unspecified transaction con-
text. Refer to Subsection 13.6.5 for how the container executes methods with an unspecified transaction
context.

5.4.13 Security Context of Message-Driven Bean Methods

A caller principal may propagate into a message-driven bean’s message listener methods. Whether this
occurs is a function of the specific message-listener interface and associated messaging provider, but is
not governed by this specification.

The Bean Provider can use the @RunAs metadata annotation (or corresponding deployment descriptor
element) to define a run-as identity for the enterprise bean. The run-as identity applies to the bean’s
message listener methods and timeout methods. Run-as identity behavior is further defined in the Secu-
rity chapter in Section 17.3.4.1.

5.4.14 Activation Configuration Properties
The Bean Provider may provide information to the Deployer about the configuration of the mes-
sage-driven bean in its operational environment. This may include information about message acknowl-
edgement modes, message selectors, expected destination or endpoint types, etc.

Activation configuration properties are specified by means of the activationConfig element of
the MessageDriven annotation or activation-config deployment descriptor element. Activa-
tion configuration properties specified in the deployment descriptor are added to those specified by
means of the MessageDriven annotation. If a property of the same name is specified in both, the
deployment descriptor value overrides the value specified in the annotation.

Activation configuration properties for JMS message-driven beans are described in Sections 5.4.15
through 5.4.17.

5.4.15 Message Acknowledgment for JMS Message-Driven Beans

JMS message-driven beans should not attempt to use the JMS API for message acknowledgment. Mes-
sage acknowledgment is automatically handled by the container. If the message-driven bean uses con-
tainer-managed transaction demarcation, message acknowledgment is handled automatically as a part of
the transaction commit. If bean-managed transaction demarcation is used, the message receipt cannot be
part of the bean-managed transaction, and, in this case, the receipt is acknowledged by the container. If
bean-managed transaction demarcation is used, the Bean Provider can indicate whether JMS
AUTO_ACKNOWLEDGE semantics or DUPS_OK_ACKNOWLEDGE semantics should apply by using the
143 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.
activationConfig element of the MessageDriven annotation or by using the activa-
tion-config-property deployment descriptor element. The property name used to specify the
acknowledgment mode is acknowledgeMode. If the acknowledgeMode property is not specified,
JMS AUTO_ACKNOWLEDGE semantics are assumed. The value of the acknowledgeMode property
must be either Auto-acknowledge or Dups-ok-acknowledge for a JMS message-driven bean.

5.4.16 Message Selectors for JMS Message-Driven Beans
The Bean Provider may declare the JMS message selector to be used in determining which messages a
JMS message-driven bean is to receive. If the Bean Provider wishes to restrict the messages that a JMS
message-driven bean receives, the Bean Provider can specify the value of the message selector by using
the activationConfig element of the MessageDriven annotation or by using the activa-
tion-config-property deployment descriptor element. The property name used to specify the
message selector is messageSelector.

For example:

@MessageDriven(activationConfig={
@ActivationConfigProperty(

propertyName=”messageSelector”,
propertyValue=”JMSType = ‘car’ AND color = ‘blue’ and weight

> 2500”)})

<activation-config>
<activation-config-property>
<activation-config-property-name>messageSelector</activation-con-
fig-property-name>
<activation-config-property-value>JMSType = ‘car’ AND color = ‘blue’
AND weight > 2500</activation-config-property-value>
</activation-config-property>
</activation-config>

The Application Assembler may further restrict, but not replace, the value of the messageSelector
property of a JMS message-driven bean.

5.4.17 Association of a Message-Driven Bean with a Destination or Endpoint

A message-driven bean is associated with a destination or endpoint when the bean is deployed in the
container. It is the responsibility of the Deployer to associate the message-driven bean with a destination
or endpoint.

5.4.17.1 JMS Message-Driven Beans

A JMS message-driven bean is associated with a JMS Destination (Queue or Topic) when the bean is
deployed in the container. It is the responsibility of the Deployer to associate the message-driven bean
with a Queue or Topic.
 11/5/09 144

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.1, Final Release Message-Driven Bean

Sun Microsystems, Inc.
The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is intended
to be associated with a queue or a topic by using the activationConfig element of the Mes-
sageDriven annotation or by using the activation-config-property deployment descrip-
tor element. The property name used to specify the destination type associated with the bean is
destinationType. The value for this property must be either javax.jms.Queue or
javax.jms.Topic for a JMS message-driven bean.

If the message-driven bean is intended to be used with a topic, the Bean Provider may further indicate
whether a durable or non-durable subscription should be used by using the activationConfig ele-
ment of the MessageDriven annotation or by using the activation-config-property
deployment descriptor element. The property name used to specify whether a durable or non-durable
subscription should be used is subscriptionDurability. The value for this property must be
either Durable or NonDurable for a JMS message-driven bean. If a topic subscription is specified
and subscriptionDurability is not specified, a non-durable subscription is assumed.

• Durable topic subscriptions, as well as queues, ensure that messages are not missed even if the
EJB server is not running. Reliable applications will typically make use of queues or durable
topic subscriptions rather than non-durable topic subscriptions.

• If a non-durable topic subscription is used, it is the container’s responsibility to make sure that
the message driven bean subscription is active (i.e., that there is a message driven bean avail-
able to service the message) in order to ensure that messages are not missed as long as the EJB
server is running. Messages may be missed, however, when a bean is not available to service
them. This will occur, for example, if the EJB server goes down for any period of time.

The Deployer should avoid associating more than one message-driven bean with the same JMS Queue.
If there are multiple JMS consumers for a queue, JMS does not define how messages are distribued
between the queue receivers.

5.4.18 Dealing with Exceptions

A message-driven bean’s message listener method must not throw the java.rmi.RemoteExcep-
tion.

Message-driven beans should not, in general, throw RuntimeExceptions.

A RuntimeException that is not an application exception thrown from any method of the mes-
sage-driven bean class (including a message listener method and the callbacks invoked by the container)
results in the transition to the “does not exist” state. If a message-driven bean uses bean-managed trans-
action demarcation and throws a RuntimeException, the container should not acknowledge the
message. Exception handling is described in detail in Chapter 14. See Section 12.5.1 for the rules per-
taining to lifecycle callback interceptor methods when more than one such method applies to the bean
class.

From the client perspective, the message consumer continues to exist. If the client continues sending
messages to the destination or endpoint associated with the bean, the container can delegate the client’s
messages to another instance.
145 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Message-Driven Bean State Diagram

Sun Microsystems, Inc.
The message listener methods of some messaging types may throw application exceptions. An applica-
tion exception is propagated by the container to the resource adapter.

5.4.19 Missed PreDestroy Callbacks

The Bean Provider cannot assume that the container will always invoke the PreDestroy callback
method (or ejbRemove method) for a message-driven bean instance. The following scenarios result in
the PreDestroy callback method not being called on an instance:

• A crash of the EJB container.

• A system exception thrown from the instance’s method to the container.

If the message-driven bean instance allocates resources in the PostConstruct lifecycle callback
method and/or in the message listener method, and releases normally the resources in the PreDes-
troy method, these resources will not be automatically released in the above scenarios. The applica-
tion using the message-driven bean should provide some clean up mechanism to periodically clean up
the unreleased resources.

5.4.20 Replying to a JMS Message

In standard JMS usage scenarios, the messaging mode of a message’s JMSReplyTo destination
(Queue or Topic) is the same as the mode of the destination to which the message has been sent.
Although a message-driven bean is not directly dependent on the mode of the JMS destination from
which it is consuming messages, it may contain code that depends on the mode of its message’s
JMSReplyTo destination. In particular, if a message-driven bean replies to a message, the mode of the
reply’s message producer and the mode of the JMSReplyTo destination must be the same. In order to
implement a message-driven bean that is independent of JMSReplyTo mode, the Bean Provider
should use instanceOf to test whether a JMSReplyTo destination is a Queue or Topic, and then use
a matching message producer for the reply.

5.5 Message-Driven Bean State Diagram

When a client sends a message to a Destination for which a message-driven bean is the consumer, the
container selects one of its method-ready instances and invokes the instance’s message listener method.

The following figure illustrates the life cycle of a message-driven bean instance.
 11/5/09 146

Message-Driven Bean State Diagram Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
Figure 9 Life Cycle of a Message-Driven Bean.

The following steps describe the life cycle of a message-driven bean instance:

• A message-driven bean instance’s life starts when the container invokes newInstance on
the message-driven bean class to create a new instance. Next, the container injects the bean’s
MessageDrivenContext, if applicable, and performs any other dependency injection as speci-
fied by metadata annotations on the bean class or by the deployment descriptor. The container
then calls the bean’s PostConstruct lifecycle callback methods, if any.

• The message-driven bean instance is now ready to be delivered a message sent to its associated
destination or endpoint by any client or a call from the container to a timeout callback method.

• When the container no longer needs the instance (which usually happens when the container
wants to reduce the number of instances in the method-ready pool), the container invokes the
PreDestroy lifecycle callback methods for it, if any. This ends the life of the mes-
sage-driven bean instance.

does not
 exist

method-ready
 pool

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks, if any

PreDestroy callbacks, if any

message listener method

message listener

newInstance()

action resulting from client message arrival

action initiated by container
method

Timeout callback method
147 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release Message-Driven Bean State Diagram

Sun Microsystems, Inc.
5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class

Table 4 defines the methods of a message-driven bean class in which the message-driven bean instances
can access the methods of the javax.ejb.MessageDrivenContext interface, the
java:comp/env environment naming context, resource managers, TimerService and Timer
methods, the EntityManager and EntityManagerFactory methods, and other enterprise
beans.

If a message-driven bean instance attempts to invoke a method of the MessageDrivenContext
interface, and the access is not allowed in Table 4, the container must throw and log the
java.lang.IllegalStateException.

If a message-driven bean instance attempts to invoke a method of the TimerService or Timer
interface, and the access is not allowed in Table 4, the container must throw the java.lang.Ille-
galStateException.
 11/5/09 148

Message-Driven Bean State Diagram Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
If a bean instance attempts to access a resource manager, an enterprise bean, or an entity manager or
entity manager factory, and the access is not allowed in Table 4, the behavior is undefined by the EJB
architecture.

Additional restrictions:

Table 4 Operations Allowed in the Methods of a Message-Driven Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection
methods (e.g., setMes-
sageDrivenContext)

MessageDrivenContext methods: lookup
JNDI access to java:comp/env

MessageDrivenContext methods: lookup
JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back methods

MessageDrivenContext methods: getTim-
erService, lookup, getContextData
JNDI access to java:comp/env
EntityManagerFactory access

MessageDrivenContext methods:
getUserTransaction, getTimerSer-
vice, lookup, getContextData

JNDI access to java:comp/env
EntityManagerFactory access

message listener
method, business
method interceptor
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, isCallerInRole,
getTimerService, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, isCallerInRole, getTimerSer-
vice, lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

timeout callback
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, getTimerService,
lookup, getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, getTimerService, lookup, get-
ContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods
149 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.
• The getRollbackOnly and setRollbackOnly methods of the MessageDriven-
Context interface should be used only in the message-driven bean methods that execute in
the context of a transaction. The container must throw the java.lang.IllegalState-
Exception if the methods are invoked while the instance is not associated with a transac-
tion.

The reasons for disallowing operations in Table 4:

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
message-driven bean methods for which the container does not have a meaningful transaction
context, and for all message-driven beans with bean-managed transaction demarcation.

• The UserTransaction interface is unavailable to message-driven beans with con-
tainer-managed transaction demarcation.

• Invoking getEJBHome or getEJBLocalHome is disallowed in message-driven bean meth-
ods because there are no EJBHome or EJBLocalHome objects for message-driven beans. The
container must throw and log the java.lang.IllegalStateException if these meth-
ods are invoked.

5.6 The Responsibilities of the Bean Provider

This section describes the responsibilities of the message-driven Bean Provider to ensure that a mes-
sage-driven bean can be deployed in any EJB container.

5.6.1 Classes and Interfaces

The message-driven Bean Provider is responsible for providing the following class files:

• Message-driven bean class.

• Interceptor classes, if any.

5.6.2 Message-Driven Bean Class

The following are the requirements for the message-driven bean class:

• The class must implement, directly or indirectly, the message listener interface required by the
messaging type that it supports or the methods of the message listener interface. In the case of
JMS, this is the javax.jms.MessageListener interface.

• The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.
 11/5/09 150

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
• The class must have a public constructor that takes no arguments. The container uses this
constructor to create instances of the message-driven bean class.

• The class must not define the finalize method.

Optionally:

• The class may implement, directly or indirectly, the javax.ejb.MessageDrivenBean
interface.

• The class may implement, directly or indirectly, the javax.ejb.TimedObject interface.

• The class may implement the ejbCreate method.

The message-driven bean class may have superclasses and/or superinterfaces. If the message-driven
bean has superclasses, the methods of the message listener interface, lifecycle callback interceptor
methods, timeout callback methods, the ejbCreate method, and the methods of the Mes-
sageDrivenBean interface may be defined in the message-driven bean class or in any of its super-
classes. A message-driven bean class must not have a superclass that is itself a message-driven bean
class

The message-driven bean class is allowed to implement other methods (for example, helper methods
invoked internally by the message listener method) in addition to the methods required by the EJB spec-
ification.

5.6.3 Message-Driven Bean Superclasses

A message-driven bean class is permitted to have superclasses that are themselves message-driven bean
classes. However, there are no special rules that apply to the processing of annotations or the deploy-
ment descriptor for this case. For the purposes of processing a particular message-driven bean class, all
superclass processing is identical regardless of whether the superclasses are themselves message-driven
bean classes. In this regard, the use of message-driven bean classes as superclasses merely represents a
convenient use of implementation inheritance, but does not have component inheritance semantics.

5.6.4 Message Listener Method

The message-driven bean class must define the message listener methods. The signature of a message
listener method must follow these rules:

The method must be declared as public.

The method must not be declared as final or static.
151 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
5.6.5 Lifecycle Callback Interceptor Methods

PostConstruct and PreDestroy lifecycle callback interceptor methods may be defined for mes-
sage-driven beans. If PrePassivate or PostActivate lifecycle callbacks are defined, they are
ignored.[28]

Compatibility Note: If the PostConstruct lifecycle callback interceptor method is the ejbCreate
method, or if the PreDestroy lifecycle callback interceptor method is the ejbRemove method, these
callback methods must be implemented on the bean class itself (or on its superclasses). Except for these
cases, the method names can be arbitrary, but must not start with “ejb” to avoid conflicts with the call-
back methods defined by the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an interceptor class
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defined in
Section 12.5, “Interceptors for LifeCycle Event Callbacks” .

5.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support a message-driven bean.
The Container Provider is responsible for providing the deployment tools, and for managing the mes-
sage-driven bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

5.7.1 Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional classes
when the message-driven bean is deployed. The tools obtain the information that they need for genera-
tion of the additional classes by introspecting the classes and interfaces provided by the enterprise Bean
Provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the mes-
sage-driven bean class. This code may, for example, help the container to manage the bean instances at
runtime. Subclassing, delegation, and code generation can be used by the tools.

5.7.2 Deployment of JMS Message-Driven Beans

The Container Provider must support the deployment of a JMS message-driven bean as the consumer of
a JMS queue or a durable subscription.

[28] This might result from the use of default interceptor classes, for example.
 11/5/09 152

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.
5.7.3 Request/Response Messaging Types
If the message listener supports a request/response messaging type, it is the container’s responsibility to
deliver the message response.

5.7.4 Non-reentrant Instances

The container must ensure that only one thread can be executing an instance at any time.

5.7.5 Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and excep-
tion handling, as described in Chapters 13, 17, and 14.
153 November 5, 2009 11:00 am

Message-Driven Bean Component Contract Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
 11/5/09 154

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release Persistence

Sun Microsystems, Inc.
Chapter 6 Persistence

The model for persistence and object/relational mapping was considerably revised and enhanced in the
Enterprise JavaBeans 3.0 release. The contracts and requirements for persistent entities are now defined
by an independent specification , the “Java Persistence API” [2], which also contains the full specifica-
tion of the Java Persistence query language and the metadata for object/relational mapping.

Chapters 7, 8, and 10 of this specification document the client view of entity beans under the earlier EJB
2.1 programming model, the contracts for EJB 2.1 Entity Beans with Container-Managed Persistence,
and the contracts for EJB 2.1 Entity Beans with Bean-Managed Persistence respectively.
155 November 5, 2009 11:00 am

Persistence Enterprise JavaBeans 3.1, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
 11/5/09 156

Overview Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
Chapter 7 Client View of an EJB 2.1 Entity Bean

This chapter describes the client view of an EJB 2.1 entity bean. It is actually a contract fulfilled by the
container in which the entity bean is deployed. Only the business methods are supplied by the enterprise
bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the con-
tainer, the container itself is transparent to the client.

The contents of this chapter apply only to entities as defined in the Enterprise JavaBeans 2.1 specifica-
tion[3]. The client view of a persistent entity is described in the document “Java Persistence API” [2].

The EJB 2.1 Entity Bean Contracts have been proposed for future removal. See Section 2.7 for more
details.

7.1 Overview

For a client, an entity bean is a component that represents an object-oriented view of some entities
stored in a persistent storage, such as a database, or entities that are implemented by an existing enter-
prise application.

The client of an entity bean may be a local client or the client may be a remote client.
157 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Remote Clients

Sun Microsystems, Inc.
This section provides an overview of the entity bean client view that is independent of whether the cli-
ent is a remote client or a local client. The differences between remote clients and local clients are dis-
cussed in the following sections.

From its creation until its destruction, an entity object lives in a container. Transparently to the client,
the container provides security, concurrency, transactions, persistence, and other services for the entity
objects that live in the container. The container is transparent to the client—there is no API that a client
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity bean is
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the container in
which the entity object has been created. The object identity is implemented by the container with the
cooperation of the enterprise bean class.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a container,
the container provides a class that implements a home interface for the entity bean. This interface allows
the client to create, find, and remove entity objects within the enterprise bean’s home as well as to exe-
cute home business methods, which are not specific to a particular entity bean object. A client can
obtain the entity bean’s home interface through dependency injection, or the client can look up the
entity bean’s home interface through JNDI. It is the responsibility of the container to make the entity
bean’s home interface available in the JNDI name space.

A client view of an entity bean is independent of the implementation of the entity bean and its container.
This ensures that a client application is portable across all container implementations in which the entity
bean might be deployed.

7.2 Remote Clients

A remote client accesses an entity bean through the entity bean’s remote and remote home interfaces.
The remote and remote home interfaces of the entity bean provide the remote client view.

The remote client view of an entity bean is location independent. A client running in the same JVM as
an entity bean instance uses the same API to access the entity bean as a client running in a different
JVM on the same or different machine.

The container provides classes that implement the entity bean’s remote and remote home interfaces. The
objects that implement the remote home and remote objects are remote Java objects, and are accessible
from a client through the standard Java™ APIs for remote object invocation [6].

A remote client of an entity object can be another enterprise bean deployed in the same or different con-
tainer or can be an arbitrary Java program, such as an application, applet, or servlet. The remote client
view of an entity bean can also be mapped to non-Java client environments, such as CORBA clients not
written in the Java programming language.
 11/5/09 158

Local Clients Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
7.3 Local Clients

Entity beans may also have local clients. A local client is a client that is collocated with the entity bean
and which may be tightly coupled to the bean.

Unlike the remote client view, the local client view of an entity bean is not location independent. The
local client view requires the collocation in the same JVM of both the local client and the entity bean
that provides the local client view. The local client view therefore does not provide the location trans-
parency provided by the remote client view.

A local client accesses an entity bean through the entity bean’s local home and local component inter-
faces. The container provides classes that implement the entity bean’s local home and local component
interfaces. The objects that implement the local home and local component interfaces are local Java
objects.

The arguments of the methods of the local component interface and local home interface are passed by
reference[29]. Such entity beans and their clients must be coded to assume that the state of any Java
object that is passed as an argument or result is potentially shared by caller and callee.

A local client of an entity bean may be a session bean, a message-driven bean, another entity bean, or a
web-tier component.

The choice between the use of a local or remote programming model is a design decision that the Bean
Provider makes when developing the entity bean application. In general, however, entity beans are
intended to be used with local clients. While it is possible to provide both a client view and a local client
view for an entity bean with container-managed persistence, it is more likely that the entity bean will be
designed with the local view in mind.

Entity beans that have container-managed relationships with other entity beans, as described in Chapter
8, “EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence”, must be accessed in
the same local scope as those related beans, and therefore typically provide a local client view. In order
to be the target of a container-managed relationship, an entity bean with container-managed persistence
must provide a local component interface.

7.4 EJB Container

An EJB container (container for short) is a system that functions as a runtime container for enterprise
beans.

[29] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of that primitive
type; an argument variable of a reference type hold a reference to the object. See [28].
159 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release EJB Container

Sun Microsystems, Inc.
Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in a con-
tainer, the container provides a home interface that allows the client to create, find, and remove entity
objects that belong to the entity bean. The home interface may also provide home business methods,
which are not specific to a particular entity bean object. The container makes the entity bean’s home
interface (defined by the Bean Provider and implemented by the Container Provider) available in the
JNDI name space for clients.

An EJB server may host one or multiple EJB containers. The containers are transparent to the client:
there is no client-level API to manipulate the container.

7.4.1 Locating an Entity Bean’s Home Interface

A client obtains an entity bean’s home interface through dependency injection, or the client locates an
entity bean’s home interface using JNDI. A client’s JNDI name space may be configured to include the
home interfaces of enterprise beans deployed in multiple EJB containers located on multiple machines
on a network. The actual location of an EJB container is, in general, transparent to the client.

For example, the local home interface for the Account entity bean can be located using the following
code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)

initialContext.lookup(“java:comp/env/ejb/accounts”);

If dependency injection were used, the home interface could be obtained as follows:

@EJB AccountHome accountHome;

7.4.2 What a Container Provides

The following diagram illustrates the view that a container provides to the client of the entity beans
deployed in the container. Note that a client may be a local client of some entity beans and a remote cli-
ent of others.
 11/5/09 160

Entity Bean’s Remote Home Interface Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
Figure 10 Client View of Entity Beans Deployed in a Container

7.5 Entity Bean’s Remote Home Interface

This section is specific to entity beans that provide a remote client view. Local home interfaces are
described in Section 7.6.

The container provides the implementation of the remote home interface for each entity bean deployed
in the container that defines a remote home interface. An object that implements an entity bean’s remote
home interface is called an EJBHome object.

The entity bean’s remote home interface allows a client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

entity bean 1

EJB objects

EJBLocalHome

EJB objectsEJBLocalObjects

entity bean 2

other enterprise beans
161 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Bean’s Remote Home Interface

Sun Microsystems, Inc.
• Remove an entity object from the home.

• Execute a home business method.

• Get the javax.ejb.EJBMetaData interface for the entity bean. The javax.ejb.EJB-
MetaData interface is intended to allow application assembly tools to discover the metadata
information about the entity bean. The metadata information allows loose client/server binding
and scripting.

• Obtain a handle for the home interface. The home handle can be serialized and written to stable
storage. Later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain a reference to the home interface.

An entity bean’s remote home interface must extend the javax.ejb.EJBHome interface and follow
the standard rules for Java programming language remote interfaces.

7.5.1 Create Methods

An entity bean’s remote home interface can define zero or more create<METHOD> methods, one for
each way to create an entity object. The arguments of the create methods are typically used to initial-
ize the state of the created entity object. The name of each create method starts with the prefix “cre-
ate”.

The return type of a create<METHOD> method on the remote home interface is the entity bean’s
remote interface.

The throws clause of every create<METHOD> method on the remote home interface includes the
java.rmi.RemoteException and the javax.ejb.CreateException. It may include addi-
tional application-level exceptions.

The following home interface illustrates three possible create methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException,

LowInitialBalanceException;
public Account createLargeAccount(String firstname,

String lastname, double initialBalance)
 throws RemoteException, CreateException;

 ...
}

 11/5/09 162

Entity Bean’s Remote Home Interface Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

7.5.2 Finder Methods

An entity bean’s remote home interface defines one or more finder methods[30], one for each way to
find an entity object or collection of entity objects within the home. The name of each finder method
starts with the prefix “find”, such as findLargeAccounts. The arguments of a finder method are
used by the entity bean implementation to locate the requested entity objects. The return type of a finder
method on the remote home interface must be the entity bean’s remote interface, or a type representing
a collection of objects that implement the entity bean’s remote interface (see Subsections 8.5.7 and
10.1.9).

The throws clause of every finder method on the remote home interface includes the
java.rmi.RemoteException and the javax.ejb.FinderException exceptions.

The remote home interface includes the findByPrimaryKey(primaryKey) method, which
allows a client to locate an entity object using a primary key. The name of the method is always find-
ByPrimaryKey; it has a single argument that is the same type as the entity bean’s primary key type,
and its return type is the entity bean’s remote interface. There is a unique findByPrima-
ryKey(primaryKey) method for an entity bean on its remote home interface; this method must not
be overloaded. The implementation of the findByPrimaryKey(primaryKey) method must
ensure that the entity object exists.

The following example shows the findByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws RemoteException, FinderException;
}

The following example illustrates how a client uses the findByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

[30] The findByPrimaryKey method is mandatory for the remote home interface of all entity beans.
163 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Bean’s Remote Home Interface

Sun Microsystems, Inc.
7.5.3 Remove Methods

The javax.ejb.EJBHome interface defines several methods that allow the client to remove an
entity object.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,

RemoveException;
 void remove(Object primaryKey) throws RemoteException,

RemoveException;
}

After an entity object has been removed, subsequent attempts to access the entity object by a remote cli-
ent result in the java.rmi.NoSuchObjectException.

7.5.4 Home Methods

An entity bean’s remote home interface may define one or more home methods. Home methods are
methods that the Bean Provider supplies for business logic that is not specific to an entity bean instance.

Home methods on the remote home interface can have arbitrary method names, but they must not start
with “create”, “find”, or “remove”.The arguments of a home method are used by the entity bean
implementation in computations that do not depend on a specific entity bean instance. The method argu-
ments and return value types of a home method on the remote home interface must be legal types for
RMI-IIOP.

The throws clause of every home method on the remote home interface includes the
java.rmi.RemoteException. It may also include additional application-level exceptions.

The following example shows two home methods:

public interface EmployeeHome extends javax.ejb.EJBHome {
...
// this method returns a living index depending on
// the state and the base salary of an employee:
// the method is not specific to an instance
public float livingIndex(String state, float Salary)

throws RemoteException;

// this method adds a bonus to all of the employees
// based on a company profit-sharing index
public void addBonus(float company_share_index)

throws RemoteException, ShareIndexOutOfRangeException;

...
}

 11/5/09 164

Entity Bean’s Local Home Interface Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
7.6 Entity Bean’s Local Home Interface

The container provides the implementation of the local home interface for each entity bean deployed in
the container that defines a local home interface. An object that implements an entity bean’s local home
interface is called an EJBLocalHome object.

The entity bean’s local home interface allows a local client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

• Remove an entity object from the home.

• Execute a home business method.

An entity bean’s local home interface must extend the javax.ejb.EJBLocalHome interface.

7.6.1 Create Methods

An entity bean’s local home interface can define zero or more create<METHOD> methods, one for
each way to create an entity object. The arguments of the create methods are typically used to initial-
ize the state of the created entity object. The name of each create method starts with the prefix “cre-
ate”.

The return type of a create<METHOD> method on the local home interface is the entity bean’s local
interface.

The throws clause of every create<METHOD> method on the local home interface includes the
javax.ejb.CreateException. It may include additional application-level exceptions. It must
not include the java.rmi.RemoteException.

The following local home interface illustrates three possible create methods:

public interface AccountHome extends javax.ejb.EJBLocalHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws CreateException, LowInitialBalanceException;

public Account createLargeAccount(String firstname,
String lastname, double initialBalance)
 throws CreateException;

 ...
}

165 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Bean’s Local Home Interface

Sun Microsystems, Inc.
The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

7.6.2 Finder Methods

An entity bean’s local home interface defines one or more finder methods[31], one for each way to find
an entity object or collection of entity objects within the home. The name of each finder method starts
with the prefix “find”, such as findLargeAccounts. The arguments of a finder method are used
by the entity bean implementation to locate the requested entity objects. The return type of a finder
method on the local home interface must be the entity bean’s local interface, or a type representing a
collection of objects that implement the entity bean’s local interface (see Subsections 8.5.7 and 10.1.9).

The throws clause of every finder method on the local home interface includes the
javax.ejb.FinderException. The throws clause must not include the java.rmi.Remo-
teException.

The local home interface includes the findByPrimaryKey(primaryKey) method, which allows
a client to locate an entity object using a primary key. The name of the method is always findByPri-
maryKey; it has a single argument that is the same type as the entity bean’s primary key type, and its
return type is the entity bean’s local interface. There is a unique findByPrimaryKey(prima-
ryKey) method for an entity bean on its local home interface; this method must not be overloaded.
The implementation of the findByPrimaryKey method must ensure that the entity object exists.

The following example shows the findByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBLocalHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws FinderException;
}

The following example illustrates how a client uses the findByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

7.6.3 Remove Methods

The javax.ejb.EJBLocalHome interface defines the remove method to allow the client to
remove an entity object.

public interface EJBLocalHome {
void remove(Object primaryKey) throws RemoveException,

EJBException;
}

[31] The findByPrimaryKey method is mandatory for the local home interface of all Entity Beans.
 11/5/09 166

Entity Object’s Life Cycle Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
After an entity object has been removed, subsequent attempts to access the local entity object by the
local client result in the javax.ejb.NoSuchObjectLocalException.

7.6.4 Home Methods

An entity bean’s local home interface may define one or more home methods. Home methods are meth-
ods that the Bean Provider supplies for business logic that is not specific to an entity bean instance.

Home methods can have arbitrary method names, but they must not start with “create”, “find”, or
“remove”.The arguments of a home method are used by the entity bean implementation in computa-
tions that do not depend on a specific entity bean instance.

The throws clause of a home method on the local home interface may include additional applica-
tion-level exceptions. It must not include the java.rmi.RemoteException.

The following example shows two home methods:

public interface EmployeeHome extends javax.ejb.EJBLocalHome {
...
// this method returns a living index depending on
// the state and the base salary of an employee:
// the method is not specific to an instance
public float livingIndex(String state, float Salary);

// this method adds a bonus to all of the employees
// based on a company profit sharing index
public void addBonus(float company_share_index)

throws ShareIndexOutOfRangeException;

...
}

7.7 Entity Object’s Life Cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The term “refer-
enced” in the diagram means that the client program has a reference to the entity object’s remote or
local interface.)
167 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Object’s Life Cycle

Sun Microsystems, Inc.
Figure 11 Client View of Entity Object Life Cycle

An entity object does not exist until it is created. Until it is created, it has no identity. After it is created,
it has identity. A client creates an entity object using the entity bean’s home interface, whose class is
implemented by the container. When a client creates an entity object, the client obtains a reference to
the newly created entity object.

In an environment with legacy data, entity objects may “exist” before the container and entity bean are
deployed. In addition, an entity object may be “created” in the environment via a mechanism other than
by invoking a create<METHOD> method of the home interface (e.g. by inserting a database record),
but still may be accessible via the finder methods. Also, an entity object may be deleted directly using
other means than the remove operation (e.g. by deletion of a database record). The “direct insert” and
“direct delete” transitions in the diagram represent such direct database manipulation.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.remove(...)

object.remove()

release reference

object.businessMethod(...)

object.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException or

home.remove(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or

home.find(...)

home.businessMethod(...)

home.create<METHOD>(...)

NoSuchObjectLocalException
 11/5/09 168

Entity Object’s Life Cycle Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
All entity objects are considered persistent objects. The lifetime of an entity object is not limited by the
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a crash
of the Java Virtual Machine may result in a rollback of current transactions, it does not destroy previ-
ously created entity objects nor invalidate the references to the home and component interfaces held by
clients.

Multiple clients can access the same entity object concurrently. Transactions are used to isolate the cli-
ents’ work from each other.

7.7.1 References to Entity Object Remote Interfaces

A client can get a reference to an existing entity object’s remote interface in any of the following ways:

• Receive the reference as a parameter in a method call (input parameter or result).

• Find the entity object using a finder method defined in the entity bean’s remote home interface.

• Obtain the reference from the entity object’s handle. (See Section 7.11).

A client that has a reference to an entity object’s remote interface can do any of the following:

• Invoke business methods on the entity object through the remote interface.

• Obtain a reference to the enterprise bean’s remote home interface.

• Pass the reference as a parameter or return value of a method call.

• Obtain the entity object’s primary key.

• Obtain the entity object’s handle.

• Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an entity
object that does not exist result in an java.rmi.NoSuchObjectException being thrown.

7.7.2 References to Entity Object Local Interfaces

A local client can get a reference to an existing entity object’s local interface in any of the following
ways:

• Receive the reference as a result of a method call.

• Find the entity object using a finder method defined in the entity bean’s local home interface.

A local client that has a reference to an entity object’s local interface can do any of the following:

• Invoke business methods on the entity object through the local interface.
169 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Primary Key and Object Identity

Sun Microsystems, Inc.
• Obtain a reference to the enterprise bean’s local home interface.

• Pass the reference as a parameter or return value of a local method call.

• Obtain the entity object’s primary key.

• Remove the entity object.

All local references to an entity object that does not exist are invalid. All attempted invocations on an
entity object that does not exist result in a javax.ejb.NoSuchObjectLocalException being
thrown.

A local interface type must not be passed as an argument or result of a remote interface method.

7.8 Primary Key and Object Identity

Every entity object has a unique identity within its home. If two entity objects have the same home and
the same primary key, they are considered identical.

The Enterprise JavaBeans architecture allows a primary key class to be any class that is a legal Value
Type in RMI-IIOP, subject to the restrictions defined in Subsections 8.6.13 and 10.2.12. The primary
key class may be specific to an entity bean class (i.e., each entity bean class may define a different class
for its primary key, but it is possible that multiple entity beans use the same primary key class).

A client that holds a reference to an entity object’s component interface can determine the entity
object’s identity within its home by invoking the getPrimaryKey method on the reference.

The object identity associated with a reference does not change over the lifetime of the reference. (That
is, getPrimaryKey always returns the same value when called on the same entity object reference).
If an entity object has both a remote home interface and a local home interface, the result of invoking
the getPrimaryKey method on a reference to the entity object’s remote interface and on a reference
to the entity object’s local interface is the same.

A client can test whether two entity object references refer to the same entity object by using the isI-
dentical method. Alternatively, if a client obtains two entity object references from the same home,
it can determine if they refer to the same entity by comparing their primary keys using the equals
method.
 11/5/09 170

Entity Bean’s Remote Interface Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
The following code illustrates using the isIdentical method to test if two object references refer to
the same entity object:

Account acc1 = ...;
Account acc2 = ...;

if (acc1.isIdentical(acc2)) {
// acc1 and acc2 are the same entity object

} else {
// acc2 and acc2 are different entity objects

}

A client that knows the primary key of an entity object can obtain a reference to the entity object by
invoking the findByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e. use of the ==
operator) for entity object references. The result of comparing two object references using the Java pro-
gramming language Object.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not guaran-
teed to yield the same result. Therefore, a client should always use the isIdentical method to deter-
mine if two entity object references refer to the same entity object.

Note that the use of isIdentical for the comparison of object references applies to the
implementation of the methods of the java.util.Collection API as well.

7.9 Entity Bean’s Remote Interface

A client can access an entity object through the entity bean’s remote interface. An entity bean’s remote
interface must extend the javax.ejb.EJBObject interface. A remote interface defines the busi-
ness methods that are callable by remote clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObject interface defines the methods that allow the client to perform the fol-
lowing operations on an entity object’s reference:

• Obtain the remote home interface for the entity object.

• Remove the entity object.
171 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Bean’s Local Interface

Sun Microsystems, Inc.
• Obtain the entity object’s handle.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in the javax.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class.

Note that the entity object does not expose the methods of the javax.ejb.EnterpriseBean
interface to the client. These methods are not intended for the client—they are used by the container to
manage the enterprise bean instances.

7.10 Entity Bean’s Local Interface

A local client can access an entity object through the entity bean’s local interface. An entity bean’s local
interface must extend the javax.ejb.EJBLocalObject interface. A local interface defines the
business methods that are callable by local clients.

The following example illustrates the definition of an entity bean’s local interface:

public interface Account extends javax.ejb.EJBLocalObject {
void debit(double amount)

throws InsufficientBalanceException;
void credit(double amount);
double getBalance();

}

Note that the methods of the entity bean’s local interface must not throw the java.rmi.RemoteEx-
ception.

The javax.ejb.EJBLocalObject interface defines the methods that allow the local client to per-
form the following operations on an entity object’s local reference:

• Obtain the local home interface for the entity object.

• Remove the entity object.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in the javax.ejb.EJBLo-
calObject interface. Only the business methods are delegated to the instances of the enterprise bean
class.

Note that the entity object does not expose the methods of the javax.ejb.EntityBean or the
optional javax.ejb.TimedObject interface to the local client. These methods are not intended for
the local client—they are used by the container to manage the enterprise bean instances.
 11/5/09 172

Entity Bean’s Handle Enterprise JavaBeans 3.1, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.
7.11 Entity Bean’s Handle

An entity object’s handle is an object that identifies the entity object on a network. A client that has a
reference to an entity object’s remote interface can obtain the entity object’s handle by invoking the
getHandle method on the remote interface. The getHandle method is only available on the remote
interface.

Since a handle class extends java.io.Serializable, a client may serialize the handle. The client
may use the serialized handle later, possibly in a different process or even system, to re-obtain a refer-
ence to the entity object identified by the handle.

The client code must use the javax.rmi.PortableRemoteObject.narrow method to convert
the result of the getEJBObject method invoked on a handle to the entity bean’s remote interface
type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a program
running in one JVM must be able to obtain and serialize the handle, and another program running in a
different JVM must be able to deserialize it and re-create an object reference. An entity handle is typi-
cally implemented to be usable over a long period of time—it must be usable at least across a server
restart.

Containers that store long-lived entities will typically provide handle implementations that allow clients
to store a handle for a long time (possibly many years). Such a handle will be usable even if parts of the
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced while the
client has stored the handle. Support for this “quality of service” is not required by the EJB specifica-
tion.

An EJB container is not required to accept a handle that was generated by another vendor’s EJB con-
tainer.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account entity object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the
// handle to resurrect an object reference to the
// account entity object.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account)javax.rmi.PortableRemoteObject.narrow(

handle.getEJBObject(), Account.class);
account.debit(100.00);
173 November 5, 2009 11:00 am

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.1, Final Release Entity Home Handles

Sun Microsystems, Inc.
A handle is not a capability, in the security sense, that would automatically grant its holder the right to
invoke methods on the object. When a reference to an object is obtained from a handle, and then a
method on the object is invoked, the container performs the usual access checks based on the caller’s
principal.

7.12 Entity Home Handles

The EJB specification allows a client to obtain a handle for the remote home interface. The client can
use the home handle to store a reference to an entity bean’s remote home interface in stable storage, and
re-create the reference later. This handle functionality may be useful to a client that needs to use the
remote home interface in the future, but does not know the JNDI name of the remote home interface.

A handle to a remote home interface must implement the javax.ejb.HomeHandle interface.

The client code must use the javax.rmi.PortableRemoteObject.narrow method to convert
the result of the getEJBHome method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At a minimum, a program
running in one JVM must be able to serialize the handle, and another program running in a different
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically imple-
mented to be usable over a long period of time—it must be usable at least across a server restart.

7.13 Type Narrowing of Object References

A client program that is intended to be interoperable with all compliant EJB container implementations
must use the javax.rmi.PortableRemoteObject.narrow method to perform type-narrow-
ing of the client-side representations of the remote home and remote interfaces.

Note: Programs that use the cast operator to narrow the remote and remote home interfaces are likely
to fail if the container implementation uses RMI-IIOP as the underlying communication transport.
 11/5/09 174

Type Narrowing of Object References Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Chapter 8 EJB 2.1 Entity Bean Component Contract
for Container-Managed Persistence

The EJB 2.1 entity bean component contract for container-managed persistence is the contract between
an entity bean and its container. It defines the life cycle of the entity bean instances, the model for
method delegation of the business methods invoked by the client, and the model for the management of
the entity bean’s persistent state and relationships. The main goal of this contract is to ensure that an
entity bean component using container-managed persistence is portable across all compliant EJB con-
tainers.

This chapter defines the Enterprise Bean Provider’s view of this contract and responsibilities of the
Container Provider for managing the life cycle of the enterprise bean instances and their persistent state
and relationships.

The contents of this chapter apply only to entity bean components with container-managed persistence
as defined in the Enterprise JavaBeans 2.1 specification [3]. The contracts for persistent entities are
described in the document “Java Persistence API” [2].

The EJB 2.1 Entity Bean Contracts have been proposed for future removal. See Section 2.7 for more
details.

Note that use of dependency injection, interceptors, and Java language metadata annotations is not
supported for EJB 2.1 entity beans.
175 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
8.1 Overview

In accordance with the architecture for container-managed persistence, the Bean Provider develops a set
of entity beans for an application, and determines the relationships among them. The Bean Provider
designs an abstract persistence schema for each entity bean, which defines its container-managed fields
and relationships, and determines the methods for accessing them. The entity bean instance accesses its
container-managed fields and relationships at runtime by means of the methods defined for its abstract
persistence schema.

The abstract persistence schema is specified in the deployment descriptor that is produced by the Bean
Provider. The Deployer, using the Container Provider’s tools, determines how the persistent fields and
relationships defined by the abstract persistence schema are mapped to a database or other persistent
store, and generates the necessary additional classes and interfaces that enable the container to manage
the persistent fields and relationships of the entity bean instances at runtime.

This chapter describes the component contract for an EJB 2.1 entity bean with container-managed per-
sistence, and how data independence is maintained between the entity bean instance and its representa-
tion in the persistent store. It describes this contract from the viewpoints of both the Bean Provider and
the container.

8.2 Container-Managed Entity Persistence and Data
Independence

The EJB component model provides a separation between the client view of a bean (as presented by its
home and component interfaces) and the entity bean class (which provides the implementation of the
client view). The EJB architecture for container-managed persistence adds to this a separation between
the entity bean class (as defined by the Bean Provider) and its persistent representation. The con-
tainer-managed persistence architecture thus provides not only a layer of data independence between
the client view of a bean as an entity object and the Bean Provider’s internal view of the bean in terms of
the entity bean instance, but also between the entity bean instance and its persistent representation. This
allows an entity bean to be evolved independently from its clients, without requiring the redefinition or
recompilation of those clients, and it allows an entity bean to be redeployed across different containers
and different persistent data stores, without requiring the redefinition or recompilation of the entity bean
class.

In container-managed persistence, unlike in bean-managed persistence, the Bean Provider does not
write database access calls in the methods of the entity bean class. Instead, persistence is handled by the
container at runtime. The entity Bean Provider must specify in the deployment descriptor those persis-
tent fields and relationships for which the container must handle data access. The Bean Provider codes
all persistent data access by using the accessor methods that are defined for the abstract persistence
schema. The implementation of the persistent fields and relationships, as well as all data access, is
deferred to the container.
 11/5/09 176

Container-Managed Entity Persistence and Data IndependenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Component

Sun Microsystems, Inc.
It is the responsibility of the Deployer to map the abstract persistence schema of a set of interrelated
entity bean classes into the physical schema used by the underlying data store (e.g., into a relational
schema) by using the Container Provider’s tools. The Deployer uses the deployment descriptor as input
to the Container Provider’s tools to perform this mapping. The Container Provider’s tools are also used
to generate the concrete implementation of the entity bean classes, including the code that delegates
calls to the accessor methods of the entity bean class to the runtime persistent data access layer of the
container.

The EJB deployment descriptor for EJB 2.1 entity beans describes logical relationships among entity
beans. It does not provide a mechanism for specifying how the abstract persistence schema of an entity
bean or of a set of interrelated entity beans is to be mapped to an underlying database. This is the
responsibility of the Deployer, who, using the Container Provider’s tools, uses the logical relationships
that are specified in the deployment descriptor to map to the physical relationships that are specific to
the underlying resource. It is the responsibility of the container to manage the mapping between the log-
ical and physical relationships at runtime and to manage the referential integrity of the relationships.

The advantage of using container-managed persistence is that the entity bean can be logically indepen-
dent of the data source in which the entity is stored. The Container Provider’s tools can, for example,
generate classes that use JDBC or SQLJ to access the entity state in a relational database; classes that
implement access to a non-relational data source, such as an IMS database; or classes that implement
function calls to existing enterprise applications. These tools are typically specific to each data source.
177 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Figure 12 View of Underlying Data Sources Accessed Through Entity Bean

8.3 The Entity Bean Provider’s View of Container-Managed
Persistence

An entity bean implements an object view of a business entity or set of business entities stored in an
underlying database or implemented by an existing enterprise application (for example, by a mainframe
program or by an ERP application).

An entity bean with container-managed persistence typically consists of its entity bean class; a compo-
nent interface which defines its client view business methods; a home interface which defines the cre-
ate, remove, home, and finder methods of its client view; and its abstract persistence schema as
specified in the deployment descriptor.

A client of an entity bean can control the life cycle of a bean by using the bean’s home interface and can
manipulate the bean as a business entity by using the methods defined by its component interface. The
home and component interfaces of a bean define its client view.

container

Order 100

Order

container

Order 100

entity bean

existing
application

(a) Entity bean is an object view of a collection of related records

(b) Entity bean is an object view of an existing application

Order entity
bean

 in the database

 client

 client
 11/5/09 178

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
An entity bean with container-managed persistence typically has container-managed relationships with
other container-managed persistence entity beans, as defined by the relationships element of the
deployment descriptor. The architecture for container-managed persistence thus allows the Bean Pro-
vider to implement complex applications by defining a complex abstract persistence schema encom-
passing multiple entity bean classes related by means of container-managed relationships.

An entity bean accesses related entity beans by means of the accessor methods for its container-man-
aged relationship fields, which are specified by the cmr-field elements of its abstract persistence
schema defined in the deployment descriptor. Entity bean relationships are defined in terms of the local
interfaces of the related beans, and the view an entity bean presents to its related beans is defined by its
local home and local interfaces. Thus, an entity bean can be the target of a relationship from another
entity bean only if it has a local interface.

The Bean Provider programming an application that uses container-managed persistence typically
avoids calls to the methods of the remote home and remote interfaces in favor of invoking related beans
by means of the methods of their local interfaces. Unlike remote method calls, such internal method
invocations are made using call-by-reference and commonly do not involve the checking of method per-
missions.

The Enterprise JavaBeans architecture for container-managed persistence provides great flexibility to
the Bean Provider in designing an application.

For example, a group of related entity beans—Order, LineItem, and Customer—might
all be defined as having only local interfaces, with a remotable session bean containing the
business logic that drives their invocation. The individual entity beans form a coordinated
whole that provides an interrelated set of services that are exposed by their several home and
component interfaces. The services provided by the local network of entity beans is exposed to
the remote client view through the home and remote interfaces of the session bean, which
offers a coarser grained remote service.

Alternatively, a single entity bean might represent an independent, remotable business object
that forms a unit of distribution that is designed to be referenced remotely by multiple enter-
prise beans and/or other remote clients. Such a remotable entity bean might make use of other
entity beans within its local scope to further model its complex internal state. For example, an
Order entity bean might make use of a LineItem entity bean internally, not exposing it to
remote clients. In this case, the Order entity bean might define both a remote and a local
component interface, where the local interface is presented only to the related entity beans,
such as LineItem, and the remote interface is presented to session beans and/or web-tier cli-
ents.

8.3.1 The Entity Bean Provider’s Programming Contract

The Bean Provider must observe the following programming contract when defining an entity bean
class that uses container-managed persistence:

• The Bean Provider must define the entity bean class as an abstract class. The container pro-
vides the implementation class that is used at runtime.
179 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
• The container-managed persistent fields and container-managed relationship fields must not be
defined in the entity bean class. From the perspective of the Bean Provider, the container-man-
aged persistent fields and container-managed relationship fields are virtual fields only, and are
accessed through get and set accessor methods. The implementation of the container-managed
persistent fields and container-managed relationship fields is supplied by the container.

• The container-managed persistent fields and container-managed relationship fields must be
specified in the deployment descriptor using the cmp-field and cmr-field elements
respectively. The names of these fields must be valid Java identifiers and must begin with a
lowercase letter, as determined by java.lang.Character.isLowerCase.

• The Bean Provider must define the accessor methods for the container-managed persistent
fields and container-managed relationship fields as get and set methods, using the JavaBeans
conventions. The implementation of the accessor methods is supplied by the container.

• The accessor methods must be public, must be abstract, and must bear the name of the con-
tainer-managed persistent field (cmp-field) or container-managed relationship field
(cmr-field) that is specified in the deployment descriptor, and in which the first letter of the
name of the cmp-field or cmr-field has been uppercased and prefixed by “get” or “set”.

• The accessor methods for a container-managed relationship field must be defined in terms of
the local interface of the related entity bean, as described in Section 8.3.2.

• The accessor methods for container-managed relationship fields for one-to-many or
many-to-many relationships must utilize one of the following Collection interfaces:
java.util.Collection or java.util.Set. The Collection interfaces used in rela-
tionships are specified in the deployment descriptor. The implementation of the collection
classes used for the container-managed relationship fields is supplied by the container.

• An entity bean local interface type (or a collection of such) can be the type of a cmr-field. An
entity bean local interface type (or a collection of such) cannot be the type of a cmp-field.

• The accessor methods for the container-managed relationship fields must not be exposed in the
remote interface of an entity bean.

• The local interface types of the entity bean and of related entity beans must not be exposed
through the remote interface of the entity bean.

• The collection classes that are used for container-managed relationships must not be exposed
through the remote interface of the entity bean.

• Once the primary key for an entity bean has been set, the Bean Provider must not attempt to
change it by use of set accessor methods on the primary key cmp-fields. The Bean Provider
should therefore not expose the set accessor methods for the primary key cmp-fields in the
component interface of the entity bean.

• The Bean Provider must ensure that the Java types assigned to the cmp-fields are restricted to
the following: Java primitive types and Java serializable types.
 11/5/09 180

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.2 The Entity Bean Provider’s View of Persistent Relationships

An entity bean may have relationships with other entity beans with container-managed persistence.

Relationships may be one-to-one, one-to-many, or many-to-many relationships.

Container-managed relationships can exist only among entity beans within the same local relationship
scope, as defined by the relationships element in the deployment descriptor. Container-managed
relationships are defined in terms of the local interfaces of the related beans.

Relationships may be either bidirectional or unidirectional. If a relationship is bidirectional, it can be
navigated in both directions, whereas a unidirectional relationship can be navigated in one direction
only.

A unidirectional relationship is implemented with a cmr-field on the entity bean instance from which
navigation can take place, and no related cmr-field on the entity bean instance that is the target of the
relationship. Unidirectional relationships are typically used when the Bean Provider wishes to restrict
the visibility of a relationship.

An entity bean that does not have a local interface can have only unidirectional relationships from itself
to other entity beans. The lack of a local interface prevents other entity beans from having a relationship
to it.

The bean developer navigates or manipulates relationships by using the get and set accessor methods
for the container-managed relationship fields and the java.util.Collection API for collec-
tion-valued container-managed relationship fields.

The Bean Provider must consider the type and cardinality of relationships when the entity bean classes
are programmed. The get method for a cmr-field must return either the local interface of the entity bean
or a collection (either java.util.Collection or java.util.Set) of the same. The set
method for the relationship must take as an argument the entity bean’s local interface or a collection of
the same.

8.3.3 Dependent Value Classes

A dependent value class is a concrete class that is the value of a cmp-field. A dependent value class may
be a class that the Bean Provider wishes to use internally within an entity bean with container-managed
persistence, and/or it may be a class that the Bean Provider chooses to expose through the remote (or
local) interface of the entity bean.

A dependent value class can be the value of a cmp-field; it cannot be the value of a cmr-field.

The get accessor method for a cmp-field that corresponds to a dependent value class returns a copy of
the dependent value class instance. The assignment of a dependent value class value to a cmp-field
using the set accessor method causes the value to be copied to the target cmp-field.

A dependent value class must be serializable. The internal structure of a dependent value class is not
described in the EJB deployment descriptor.
181 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.4 Remove Protocols

The Bean Provider can specify the removal of an entity object in two ways:

• By the use of a remove method on the entity bean’s component interface or home interface.

• By the use of a cascade-delete specification in the deployment descriptor.

8.3.4.1 Remove Methods

When the remove method is invoked on an entity object, the container must invoke the entity Bean
Provider’s ejbRemove method as described in Section 8.5.3. After the Bean Provider’s ejbRemove
method returns (and prior to returning to the client), the container must remove the entity object from all
relationships in which it participates, and then remove its persistent representation. [32]

• Once an entity has been removed from a relationship, the accessor methods for any relation-
ships to the entity will reflect this removal. An accessor method for a one-to-one or
many-to-one relationship to the entity will return null; and an accessor method for a
many-to-many relationship to the entity will return a collection from which the entity object
has been removed.

• The container must detect any subsequent attempt to invoke an accessor method on the
removed entity object and throw the java.rmi.NoSuchObjectException if the client
is a remote client or the javax.ejb.NoSuchObjectLocalException if the client is a
local client. The container must detect an attempt to assign a removed entity object as the value
of a cmr-field of another object (whether as an argument to a set accessor method or as an argu-
ment to a method of the java.util.Collection API) and throw the
java.lang.IllegalArgumentException.

After removing the entity object from all relationships and removing its persistent representation, the
container must then cascade the removal to all entity beans with which the entity had been previously in
container-managed relationships for which the cascade-delete option was specified.

More than one relationship may be affected by the removal of an entity object, as in the following
example. Once the shipping address object used by the Order bean has been removed, the billing
address accessor method will also return null.

public void changeAddress()
Address a = createAddress();
setShippingAddress(a);
setBillingAddress(a);
//both relationships now reference the same entity object
getShippingAddress().remove();
if (getBillingAddress() == null) // it must be

...
else ...

// this is impossible....

[32] At this point it must appear to the application that the entity has been removed from the persistent store. If the container employs
an optimistic caching strategy and defers the removal of the entity from the database (e.g., to the end of transaction), this must be
invisible to the application.
 11/5/09 182

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
The remove method, alone, causes only the entity on which it is invoked to be removed. It does not
cause the deletion to be cascaded to other entity objects. In order for the deletion of one entity object to
be automatically cascaded to another, the cascade-delete mechanism should be used.

8.3.4.2 Cascade-delete

The cascade-delete deployment descriptor element is used within a particular relationship to
specify that the lifetime of one or more entity objects is dependent upon the lifetime of another entity
object.

The cascade-delete deployment descriptor element is contained within the ejb-relation-
ship-role element. The cascade-delete element can only be specified for an ejb-rela-
tionship-role element contained in an ejb-relation element if the other
ejb-relationship-role element in the same ejb-relation element specifies a multi-
plicity of One. The cascade-delete option cannot be specified for a many-to-many relation-
ship. The deletion of one entity object can only be cascaded to cause the deletion of other entity objects
if the first entity object is in a one-to-one or one-to-many relationship with those other entity objects.

If an entity is deleted, and the cascade-delete deployment descriptor element is specified for a
related entity bean, then the removal is cascaded to cause the removal of the related entity object or
objects. As with the remove operation, the removal triggered by the cascade-delete option
causes the container to invoke the ejbRemove method on the entity bean instance that is to be
removed before the persistent representation of that entity object is removed. Once an entity has been
removed from a relationship because of a cascaded delete, the accessor methods for any relationships to
the entity will reflect this removal. An accessor method for a one-to-one or many-to-one relationship to
the entity will return null; and an accessor method for a many-to-many relationship to the entity will
return a collection from which the entity object has been removed. After removing the entity object
from all relationships and removing its persistent representation, the container must then cascade the
removal to all entity beans with which the entity had been previously been in container-managed rela-
tionships for which the cascade-delete option was specified.

The use of cascade-delete causes only the entity object or objects in the relationship for which it
is specified to be deleted. It does not cause the deletion to be further cascaded to other entity objects,
unless they are participants in relationship roles for which cascade-delete has also been specified.

8.3.5 Identity of Entity Objects
From the viewpoint of the Bean Provider, entity objects have a runtime object identity that is maintained
by the container.

The container maintains the persistent identity of an entity object on the basis of its primary key.

The primary key of an entity bean may or may not be visible as one or more cmp-fields of the instance,
depending on the way in which it is specified. The Bean Provider specifies the primary key as described
in Section 8.8. Once it has been set, the Bean Provider must not attempt to change the value of a primary
key field by means of a set method on its cmp-fields.
183 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
When a new instance of an entity bean whose primary key fields are visible in the entity bean class is
created, the Bean Provider must use the ejbCreate<METHOD> method to set all the primary key
fields of the entity bean instance before the instance can participate in a relationship, e.g. be used in a set
accessor method for a cmr-field. The Bean Provider must not reset a primary key value by means of a
set method on any of its cmp-fields after it has been set in the ejbCreate<METHOD> method. If the
Bean Provider attempts to reset a primary key value, the container must throw the
java.lang.IllegalStateException.

Note that the container’s implementation of the referential integrity semantics for con-
tainer-managed relationships must not cause the value of the primary key to change.

The Bean Provider should not use untrimmed or blank-padded string-valued primary key
fields. Use of untrimmed primary key fields may cause comparison operations based on pri-
mary keys to fail, and may result in non-portable behavior. If untrimmed strings are used in
primary key fields or other cmp-fields, the container or database system may trim them.

8.3.6 Semantics of Assignment for Relationships
The assignment operations for container-managed relationships have a special semantics that is deter-
mined by the referential integrity semantics for the relationship multiplicity.

In the case of a one-to-one relationship, when the Bean Provider uses a set accessor method to assign an
object from a cmr-field in one instance to a cmr-field of the same relationship type (i.e., as defined by
the ejb-relation and ejb-relationship-role deployment descriptor elements) in another
instance, the object is effectively moved and the value of the source cmr-field is set to null in the same
transaction context. If the argument to the set accessor method is not of the same type as the cmr-field,
the container must throw the java.lang.IllegalArgumentException.

In the case of a one-to-many or many-to-many relationship, either the java.util.Collection
API or a set accessor method may be used to manipulate the contents of a collection-valued cmr-field.
These two approaches are discussed below.

8.3.6.1 Use of the java.util.Collection API to Update Relationships
The methods of the java.util.Collection API for the container-managed collections used for
collection-valued cmr-fields have the usual semantics, with the following exception: the add and add-
All methods applied to container-managed collections in one-to-many relationships have a special
semantics that is determined by the referential integrity of one-to-many relationships.

• If the argument to the add method is already an element of a collection-valued relationship
field of the same relationship type as the target collection (as defined by the ejb-relation
and ejb-relationship-role deployment descriptor elements), it is removed from this
first relationship and added, in the same transaction context, to the target relationship (i.e., it is
effectively moved from one collection of the relationship type to the other). For example, if
there is a one-to-many relationship between field offices and sales representatives, adding a
sales representative to a new field office will have the effect of removing him or her from his
or her current field office. If the argument to the add method is not an element of a collec-
tion-valued relationship of the same relationship type, it is simply added to the target collection
and not removed from its current collection, if any.
 11/5/09 184

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
• The addAll method, when applied to a target collection in a one-to-many relationship, has
similar semantics, applied to the members of its collection argument individually.

Note that in the case of many-to-many relationships, adding an element or elements to the con-
tents of a collection-valued cmr-field has no effect on the source collection, if any. For exam-
ple, if there is a many-to-many relationship between customers and sales representatives, a
customer can be added to the set of customers handled by a particular sales representative
without affecting the set of customers handled by any other sales representative.

When the java.util.Collection API is used to manipulate the contents of container-managed
relationship fields, the argument to any Collection method defined with a single Object parameter must
be of the element type of the collection defined for the target cmr-field. The argument for any collec-
tion-valued parameter must be a java.util.Collection (or java.util.Set), all of whose
elements are of the element type of the collection defined for the target cmr-field. If an argument is not
of the correct type for the relationship, the container must throw the java.lang.IllegalArgu-
mentException.

The Bean Provider should exercise caution when using an Iterator over a collection in a container-man-
aged relationship. In particular, the Bean Provider should not modify the container-managed collection
while the iteration is in progress in any way that causes elements to be added or removed, other than by
the java.util.Iterator.remove() method. If elements are added or removed from the under-
lying container-managed collection used by an iterator other than by the java.util.Itera-
tor.remove() method, the container should throw the
java.lang.IllegalStateException on the next operation on the iterator.

The following example illustrates how operations on container-managed relationships that affect the
contents of a collection-valued cmr-field viewed through an iterator can be avoided. Because there is a
one-to-many relationship between field offices and sales representatives, adding a sales representative
to a new field office causes the sales representative to be removed from the current field office.

Collection nySalesreps = nyOffice.getSalesreps();
Collection sfSalesreps = sfOffice.getSalesreps();

Iterator i = nySalesreps.iterator();
Salesrep salesrep;

// a wrong way to transfer the salesrep
while (i.hasNext()) {

salesrep = (Salesrep)i.next();
sfSalesreps.add(salesrep); // removes salesrep from nyOffice

}

// this is a correct and safe way to transfer the salesrep
while (i.hasNext()) {

salesrep = (Salesrep)i.next();
i.remove();
sfSalesreps.add(salesrep);

}

185 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.6.2 Use of Set Accessor Methods to Update Relationships
The semantics of a set accessor method, when applied to a collection-valued cmr-field, is also deter-
mined by the referential integrity semantics associated with the multiplicity of the relationship. The
identity of the collection object referenced by a cmr-field does not change when a set accessor method is
executed.

In the case of a one-to-many relationship, if a collection of entity objects is assigned from a cmr-field of
in one instance to a cmr-field of the same relationship type in another instance, the objects in the collec-
tion are effectively moved. The contents of the collection of the target instance are replaced with the
contents of the collection of the source instance, but the identity of the collection object containing the
instances in the relationship does not change. The source cmr-field references the same collection object
as before (i.e., the identity of the collection object is preserved), but the collection is empty.

The Bean Provider can thus use the set method to move objects between the collections referenced by
cmr-fields of the same relationship type in different instances. The set accessor method, when applied to
a cmr-field in a one-to-many relationship thus has the semantics of the java.util.Collection
methods clear, followed by addAll, applied to the target collection; and clear, applied to the
source collection. It is the responsibility of the container to transfer the contents of the collection
instances in the same transaction context.

Note that if the collection that is passed to the cmr setter method is an unmanaged collection
(i.e., not itself the value of a collection-valued cmr-field), the same requirements apply in the
case that the collection contains entity objects that already participate in a one-to-many rela-
tionship of the same relationship type as the target cmr-field.

In the following example, the telephone numbers associated with the billing address of an Order bean
instance are transferred to the shipping address. Billing address and shipping address are different
instances of the same local interface type, Address. Address is related to TelephoneNumber in a
one-to-many relationship. The example illustrates how a Bean Provider uses the set method to move a
set of instances.

public void changeTelephoneNumber() {
Address a = getShippingAddress();
Address b = getBillingAddress();
Collection c = b.getTelephoneNumbers();
a.setTelephoneNumbers(b.getTelephoneNumbers());
if (c.isEmpty()) { // must be true...
...

}

In the case of a many-to-many relationship, if the value of a cmr-field is assigned to a cmr-field of the
same relationship type in another instance, the objects in the collection of the first instance are assigned
as the contents of the cmr-field of the second instance. The identities of the collection objects referenced
by the cmr-fields do not change. The contents of the collections are shared, but not the collections them-
selves. The set accessor method, when applied to a cmr-field in a many-to-many relationship thus has
the semantics of the java.util.Collection methods clear, followed by addAll, applied to
the target collection.
 11/5/09 186

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
For example, if there is a many-to-many relationship between customers and sales representatives,
assigning the set of customers of one sales representative to the another sales representative will result
in both sales representatives handling the same customers. If the second sales representative originally
handled a different group of customers, those customers will no longer be handled by that sales repre-
sentative.

public void shareCustomers(SalesRep rep) {
setCustomers(rep.getCustomers());
// the customers are shared among the sales reps

}

The following section, 8.3.7, “Assignment Rules for Relationships”, defines the semantics of assign-
ment for relationships in further detail.

8.3.7 Assignment Rules for Relationships
This section defines the semantics of assignment and collection manipulation in one-to-one,
one-to-many, and many-to-many container-managed relationships.

The figures make use of two entity beans, with local interface types A and B. Instances with local inter-
face type A are typically designated as a1,...,an; instances with local interface type B are typically des-
ignated as b1,...,bm. Interface A exposes accessor methods getB and setB for navigable relationships
with B: getB returns an instance of B or a collection of instances of B, depending on the multiplicity of
the relationship. Similarly, B exposes accessor methods getA and setA for navigable relationships
with A.

All changes in each subsection are assumed to be applied to the figure labeled “Before change” at the
beginning of the subsection (i.e., changes are not cumulative). The results of changes are designated
graphically as well as in conditional expressions expressed in the JavaTM programming language.
187 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.1 One-to-one Bidirectional Relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

Expected result:

(b2.isIdentical(a1.getB())) &&
(a2.getB() == null) &&
(b1.getA() == null) &&
(a1.isIdentical(b2.getA()))

b1

0..1 0..1
A B

a1

b2 a2

Before change:

A and B are in a one-to-one bidirectional relationship:

b1 a1

b2 a2

After change:
 11/5/09 188

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.2 One-to-one Unidirectional Relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

Expected result:

(b2.isIdentical(a1.getB())) && (a2.getB() == null)

b1

0..1 0..1
A B

a1

b2 a2

Before change:

A and B are in a one-to-one unidirectional relationship:

b1 a1

b2 a2

After change:
189 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.3 One-to-many Bidirectional Relationships

Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

b1

0..1 0..*
A B

a1

b2 a2

Before change:

A and B are in a one-to-many bidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2 m

n

 11/5/09 190

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m)) &&
(b11.getA() == null) &&
(b12.getA() == null) && ... &&
(b1n.getA() == null) &&
(a1.isIdentical(b21.getA())) &&
(a1.isIdentical(b22.getA())) && ...&&
(a1.isIdentical(b2m.getA()))

Change:

b2m.setA(b1n.getA());

a1

a2

After change:

b1
b1

b1
b1

b1 n

b2
b2

b2
b2

b2
b2 m
191 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) && ... &&
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(a1.isIdentical(b2m.getA()))

Change:

a1.getB().add(b2m);

b1 a1

b2 a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

 11/5/09 192

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) && ... &&
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(a1.isIdentical(b2m.getA()))

Change:

a1.getB().remove(b1n);

Expected result:

(b1n.getA() == null) &&
(b1 == a1.getB()) &&
(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n_1)) &&
!(b1.contains(b1n))

b1 a1

b2 a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

193 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.4 One-to-many Unidirectional Relationships

b1 a1

b2 a2

After change:

b1
b1
b1n-1

b2
b2

b2
b2

b2 m

b1n

b1

0..1 0..*
A B

a1

b2 a2

Before change:

A and B are in a one-to-many unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2 m

n

 11/5/09 194

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m))

Change:

a1.getB().add(b2m);

Expected result:

(b1 == a1.getB()) &&
(b1.contains(b2m))

a1

a2

After change:

b1
b1

b1
b1

b1 n

b2
b2

b2
b2

b2
b2 m
195 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Change:

a1.getB().remove(b1n);

Expected result:

(a1.getB().contains(b11)) &&
(a1.getB().contains(b12)) && ... &&
(a1.getB().contains(b1n_1)) &&
!(a1.getB().contains(b1n)) &&

b1 a1

b2 a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

b1 a1

b2 a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2

b2 m

n-1

b1n
 11/5/09 196

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.5 Many-to-one Unidirectional Relationships

Before change:

B b11, b12, ... , b1n;
B b21, b22, ... , b2m;
// the following is true
// (a1.isIdentical(b11.getA())) && ... && (a1.isIdentical(b1n.getA()
)) &&
// (a2.isIdentical(b21.getA())) && ... && (a2.isIdentical(b2m.getA()
))

Change:

b1j.setA(b2k.getA());

b1

0..1 0..*
A B

a1

b2 a2

Before change:

A and B are in a many-to-one unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2 m

n

197 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected result:

(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) &&
...
(a2.isIdentical(b1j.getA())) &&
...
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) &&
...
(a2.isIdentical(b2k.getA())) &&
...
(a2.isIdentical(b2m.getA()))

b1 a1

b2 a2

After change:

b1

b1j

b1
b1

b2
b2

b2
b2

b2 m

n

 11/5/09 198

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.6 Many-to-many Bidirectional Relationships

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many bidirectional relationship:

b2 a2

b3 a3

b4 a4

b5 a5
199 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&
(b1.getA().contains(a1)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5)) &&
(b5.getA().contains(a4)) &&
(b5.getA().contains(a5)) &&

Change:

a1.setB(a3.getB());

Expected result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a1)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5))
 11/5/09 200

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5
201 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a3))

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5
 11/5/09 202

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.7 Many-to-many Unidirectional Relationships

Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&

Change:

a1.setB(a3.getB());

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many unidirectional relationship:

b2 a2

b3 a3

b4 a4

b5 a5
203 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected Result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&

Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3))

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5
 11/5/09 204

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3))

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5

b1 a1

After change:

b2 a2

b3 a3

b4 a4

b5 a5
205 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.8 Collections Managed by the Container
The collections that are used in the representation of one-to-many and many-to-many container-man-
aged relationships are implemented and managed by the container. The following semantics apply to
these collections:

• It is the responsibility of the container to preserve the runtime identity of the collection objects
used in container-managed relationships.

• There is no constructor available to the Bean Provider for the container-managed collections.

• If there are no related values for a given container-managed relationship, the get accessor
method for that cmr-field returns an empty collection (and not null).

• It is the responsibility of the container to raise the java.lang.IllegalArgumentEx-
ception if the Bean Provider attempts to assign null as the value of a collection-valued
cmr-field by means of the set accessor method.

• It is the responsibility of the container to ensure that when the java.util.Collection
API is used to manipulate the contents of container-managed relationship fields, the argument
to any Collection method defined with a single Object parameter must be of the element type
of the collection defined for the target cmr-field. The argument for any collection-valued
parameter must be a java.util.Collection (or java.util.Set), all of whose ele-
ments are of the element type of the collection defined for the target cmr-field. If an argument
is not of the correct type for the relationship, the container must throw the
java.lang.IllegalArgumentException.

• It is the responsibility of the container to throw the java.lang.IllegalStateExcep-
tion if an attempt is made to modify a container-managed collection corresponding to a mul-
tivalued cmr-field using the java.util.Collection API outside of the transaction
context in which the collection object was initially materialized.

• It is the responsibility of the container to throw the java.lang.IllegalStateExcep-
tion if an attempt is made to use a java.util.Iterator for a container-managed col-
lection in a transaction context other than that in which the iterator was obtained.

8.3.9 Non-persistent State
The Bean Provider may use instance variables in the entity bean instance to maintain non-persistent
state, e.g. a JMS connection.

The Bean Provider can use instance variables to store values that depend on the persistent state of the
entity bean instance, although this use is not encouraged. The Bean Provider should use the ejbLoad
method to resynchronize the values of any instance variables that depend on the entity bean’s persistent
state. In general, any non-persistent state that depends on the persistent state of an entity bean should be
recomputed during the ejbLoad method.
 11/5/09 206

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
The Bean Provider should exercise care in passing the contents of instance variables as the arguments or
results of method invocations when local interfaces are used. In general, the Bean Provider should avoid
passing state that is maintained in instance variables as the argument or result of a local method invoca-
tion.

8.3.10 The Relationship Between the Internal View and the Client View

In designing the entity bean, the Bean Provider should keep in mind the following:

• The classes that are exposed by the remote interface are decoupled from the persistence layer.
Instances of these classes are passed to and from the client by value.

• The classes that are exposed by the local interface of the bean may be tightly coupled to the
bean’s internal state. Instances of these classes are passed to and from the client by reference
and may therefore be modified by the client. The Bean Provider should exercise care in deter-
mining what is exposed through the local interface of the bean.

8.3.10.1 Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an entity bean with container-managed per-
sistence.

• The Bean Provider must not expose the get and set methods for container-managed relation-
ship fields or the persistent Collection classes that are used in container-managed relation-
ships through the remote interface of the bean.

• The Bean Provider must not expose local interface types or local home interface types through
the remote interface or remote home interface of the bean.

• The Bean Provider must not expose the container-managed collection classes that are used for
relationships through the remote interface of the bean.

• The Bean Provider must not expose timers or timer handles through the remote interface of the
bean.

Dependent value classes can be exposed in the remote interface or remote home interface and can be
included in the client ejb-jar file.

The Bean Provider is free to expose get and set methods that correspond to cmp-fields of the entity bean
through the bean’s remote interface.

8.3.11 Mapping Data to a Persistent Store

This specification does not prescribe how the abstract persistence schema of an entity bean should be
mapped to a relational (or other) schema of a persistent store, or define how such a mapping is
described.
207 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.12 Example
Figure 13 illustrates an Order entity bean with relationships to line items and customers, which are
other entity beans within the same local scope. Product is indirectly related to Order by means of
the relationship between LineItem and Product. Sample code for the OrderBean class follows
the figure.

Figure 13 Relationship Example

OrderBean

<<abstract>>

getOrderStatus
setOrderStatus
getLineItems
setLineItems
getCreditApproved
setCreditApproved
getCustomer
setCustomer
...

LineItem

*

1

1

* *

1

Order-LineItem

Product-LineItem

Order-Customer

Customer

Product
 11/5/09 208

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
package com.acme.order;

// This example shows the implementation of OrderBean, the
// entity bean class for the OrderEJB entity bean. OrderEJB has
// container-managed relationships with the entity beans
// CustomerEJB and LineItemEJB.
// This example illustrates the use of local interfaces.

import java.util.Collection;
import java.util.Vector;
import java.util.Date;

import javax.naming.*;

public abstract class OrderBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 // define status codes for processing

 static final int BACKORDER = 1;
 static final int SHIPPED = 2;
 static final int UNSHIPPED = 3;

 // get and set methods for the cmp fields

 public abstract int getOrderStatus();
 public abstract void setOrderStatus(int orderStatus);

 public abstract boolean getCreditApproved();
 public abstract void setCreditApproved(boolean creditapproved);

 public abstract Date getOrderDate();
 public abstract void setOrderDate(Date orderDate);

 // get and set methods for the relationship fields

 public abstract Collection getLineItems();
 public abstract void setLineItems(Collection lineitems);

 public abstract Customer getCustomer();
 public abstract void setCustomer(Customer customer);

 // business methods.

 // addLineItem:
 // This method is used to add a line item.
 // It creates the lineitem object and adds it to the
 // persistent managed relationship.

 public void addLineItem(Product product,
 int quantity,
 Address address)

throws InsufficientInfoException
 {

// create a new line item
209 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
if (validAddress(address)) {
 // Address is a legacy class. It is a dependent value
 // class that is available both in the client and in
 // the entity bean, and is serializable.
 // We will use the address as the value of a cmp field

 // of lineItem.

 try {
 Context ic = new InitialContext();
 LineItemLocalHome litemLocalHome =
 (LineItemLocalHome)ic.lookup("LineItemEJB");
 LineItem litem = litemLocalHome.create();

 litem.setProduct(product);
 litem.setQuantity(quantity);
 litem.setTax(calculateTax(product.getPrice(),
 quantity,
 address));
 litem.setStatus(UNSHIPPED);
 // set the address for the line item to be shipped
 litem.setAddress(address);
 // The lineItem entity bean uses a dependent value
 // class to represent the dates for the order status.
 // This class holds shipment date, expected shipment
 // date, credit approval date, and inventory
 // dates which are internal to the order fullfillment
 // process. Not all this information will be available
 // to the client.

 Dates dates = new Dates();
 litem.setDates(dates);
 getLineItems().add(litem);
 } catch (Exception someexception) {}

} else {
 throw new InsufficientInfoException();
}

 }

 // getOrderLineItems:
 // This method makes a view of the lineitems that are in this
 // order available in the client. It makes only the relevant
 // information visible to the client and hides the internal
 // details of the representation of the lineitem
 public Collection getOrderLineItems() {

Vector clientlineitems = new Vector();
Collection lineitems = getLineItems();
java.util.Iterator iterator = lineitems.iterator();
// ClientLineItem is a value class that is used in
// the client view.
// The entity bean provider abstracts from the persistent
// representation of the line item to construct the client
// view.
ClientLineItem clitem;
while (iterator.hasNext()) {
 LineItem litem = (LineItem)iterator.next();
 clitem = new ClientLineItem();
 // only the name of the product is available in the
 // client view
 11/5/09 210

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
 clitem.setProductName(litem.getProduct().getName());
 clitem.setQuantity(litem.getQuantity());
 // the client view gets a specific descriptive message
 // depending on the line item status.
 clitem.setCurrentStatus(
 statusCodeToString(litem.getStatus()));
 // address is not copied to the client view.
 // as this class includes other information with
 // respect to the order handing that should not be
 // available to the client. Only the relevant info
 // is copied.
 int lineitemStatus = litem.getStatus();
 if (lineitemStatus == BACKORDER) {

clitem.setShipDate(
litem.getDates().getExpectedShipDate());

 } else if (lineitemStatus == SHIPPED) {
clitem.setShipDate(
litem.getDates().getShippedDate());

 }
 //add the new line item
 clientlineitems.add(clitem);
}
// return the value objects to the client
return clientlineitems;

 }

// other methods internal to the entity bean class
...

 // other javax.ejb.EntityBean methods
...

}

8.3.13 The Bean Provider’s View of the Deployment Descriptor

The persistent fields (cmp-fields) and relationships (cmr-fields) of an entity bean must be declared in
the deployment descriptor.

The deployment descriptor provides the following information about the abstract persistence schemas
of entity beans and their container-managed relationships:

• An ejb-name element for each entity bean. The ejb-name must be a valid Java identifier
and must be unique within the ejb-name elements of the ejb-jar file.

• An abstract-schema-name element for each entity bean. The
abstract-schema-name must be a valid Java identifier and must be unique within the
abstract-schema-name elements of the ejb-jar file. The abstract-schema-name
element is used in the specification of EJB QL queries.

• A set of ejb-relation elements, each of which contains a pair of ejb-relation-
ship-role elements to describe the two roles in the relationship.[33]
211 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
• Each ejb-relationship-role element describes a relationship role: its name, its multi-
plicity within a relation, and its navigability. It specifies the name of the cmr-field that is
used from the perspective of the relationship participant. The cmr-field-type element
must be specified if the type of the cmr-field is java.util.Collection or
java.util.Set. Each relationship role refers to an entity bean by means of an ejb-name
element contained in the relationship-role-source element.

[33] The relation names and the relationship role names are not used in the code provided by the Bean Provider.
 11/5/09 212

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
The following example shows a deployment descriptor segment that defines the abstract persistence
schema for a set of related entity beans. The deployment descriptor elements for container-managed
persistence and relationships are described further in Chapter 19.

<ejb-jar>

...

<enterprise-beans>
...
</enterprise-beans>

<relationships>

<!--
ONE-TO-MANY: Order LineItem
-->

<ejb-relation>
<ejb-relation-name>Order-LineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
order-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>lineitem-belongsto-order
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>order</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

<!--
ONE-TO-MANY unidirectional relationship:
Product is not aware of its relationship with LineItem
-->

<ejb-relation>
<ejb-relation-name>Product-LineItem</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
213 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
product-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>ProductEJB</ejb-name>
</relationship-role-source>

 <!-- since Product does not know about LineItem
 there is no cmr field in Product for accessing

 Lineitem
 -->

</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
lineitem-for-product
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>

 <cmr-field>
<cmr-field-name>product</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>

<!--
ONE-TO-MANY: Order Customer:
-->

<ejb-relation>
<ejb-relation-name>Order-Customer</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
customer-has-orders
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>CustomerEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>orders</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
order-belongsto-customer
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>
 11/5/09 214

The Entity Bean Component Contract Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
<cmr-field-name>customer</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

...

</ejb-jar>

8.4 The Entity Bean Component Contract

This section specifies the container-managed persistence contract between an entity bean and its con-
tainer.

8.4.1 Runtime Execution Model of Entity Beans

This subsection describes the runtime model and the classes used in the description of the contract
between an entity bean and its container. Figure 14 shows an overview of the runtime model. The client
of an entity bean may be a local client or it may be a remote client.
215 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Entity Bean

Sun Microsystems, Inc.
Figure 14 Overview of the Entity Bean Runtime Execution Model

An enterprise bean is an object whose class is provided by the Bean Provider. The class of an entity
bean with container-managed persistence is abstract. The concrete bean class is generated by the Con-
tainer Provider’s tools at deployment time. The container is also responsible for providing the imple-
mentation of the java.util.Collection classes that are used in maintaining the
container-managed relationships of the entity bean.

container

EJB objects

EJB Home

EJB objects
EJB Objects

EJB objects

EJB Local Home

EJB objects
EJB Local Objects

enterprise bean

instances

enterprise bean

 instances

enterprise bean 1

enterprise bean 2

container provided
classes

classes provided by

container
bean provider and

client
 11/5/09 216

The Entity Bean Component Contract Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
An entity EJBObject or EJBLocalObject is an object whose class was generated at deployment time
by the Container Provider’s tools. A client never references an entity bean instance directly—a client
always references an entity EJBObject or EJBLocalObject whose class is generated by the Container
Provider’s tools. The entity EJBObject class implements an entity bean’s remote interface. The entity
EJBLocalObject class implements an entity bean’s local interface. A related entity bean never refer-
ences another entity bean instance directly—a related entity bean, like any other local client of an entity
bean, always references an entity EJBLocalObject whose class is generated by the Container Provider’s
tools.

An entity EJBHome or EJBLocalHome object provides life cycle operations (create, find, remove) for
its entity objects as well as home business methods, which are business methods that are not specific to
an entity bean instance. The class for the entity EJBHome or EJBLocalHome object is generated by the
Container Provider’s tools at deployment time. The entity EJBHome or EJBLocalHome object imple-
ments the entity bean’s remote or local home interface that was defined by the Bean Provider.

8.4.2 Container Responsibilities
The following are the container responsibilities for the management of persistent state.

8.4.2.1 Container-Managed Fields

An entity bean with container-managed persistence relies on the container to perform persistent data
access on behalf of the entity bean instances. The container transfers data between an entity bean
instance and the underlying resource manager. The container also implements the creation, removal,
and lookup of the entity object in the underlying database.

The container transfers data between the entity bean and the underlying data source as a result of the
execution of the entity bean’s methods. Because of the requirement that all data access occur through
the accessor methods, the container can implement both eager and lazy loading and storing schemes.

The container is responsible for implementing the entity bean class by providing the implementation of
the get and set accessor methods for its abstract persistence schema. The container is allowed to use
Java serialization to store the container-managed persistent fields (cmp-fields).

The container must also manage the mapping between primary keys and EJBLocalObjects or EJBOb-
jects. If both a remote and a local interface are specified for the entity bean, the container must manage
the mapping between EJBObjects and EJBLocalObjects.

Because the container is free to optimize the delivery of persistent data to the bean instance
(for example, by the use of lazy loading strategies), the contents of the entity bean instance and
the contents of container-managed collections may not be fully materialized.

8.4.2.2 Container-Managed Relationships

The container maintains the relationships among entity beans.

• It is the responsibility of the container to maintain the referential integrity of the con-
tainer-managed relationships, as described in Section 8.3.6, in accordance with the semantics
of the relationship type as specified in the deployment descriptor. For example, if an entity
217 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
bean is added to a collection corresponding to the container-managed relationship field of
another entity bean, the container-managed relationship field of the first entity bean must also
be updated by the container in the same transaction context.

• It is the responsibility of the container to throw the java.lang.IllegalArgumentEx-
ception when the argument to a set method in a relationship is an instance of the wrong rela-
tionship type or a collection containing instances of the wrong type, or when an argument to a
method of the java.util.Collection API used to manipulate a collection-valued con-
tainer-managed relationship field is an instance of the wrong type or a collection that contains
instances of the wrong type (see Section 8.3.6).

• It is the responsibility of the container to throw the java.lang.IllegalStateExcep-
tion when a method of the java.util.Collection API is used to access a collec-
tion-valued cmr-field within a transaction context other than the transaction context in which
the cmr-field was initially materialized. For example, if the container-managed collection is
returned as the result of a local interface method with transaction attribute RequiresNew,
and the client attempts to access the collection, the container must throw the Illegal-
StateException.

• It is the responsibility of the container to throw the java.lang.IllegalStateExcep-
tion when a java.util.Iterator is used to access a collection-valued cmr-field within
a transaction context other than the transaction context in which the iterator was initially
obtained.

8.5 Instance Life Cycle Contract Between the Bean and the
Container

This section describes the part of the component contract between the entity bean and the container that
relates to the management of the entity bean instance’s life cycle.
 11/5/09 218

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
8.5.1 Instance Life Cycle

Figure 15 Life Cycle of an Entity Bean Instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity object
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance using newIn-
stance. The container then invokes the setEntityContext method to pass the instance
a reference to the EntityContext interface. The EntityContext interface allows the

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()ejbPostCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(args)

ejbCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(args)

ejbSelect<METHOD>(args)

ejbSelect<METHOD>(args)

ejbTimeout(arg)

219 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
instance to invoke services provided by the container and to obtain the information about the
caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool. While
the instance is in the available pool, the instance is not associated with any particular entity
object identity. All instances in the pool are considered equivalent, and therefore any instance
can be assigned by the container to any entity object identity at the transition to the ready state.
While the instance is in the pooled state, the container may use the instance to execute any of
the entity bean’s finder methods (shown as ejbFind<METHOD> in the diagram) or any of the
entity bean’s home methods (shown ejbHome<METHOD> in the diagram). The instance does
not move to the ready state during the execution of a finder or a home method. An ejbSe-
lect<METHOD> method may be called by an entity bean’s home method while the instance is
in the pooled state.

• An instance transitions from the pooled state to the ready state when the container selects that
instance to service a client call to an entity object or an ejbTimeout method. There are two
possible transitions from the pooled to the ready state: through the ejbCreate<METHOD>
and ejbPostCreate<METHOD> methods, or through the ejbActivate method. The
container invokes the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods
when the instance is assigned to an entity object during entity object creation (i.e., when the
client invokes a create method on the entity bean’s home object). The container invokes the
ejbActivate method on an instance when an instance needs to be activated to service an
invocation on an existing entity object—this occurs because there is no suitable instance in the
ready state to service the client’s call or the ejbTimeout method.

• When an entity bean instance is in the ready state, the instance is associated with a specific
entity object identity. While the instance is in the ready state, the container can synchronize the
state of the instance with the state of the entity in the underlying data source whenever it deter-
mines the need to, in the process invoking the ejbLoad and ejbStore methods zero or
more times. A business method can be invoked on the instance zero or more times. The ejb-
Timeout method can be invoked on the instance zero or more times. Invocations of the ejb-
Load and ejbStore methods can be arbitrarily mixed with invocations of business methods
and ejbTimeout method invocations. An ejbSelect<METHOD> method can be called by
a business method (or ejbLoad or ejbStore method or ejbTimeout method) while the
instance is in the ready state.

• The container can choose to passivate an entity bean instance within a transaction. To passivate
an instance, the container first invokes the ejbStore method to allow the instance to prepare
itself for the synchronization of the database state with the instance’s state, and then the con-
tainer invokes the ejbPassivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three possi-
ble transitions from the ready to the pooled state: through the ejbPassivate method,
through the ejbRemove method, and because of a transaction rollback for ejbCreate,
ejbPostCreate, or ejbRemove (not shown in Figure 15). The container invokes the
ejbPassivate method when the container wants to disassociate the instance from the
entity object identity without removing the entity object. The container invokes the ejbRe-
move method when the container is removing the entity object (i.e., when the client invoked
the remove method on the entity object’s component interface or a remove method on the
 11/5/09 220

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
entity bean’s home interface). If ejbCreate, ejbPostCreate, or ejbRemove is called
and the transaction rolls back, the container will transition the bean instance to the pooled state.

• When the instance is put back into the pool, it is no longer associated with an entity object
identity. The container can assign the instance to any entity object within the same entity bean
home.

• The container can remove an instance in the pool by calling the unsetEntityContext
method on the instance.

Notes:

1. The EntityContext interface passed by the container to the instance in the setEntity-
Context method is an interface, not a class that contains static information. For example, the
result of the EntityContext.getPrimaryKey method might be different each time an
instance moves from the pooled state to the ready state, and the result of the getCaller-
Principal and isCallerInRole methods may be different in each business method.

2. A RuntimeException thrown from any method of an entity bean class (including the busi-
ness methods and the callbacks invoked by the container) results in the transition to the “does
not exist” state. The container must not invoke any method on the instance after a Runtime-
Exception has been caught. From the caller’s perspective, the corresponding entity object
continues to exist. The client can continue accessing the entity object through its component
interface because the container can use a different entity bean instance to delegate the client’s
requests. Exception handling is described further in Chapter 14.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling
approach is an example of a possible implementation, but it is not the required implementation.
Whether the container uses a pool or not has no bearing on the entity bean coding style.

8.5.2 Bean Provider’s Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract as seen by the Bean Provider:

The entity Bean Provider is responsible for implementing the following methods in the abstract entity
bean class:

• A public constructor that takes no arguments.

• public void setEntityContext(EntityContext ic);
A container uses this method to pass a reference to the EntityContext interface to the
entity bean instance. If the entity bean instance needs to use the EntityContext interface
during its lifetime, it must remember the EntityContext interface in an instance variable.
This method executes with an unspecified transaction context (Refer to Subsection 13.6.5 for
how the container executes methods with an unspecified transaction context). An identity of an
entity object is not available during this method. The entity bean must not attempt to access its
persistent state and relationships using the accessor methods during this method.
221 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
The instance can take advantage of the setEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be specific
to an entity object identity because the instance might be reused during its lifetime to serve
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.
This method executes with an unspecified transaction context. An identity of an entity object is
not available during this method. The entity bean must not attempt to access its persistent state
and relationships using the accessor methods during this method.
The instance can take advantage of the unsetEntityContext method to free any
resources that are held by the instance. (These resources typically had been allocated by the
setEntityContext method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...);
There are zero[34] or more ejbCreate<METHOD> methods, whose signatures match the sig-
natures of the create<METHOD> methods of the entity bean’s home interface. The con-
tainer invokes an ejbCreate<METHOD> method on an entity bean instance when a client
invokes a matching create<METHOD> method on the entity bean’s home interface.
The entity Bean Provider’s responsibility is to initialize the instance in the ejbCre-
ate<METHOD> methods from the input arguments, using the get and set accessor methods,
such that when the ejbCreate<METHOD> method returns, the persistent representation of
the instance can be created. The entity Bean Provider is guaranteed that the values that will be
initially returned by the instance’s get methods for container-managed fields will be the Java
language defaults (e.g. 0 for integer, null for pointers), except for collection-valued
cmr-fields, which will have the empty collection (or set) as their value. The entity Bean Pro-
vider must not attempt to modify the values of cmr-fields in an ejbCreate<METHOD>
method. This should be done in the ejbPostCreate<METHOD> method instead.
The entity object created by the ejbCreate<METHOD> method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the existing
entity objects within the same home. However, it is legal to reuse the primary key of a previ-
ously removed entity object. The implementation of the Bean Provider’s ejbCre-
ate<METHOD> methods should be coded to return a null.[35]

An ejbCreate<METHOD> method executes in the transaction context determined by the
transaction attribute of the matching create<METHOD> method. The database insert opera-
tions are performed by the container within the same transaction context after the Bean Pro-
vider’s ejbCreate<METHOD> method completes.

• public void ejbPostCreate<METHOD>(...);
For each ejbCreate<METHOD> method, there is a matching ejbPostCre-
ate<METHOD> method that has the same input parameters but whose return type is void.
The container invokes the matching ejbPostCreate<METHOD> method on an instance

[34] An entity bean has no ejbCreate<METHOD> and ejbPostCreate<METHOD>methods if it does not define any create meth-
ods in its home interface. Such an entity bean does not allow its clients to create new EJB objects. The entity bean restricts the cli-
ents to accessing entities that were created through direct database inserts.

[35] The above requirement is to allow the creation of an entity bean with bean-managed persistence by subclassing an entity bean
with container-managed persistence.
 11/5/09 222

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
after it invokes the ejbCreate<METHOD> method with the same arguments. The instance
can discover the primary key by calling getPrimaryKey on its entity context object.
The entity object identity is available during the ejbPostCreate<METHOD> method. The
instance may, for example, obtain the component interface of the associated entity object and
pass it to another enterprise bean as a method argument.
The entity Bean Provider may use the ejbPostCreate<METHOD> to set the values of
cmr-fields to complete the initialization of the entity bean instance.
An ejbPostCreate<METHOD> method executes in the same transaction context as the pre-
vious ejbCreate<METHOD> method.

• public void ejbActivate();
The container invokes this method on the instance when the container picks the instance from
the pool and assigns it to a specific entity object identity. The ejbActivate method gives
the entity bean instance the chance to acquire additional resources that it needs while it is in the
ready state.
This method executes with an unspecified transaction context. The entity bean must not
attempt to access its persistent state or relationships using the accessor methods during this
method.
The instance can obtain the identity of the entity object via the getPrimaryKey, getE-
JBLocalObject, or getEJBObject method on the entity context. The instance can rely
on the fact that the primary key and entity object identity will remain associated with the
instance until the completion of ejbPassivate or ejbRemove.

• public void ejbPassivate();
The container invokes this method on an instance when the container decides to disassociate
the instance from an entity object identity, and to put the instance back into the pool of avail-
able instances. The ejbPassivate method gives the instance the chance to release any
resources that should not be held while the instance is in the pool. (These resources typically
had been allocated during the ejbActivate method.)
This method executes with an unspecified transaction context. The entity bean must not
attempt to access its persistent state or relationships using the accessor methods during this
method.
The instance can still obtain the identity of the entity object via the getPrimaryKey,
getEJBLocalObject, or getEJBObject method of the EntityContext interface.

• public void ejbRemove();
The container invokes the ejbRemove method on an entity bean instance in response to a cli-
ent-invoked remove operation on the entity bean’s home or component interface or as the
result of a cascade-delete operation. The instance is in the ready state when ejbRemove is
invoked and it will be entered into the pool when the method completes.
The entity Bean Provider can use the ejbRemove method to implement any actions that must
be done before the entity object’s persistent representation is removed.
The container synchronizes the instance’s state before it invokes the ejbRemove method.
This means that the state of the instance at the beginning of the ejbRemove method is the
same as it would be at the beginning of a business method.
This method and the database delete operation(s) execute in the transaction context determined
by the transaction attribute of the remove method that triggered the ejbRemove method.
223 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
The instance can still obtain the identity of the entity object via the getPrimaryKey,
getEJBLocalObject, or getEJBObject method of the EntityContext interface.
After the entity Bean Provider’s ejbRemove returns, and in the same transaction context, the
container removes the entity bean from all relationships in which it participates before remov-
ing the entity object’s persistent representation.
Since the instance will be entered into the pool, the state of the instance at the end of this
method must be equivalent to the state of a passivated instance. This means that the instance
must release any resource that it would normally release in the ejbPassivate method.

• public void ejbLoad();
When the container needs to synchronize the state of an enterprise bean instance with the entity
object’s persistent state, the container calls the ejbLoad method.
The entity Bean Provider can assume that the instance’s persistent state has been loaded just
before the ejbLoad method is invoked. It is the responsibility of the Bean Provider to use the
ejbLoad method to recompute or initialize the values of any instance variables that depend
on the entity bean’s persistent state. In general, any transient state that depends on the persis-
tent state of an entity bean should be recalculated using the ejbLoad method. The entity bean
can use the ejbLoad method, for instance, to perform some computation on the values
returned by the accessor methods (for example, uncompressing text fields).
This method executes in the transaction context determined by the transaction attribute of the
business method or ejbTimeout method that triggered the ejbLoad method.

• public void ejbStore();
When the container needs to synchronize the state of the entity object’s persistent state with the
state of the enterprise bean instance, the container first calls the ejbStore method on the
instance.
The entity Bean Provider should use the ejbStore method to update the instance using the
accessor methods before its persistent state is synchronized. For example, the ejbStore
method may perform compression of text before the text is stored in the database.
The Bean Provider can assume that after the ejbStore method returns, the persistent state of
the instance is synchronized.
This method executes in the same transaction context as the previous ejbLoad or ejbCre-
ate method invoked on the instance. All business methods or the ejbTimeout method
invoked between the previous ejbLoad or ejbCreate<METHOD> method and this ejb-
Store method are also invoked in the same transaction context.

• public <primary key type or collection> ejbFind<METHOD>(...);
The Bean Provider of an entity bean with container-managed persistence does not write the
finder (ejbFind<METHOD>) methods.
The finder methods are generated at the entity bean deployment time using the Container Pro-
vider’s tools. The syntax for the Bean Provider’s specification of finder methods is described
in the document “Java Persistence API” of this specification [2].

• public <type> ejbHome<METHOD>(...);
The container invokes this method on the instance when the container selects the instance to
execute a matching client-invoked <METHOD> home method. The instance is in the pooled
state (i.e., it is not assigned to any particular entity object identity) when the container selects
 11/5/09 224

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
the instance to execute the ejbHome<METHOD> method on it, and it is returned to the pooled
state when the execution of the ejbHome<METHOD> method completes.
The ejbHome<METHOD> method executes in the transaction context determined by the trans-
action attribute of the matching <METHOD> home method, as described in Section 13.6.2.
The entity Bean Provider provides the implementation of the ejbHome<METHOD> method.
The entity bean must not attempt to access its persistent state or relationships using the acces-
sor methods during this method because a home method is not specific to a particular bean
instance.

• public abstract <type> ejbSelect<METHOD>(...);
The Bean Provider may provide zero or more select methods. A select method is a query
method that is not directly exposed to the client in the home or component interface. The Bean
Provider typically calls a select method within a business method.
The Bean Provider defines the select methods as abstract methods.
The select methods are generated at the entity bean deployment time using the Container Pro-
vider’s tools.
The syntax for the specification of select methods is described in the document “Java Persis-
tence API” of this specification [2].
The ejbSelect<METHOD> method executes in the transaction context determined by the
transaction attribute of the invoking business method.

• public void ejbTimeout(...);

The container invokes the ejbTimeout method on an instance when a timer for the instance
has expired. The ejbTimeout method notifies the instance of the time-based event and
allows the instance to execute the business logic to handle it.
The ejbTimeout method executes in the transaction context determined by its transaction
attribute.

8.5.3 Container’s View

This subsection describes the container’s view of the state management contract. The container must
call the following methods:

• public void setEntityContext(ec);
The container invokes this method to pass a reference to the EntityContext interface to
the entity bean instance. The container must invoke this method after it creates the instance,
and before it puts the instance into the pool of available instances.
The container invokes this method with an unspecified transaction context. At this point, the
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext();
The container invokes this method when the container wants to reduce the number of instances
in the pool. After this method completes, the container must not reuse this instance.
The container invokes this method with an unspecified transaction context.
225 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
• public PrimaryKeyClass ejbCreate<METHOD>(...);
public void ejbPostCreate<METHOD>(...);
The container invokes these two methods during the creation of an entity object as a result of a
client invoking a create<METHOD> method on the entity bean’s home interface.
The container invokes the ejbCreate<METHOD> method whose signature matches the
create<METHOD> method invoked by the client.
Prior to invoking the ejbCreate<METHOD> method provided by the Bean Provider, the
container must ensure that the values that will be initially returned by the instance’s get meth-
ods for container-managed fields will be the Java language defaults (e.g. 0 for integer, null
for pointers), except for collection-valued cmr-fields, which must have the empty collection
(or set) as their value.
The container is responsible for calling the ejbCreate<METHOD> method, for obtaining the
primary key fields of the newly created entity object persistent representation, and for creating
an entity EJBObject reference and/or EJBLocalObject reference for the newly created entity
object. The container must establish the primary key before it invokes the ejbPostCre-
ate<METHOD> method.
The entity object created by the ejbCreate<METHOD> method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the existing
entity objects within the same home. However, it is legal to reuse the primary key of a previ-
ously removed entity object. The container may, but is not required to, throw the Dupli-
cateKeyException on the Bean Provider’s attempt to create an entity object with a
duplicate primary key[36].
The container may create the representation of the entity in the database immediately, or it can
defer it to a later time (for example to the time after the matching ejbPostCre-
ate<METHOD> has been called, or to the end of the transaction), depending on the caching
strategy that it uses.
The container then invokes the matching ejbPostCreate<METHOD> method with the
same arguments on the instance to allow the instance to fully initialize itself. The instance can
discover the primary key by calling the getPrimaryKey method on its entity context object.
Finally, the container returns the entity object’s remote interface (i.e., a reference to the entity
EJBObject) to the client if the client is a remote client or the entity object’s local interface (i.e.,
a reference to the entity EJBLocalObject) if the client is a local client.
The container must invoke the ejbCreate<METHOD> and ejbPostCreate<METHOD>
methods and create the representation of the persistent instance in the database in the transac-
tion context determined by the transaction attribute of the matching create<METHOD>
method, as described in subsection 13.6.2.

• public void ejbActivate();
The container invokes this method on an entity bean instance at activation time (i.e., when the
instance is taken from the pool and assigned to an entity object identity). The container must
ensure that the primary key of the associated entity object is available to the instance if the
instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject
method on its EntityContext interface.
The container invokes this method with an unspecified transaction context.

[36] Containers using optimistic caching strategies, for example, may rollback the transaction at a later point.
 11/5/09 226

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
Note that instance is not yet ready for the delivery of a business method. The container must
still invoke the ejbLoad method prior to a business method.

• public void ejbPassivate();
The container invokes this method on an entity bean instance at passivation time (i.e., when the
instance is being disassociated from an entity object identity and moved into the pool). The
container must ensure that the identity of the associated entity object is still available to the
instance if the instance invokes the getPrimaryKey, getEJBLocalObject, or getEJ-
BObject method on its entity context.
The container invokes this method with an unspecified transaction context.
Note that if the instance state has been updated by a transaction, the container must first invoke
the ejbStore method on the instance before it invokes ejbPassivate on it.

• public void ejbRemove();
The container invokes the ejbRemove method in response to a client-invoked remove oper-
ation on the entity bean’s home or component interface or as the result of a cascade-delete
operation. The instance is in the ready state when ejbRemove is invoked and it will be
entered into the pool when the method completes.
The container synchronizes the instance’s state before it invokes the ejbRemove method.
This means that the persistent state of the instance at the beginning of the ejbRemove
method is the same as it would be at the beginning of a business method (i.e., if the instance is
not already synchronized from the state in the database, the container must invoke ejbLoad
before it invokes ejbRemove).
The container must ensure that the identity of the associated entity object is still available to
the instance in the ejbRemove method (i.e., the instance can invoke the getPrimaryKey,
getEJBLocalObject, or getEJBObject method on its EntityContext in the
ejbRemove method).
After the entity Bean Provider’s ejbRemove method returns, and in the same transaction
context, the container removes the entity bean instance from all relationships in which it partic-
ipates and then removes the entity object’s persistent representation.
The container may delete the representation of the entity in the database immediately, or it can
defer it to a later time (for example to the end of the transaction), depending on the caching
strategy that it uses.
The container must ensure that the ejbRemove method and database delete operations are
performed in the transaction context determined by the transaction attribute of the invoked
remove method, as described in subsection 13.6.2.

• public void ejbLoad();
When the container needs to synchronize the state of an enterprise bean instance with the entity
object’s state in the database, the container calls the ejbLoad method. Depending on its cach-
ing strategy, the container may first read the entity object’s state from the database, before
invoking the ejbLoad method, or it may use a lazy loading strategy in making this state visi-
ble to the instance.
The exact times that the container invokes ejbLoad depend on the configuration of the com-
ponent and the container, and are not defined by the EJB architecture. Typically, the container
will call ejbLoad before the first business method within a transaction or before invoking the
ejbTimeout method on an instance.
227 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
The container must invoke this method in the transaction context determined by the transaction
attribute of the business method or ejbTimeout method that triggered the ejbLoad
method.

• public void ejbStore();
When the container needs to synchronize the state of the entity object in the database with the
state of the enterprise bean instance, the container calls the ejbStore method on the
instance. This synchronization always happens at the end of a transaction, unless the bean is
specified as read-only (see section 8.5.4). However, the container may also invoke this method
when it passivates the instance in the middle of a transaction, or when it needs to transfer the
most recent state of the entity object to another instance for the same entity object in the same
transaction.
The container must invoke this method in the same transaction context as the previous ejb-
Load, ejbCreate<METHOD>, or ejbTimeout method invoked on the instance. All busi-
ness methods or the ejbTimeout method invoked between the previous ejbLoad or
ejbCreate <METHOD> method and this ejbStore method are also invoked in the same
transaction context.
After the ejbStore method returns, the container may store the persistent state of the
instance to the database, depending on its caching strategy. If the container uses a lazy storing
caching strategy, it is the container’s responsibility to write the representation of the persistent
object to the database in the same transaction context as that of the ejbStore method.

• public <primary key type or collection> ejbFind<METHOD>(...);
The implementation of the ejbFind<METHOD> method is supplied by the container.
The container invokes the ejbFind<METHOD> method on an instance when a client invokes
a matching find<METHOD> method on the entity bean’s home interface. The container must
pick an instance that is in the pooled state (i.e., the instance is not associated with any entity
object identity) for the execution of the ejbFind<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls the setEntityContext method on
the instance before dispatching the finder method.
The container must invoke the ejbFind<METHOD> method in the transaction context deter-
mined by the transaction attribute of the matching find method, as described in subsection
13.6.2.
The container is responsible for ensuring that updates to the states of all entity beans in the
same transaction context as the ejbFind<METHOD> method and whose abstract schema
types are accessed in the method’s EJB QL query are visible in the results of the
ejbFind<METHOD> method. Before invoking the ejbFind<METHOD> method, the con-
tainer must first synchronize the state of those entity bean instances by invoking the ejb-
Store method on them. This requirement does not apply to the ejbFindByPrimaryKey
method. The results of the ejbFindByPrimaryKey method, however, must reflect the enti-
ties that have been created or removed within the same transaction context.
After the ejbFind<METHOD> method completes, the instance remains in the pooled state.
The container may, but is not required to, immediately activate the objects that were located by
the finder using the transition through the ejbActivate method.
If the ejbFind<METHOD> method is declared to return a single primary key, the container
creates an entity EJBObject (EJBLocalObject) reference for the primary key and returns it to
the client (local client). If the ejbFind<METHOD> method is declared to return a collection
 11/5/09 228

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
of primary keys, the container creates a collection of entity EJBObject (EJBLocalObject) ref-
erences for the primary keys returned from the ejbFind<METHOD> method, and returns the
collection to the client (local client).
The implementations of the finder methods are generated at the entity bean deployment time
using the Container Provider’s tools.

• public <type> ejbSelect<METHOD>(...);
A select method is a query method that is not directly exposed to the client in the home or com-
ponent interface. The Bean Provider typically calls a select method within a business method
or home method.
A select method executes in the transaction context determined by the transaction attribute of
the invoking business method.
The container is responsible for ensuring that all updates to the states of all entity beans in the
same transaction context as the ejbSelect<METHOD> method and whose abstract schema
types are accessed in the EJB QL query for the ejbSelect<METHOD> method are visible in
the results of the ejbSelect<METHOD> method by invoking the ejbStore method on
those entity bean instances.
The implementations of the select methods are generated at the entity bean deployment time
using the Container Provider’s tools.

• public <type> ejbHome<METHOD>(...);
The container invokes the ejbHome<METHOD> method on an instance when a client invokes
a matching <METHOD> home method on the entity bean’s home interface. The container must
pick an instance that is in the pooled state (i.e., the instance is not associated with any entity
object identity) for the execution of the ejbHome<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls the setEntityContext method on
the instance before dispatching the home method.
After the ejbHome<METHOD> method completes, the instance remains in the pooled state.
The container must invoke the ejbHome<METHOD> method in the transaction context deter-
mined by the transaction attribute of the matching <METHOD> home method, as described in
subsection 13.6.2.

• public void ejbTimeout(...);

The container invokes the ejbTimeout method on the instance when a timer with which the
entity has been registered expires. If there is no suitable instance in the ready state, the con-
tainer must activate an instance, invoking the ejbActivate method and transitioning it to
the ready state.
The container invokes the ejbTimeout method in the context of a transaction determined by
its transaction attribute.

8.5.4 Read-only Entity Beans
Compliant implementations of this specification may optionally support read-only entity beans. A
read-only entity bean is an entity bean whose instances are not intended to be updated and/or created by
the application. Read-only beans are best suited for situations where the underlying data never changes
or changes infrequently.
229 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
Containers that support read-only beans do not call the ejbStore method on them. The ejbLoad
method should typically be called by the container when the state of the bean instance is initially loaded
from the database, or at designated refresh intervals.[37]

If a read-only bean is used, the state of such a bean should not be updated by the application, and the
behavior is unspecified if this occurs.[38]

Read-only beans are designated by vendor-specific means that are outside the scope of this specifica-
tion, and their use is therefore not portable.

8.5.5 The EntityContext Interface

A container provides the entity bean instances with an EntityContext, which gives the entity bean
instance access to the instance’s context maintained by the container. The EntityContext interface
has the following methods:

• The getEJBObject method returns the entity bean’s remote interface.

• The getEJBHome method returns the entity bean’s remote home interface.

• The getEJBLocalObject method returns the entity bean’s local interface.

• The getEJBLocalHome method returns the entity bean’s local home interface.

• The getCallerPrincipal method returns the java.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the entity bean instance’s caller has a particular role.

• The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback.

• The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback.

• The getPrimaryKey method returns the entity bean’s primary key.

• The getTimerService method returns the javax.ejb.TimerService interface.

• The getUserTransaction method returns the javax.transaction.UserTrans-
action interface. Entity bean instances must not call this method.

[37] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-specific.
[38] For example, an implementation might choose to ignore such updates or to disallow them.
 11/5/09 230

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
• The lookup method enables the entity bean to look up its environment entries in the JNDI
naming context.

8.5.6 Operations Allowed in the Methods of the Entity Bean Class

Table 5 defines the methods of an entity bean class in which the enterprise bean instances can access the
methods of the javax.ejb.EntityContext interface, the java:comp/env environment nam-
ing context, resource managers, TimerService and Timer methods, the EntityManager and
EntityManagerFactory methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of the EntityContext interface, and the
access is not allowed in Table 5, the container must throw the java.lang.IllegalStateExcep-
tion.

If a entity bean instance attempts to invoke a method of the TimerService or Timer interface and
the access is not allowed in Table 5, the container must throw the java.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to access a resource manager, an enterprise bean, an entity manager
or entity manager factory, and the access is not allowed in Table 5, the behavior is undefined by the EJB
architecture.

Table 5 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods: getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

ejbCreate

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbPostCreate

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access
231 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
ejbRemove

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbHome

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbActivate
ejbPassivate

EntityContext methods: getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

business method
from component
interface

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbTimeout

EntityContext methods: getEJBHome, getEJBLocalHome,
getRollbackOnly, setRollbackOnly, getCallerPrincipal, isCallerInRole,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

Table 5 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
 11/5/09 232

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the EntityContext
interface should be used only in the enterprise bean methods that execute in the context of a
transaction. The container must throw the java.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking the getEJBObject, getEJBLocalObject, and getPrimaryKey methods is
disallowed in the entity bean methods in which there is no entity object identity associated with
the instance.

• Invoking the getEJBObject and getEJBHome methods is disallowed if the entity bean
does not define a remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the
entity bean does not define a local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
entity bean methods for which the container does not have a meaningful transaction context.

• Accessing resource managers and enterprise beans, including accessing the persistent state of
an entity bean instance, is disallowed in the entity bean methods for which the container does
not have a meaningful transaction context or client security context.

8.5.7 Finder Methods
An entity bean’s home interface defines one or more finder methods[39], one for each way to find an
entity object or collection of entity objects within the home. The name of each finder method starts with
the prefix “find”, such as findLargeAccounts. The arguments of a finder method are used in the
implementation of the query for the finder method to locate the requested entity objects.

Every finder method except findByPrimaryKey(key) must be associated with a query element
in the deployment descriptor. The entity Bean Provider declaratively specifies the EJB QL finder query
and associates it with the finder method in the deployment descriptor. A finder method is normally char-
acterized by an EJB QL query string specified in the query element. EJB QL is described in Chapter 9.
A compliant implementation of this specification is required to support EJB QL as defined in Chapter 9
for use with finder methods.

In the case that both the remote home interface and local home interface define a finder method with the
same name and argument types, the EJB QL query string specified by the query element defines the
semantics of both methods.

[39] The findByPrimaryKey method is mandatory for all entity beans.
233 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
8.5.7.1 Single-Object Finder Methods

Some finder methods (such as findByPrimaryKey) are designed to return at most one entity object.
For single-object finders, the result type of a find<METHOD>method defined in the entity bean’s
remote home interface is the entity bean’s remote interface, and the result type of the
find<METHOD>method defined in the entity bean’s local home interface is the entity bean’s local
interface.

The following code illustrates the definition of a single-object finder defined on the remote home inter-
face.

// Entity’s home interface
public interface AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

Note that a finder method defined on the local home interface must not throw the RemoteEx-
ception.

In general, when defining a single-object finder method other than findByPrimaryKey, the entity
Bean Provider should be sure that the finder method will always return only a single entity object. This
may occur, for example, if the EJB QL query string that is used to specify the finder query includes an
equality test on the entity bean’s primary key fields. If the entity Bean Provider uses an unknown pri-
mary key class (see Section 8.8.3), the Bean Provider will typically define the finder method as a
multi-object finder.

Note that a single-object finder method may return a null value. If the result set of the query consists of
a single null value, the container must return the null value as the result of the method. If the result set of
a query for a single-object finder method contains more than one value (whether non-null, null, or a
combination), the container must throw the FinderException from the finder method. If the result
set of the query contains no values, the container must throw the ObjectNotFoundException.

8.5.7.2 Multi-Object Finder Methods

Some finder methods are designed to return multiple entity objects. For multi-object finders defined on
the entity bean’s local home interface, the result type of the find<METHOD>method is a collection of
objects implementing the entity bean’s local interface. For multi-object finders defined on the entity
bean’s remote home interface, the result type of the find<METHOD>method is a collection of objects
implementing the entity bean’s remote interface.

The Bean Provider uses the Java™ 2 java.util.Collection interface to define a collection type
for the result type of a finder method for an entity bean with container-managed persistence.

The collection of values returned by the container may contain duplicates if DISTINCT is not specified
in the SELECT clause of the query for the finder method.
 11/5/09 234

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
The collection of values returned by the container may contain null values if the finder method returns
the values of a cmr-field and null values are not eliminated by the query.

A portable client program must use the PortableRemoteObject.narrow method to convert the
objects contained in the collections returned by a finder method on the entity bean’s remote home inter-
face to the entity bean’s remote interface type.

The following is an example of a multi-object finder method defined on the remote home interface:

// Entity’s home interface
public interface AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

Note that if this finder method were defined on the local home interface, it would not throw the
RemoteException.

8.5.8 Select Methods
Select methods are query methods for use by the Bean Provider within an entity bean instance. Unlike
finder methods, select methods are not specified in the entity bean’s home interface. A select method is
an abstract method defined by the Bean Provider on an entity bean class. A select method must not be
exposed in the home or component interface of an entity bean.

The semantics of a select method, like those of a finder method, are defined by an EJB QL query string.
A select method is similar to a finder method, but unlike a finder method, but it can return values that
correspond to any cmp- or cmr-field type.

Every select method must be associated with a query element in the deployment descriptor. The entity
Bean Provider declaratively specifies the EJB QL query and associates it with the select method in the
deployment descriptor. A select method is normally characterized by an EJB QL query string specified
in the query element. EJB QL is described in Chapter 9. A compliant implementation of this specifica-
tion is required to support EJB QL as defined in Chapter 9 for use with select methods.

Typically an ejbSelect<METHOD>method that returns entity objects returns these as EJBLocalOb-
jects. If the ejbSelect<METHOD>method returns an EJBObject or collection of EJBObjects, the
Bean Provider must specify the value of the result-type-mapping element in the query deploy-
ment descriptor element for the select method as Remote.

An ejbSelect<METHOD> is not based on the identity of the entity bean instance on which it is
invoked. However, the Bean Provider can use the primary key of an entity bean as an argument to an
ejbSelect<METHOD> to define a query that is logically scoped to a particular entity bean instance.

The following table illustrates the semantics of finder and select methods.
235 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
Table 6 Comparison of Finder and Select Methods

8.5.8.1 Single-Object Select Methods

Some select methods are designed to return at most one value. In general, when defining a single-object
select method, the entity Bean Provider must be sure that the select method will always return only a
single object or value. If the query specified by the select method returns multiple values of the desig-
nated type, the container must throw the FinderException.

Note that a single-object select method may return a null value. If the result set of the query consists of
a single null value, the container must return the null value as the result of the method. If the result set of
a query for a single-object select method contains more than one value (whether non-null, null, or a
combination), the container must throw the FinderException from the select method. If the result
set of the query contains no values, the contain must throw the ObjectNotFoundException.

The Bean Provider will typically define a select method as a multi-object select method.

8.5.8.2 Multi-Object Select Methods

Some select methods are designed to return multiple values. For these multi-object select methods, the
result type of the ejbSelect<METHOD>method is a collection of objects.

The Bean Provider uses the Java™ 2 java.util.Collection interface or java.util.Set
interface to define a collection type for the result type of a select method. The type of the elements of
the collection is determined by the type of the SELECT clause of the corresponding EJB QL query. If
the Bean Provider uses the java.util.Collection interface, the collection of values returned by
the container may contain duplicates if DISTINCT is not specified in the SELECT clause of the query.
If a query for a select method whose result type is java.util.Set does not specify DISTINCT in its
SELECT clause, the container must interpret the query as if SELECT DISTINCT had been specified.

The collection of values returned by the container may contain null values if the select method returns
the values of a cmr-field or cmp-field and null values are not eliminated by the query.

Finder methods Select methods

method find<METHOD> ejbSelect<METHOD>

visibility exposed to client internal to entity bean class

instance arbitrary bean instance in pooled state instance: current instance (could be bean
instance in pooled state or ready state)

return value EJBObjects or EJBLocalObjects of the same
type as the entity bean

EJBObjects, EJBLocalObjects, or cmp-field
types
 11/5/09 236

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
The following is an example of a multi-object select method definition in the OrderBean class:

// OrderBean implementation class
public abstract class OrderBean implements javax.ejb.EntityBean{

...
public abstract java.util.Collection

ejbSelectAllOrderedProducts(Customer customer)
throws FinderException;
// internal finder method to find all products ordered

8.5.9 Timer Notifications
An entity bean can be registered with the EJB timer service for time-based event notifications if it
implements the javax.ejb.TimedObject interface. The container invokes the bean instance’s
ejbTimeout method when a timer for the bean has expired. See Chapter 18, “Timer Service”.

8.5.10 Standard Application Exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

This section describes the use of these exceptions by entity beans with container-managed persistence.

8.5.10.1 CreateException

From the client’s perspective, a CreateException (or a subclass of CreateException) indi-
cates that an application level error occurred during a create<METHOD> operation. If a client
receives this exception, the client does not know, in general, whether the entity object was created but
not fully initialized, or not created at all. Also, the client does not know whether or not the transaction
has been marked for rollback. (However, the client may determine the transaction status using the
UserTransaction interface or the setRollbackOnly method of the EJBContext interface.)

Both the container and the Bean Provider may throw the CreateException (or subclass of Cre-
ateException) from the create<METHOD>, ejbCreate<METHOD> and ejbPostCre-
ate<METHOD> methods to indicate an application-level error from the create or initialization
operation. Optionally, the container or Bean Provider may mark the transaction for rollback before
throwing this exception.
237 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
The container or Bean Provider is encouraged to mark the transaction for rollback only if data integrity
would be lost if the transaction were committed by the client. Typically, when a CreateException is
thrown, it leaves the database in a consistent state, allowing the client to recover. For example, the
ejbCreate<METHOD> method may throw the CreateException to indicate that the some of the
arguments to the create<METHOD> method are invalid.

The container treats the CreateException as any other application exception. See Section 14.3.

8.5.10.2 DuplicateKeyException

The DuplicateKeyException is a subclass of CreateException. It may be thrown by the
container to indicate to the client or local client that the entity object cannot be created because an entity
object with the same key already exists. The unique key causing the violation may be the primary key,
or another key defined in the underlying database.

Normally, the container should not mark the transaction for rollback before throwing the exception.

When the client or local client receives a DuplicateKeyException, the client knows that the
entity was not created, and that the transaction has not typically been marked for rollback.

8.5.10.3 FinderException

From the client’s perspective, a FinderException (or a subclass of FinderException) indi-
cates that an application level error occurred during the find operation. Typically, the transaction has
not been marked for rollback because of the FinderException.

The container throws the FinderException (or subclass of FinderException) from the imple-
mentation of a finder or select method to indicate an application-level error in the finder or select
method. The container should not, typically, mark the transaction for rollback before throwing the
FinderException.

The container treats the FinderException as any other application exception. See Section 14.3.

8.5.10.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass of FinderException. The container throws the
ObjectNotFoundException from the implementation of a finder or select method to indicate that
the requested object does not exist.

Only single-object finder or select methods (see Subsections 8.5.7 and 8.5.8) should throw this excep-
tion. Multi-object finder or select methods must not throw this exception. Multi-object finder or select
methods should return an empty collection as an indication that no matching objects were found.
 11/5/09 238

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
8.5.10.5 RemoveException

From the client’s perspective, a RemoveException (or a subclass of RemoveException) indi-
cates that an application level error occurred during a remove operation. If a client receives this excep-
tion, the client does not know, in general, whether the entity object was removed or not. The client also
does not know if the transaction has been marked for rollback. (However, the client may determine the
transaction status using the UserTransaction interface.)

The container or Bean Provider throws the RemoveException (or subclass of RemoveExcep-
tion) from a remove method to indicate an application-level error from the entity object removal oper-
ation. Optionally, the container or Bean Provider may mark the transaction for rollback before throwing
this exception.

The container or Bean Provider is encouraged to mark the transaction for rollback only if data integrity
would be lost if the transaction were committed by the client. Typically, when a RemoveException is
thrown, it leaves the database in a consistent state, allowing the client to recover.

The container treats the RemoveException as any other application exception. See Section 14.3.

8.5.11 Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition of the
instance state at transaction commit time. This flexibility allows the container to optimally manage the
association of an entity object identity with the enterprise bean instances.

The container can select from the following commit-time options:

• Option A: The container caches a “ready” instance between transactions. The container knows
that the bean instance has exclusive access to the state of the object in the persistent storage.
Therefore, the container does not have to synchronize the instance’s state from the persistent
storage at the beginning of the next transaction or have to verify that the instance’s state is in
sync with the persistent storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. In contrast to Option
A, in this option the instance may not have exclusive access to the state of the object in the per-
sistent storage. Therefore, the container must synchronize the instance’s state from the persis-
tent storage at the beginning of the next transaction if the instance’s state in the persistent
storage has changed. Containers using optimistic concurrency control strategies may instead
choose to rollback the transaction if this invariant has not been met: The container must ensure
that in order for a transaction to be successfully committed, the transaction must only operate
on instance data that is in sync with the persistent storage at the beginning of the transaction.

• Option C: The container does not cache a “ready” instance between transactions. The con-
tainer returns the instance to the pool of available instances after a transaction has completed.

Variants of these strategies that capture the same semantics from the Bean Provider’s viewpoint may be
employed, e.g., to optimize data access.
239 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
The following illustrative lazy loading strategies are consistent with the intent of these requirements:

• If ejbLoad is called at the beginning of the transaction without the instance’s persistent state
having been loaded from the persistent storage, the persistent state must be faulted in when
ejbLoad causes the bean’s getter accessor methods to be invoked. If the ejbLoad method is
empty, data may be faulted in as needed in the course of executing the businesss methods of
the bean.

• If the instance’s persistent state is cached between transactions, ejbLoad need not be called
and persistent data need not be faulted in from the persistent storage (unless it has not previ-
ously been accessed). In this case, because ejbLoad has been previously called when the
instance was entered into the ready state for the first time, and because the bean instance’s state
is consistent with its persistent state, there is no need to call ejbLoad unless the instance’s
state in the persistent storage has changed. In this case, the container must ensure that in order
for the transaction to be successfully committed, the instance’s persistent state was in sync
with the persistent storage at the beginning of the transaction.

The following table provides a summary of the commit-time options.

Note that the container synchronizes the instance’s state with the persistent storage at transaction com-
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity bean
will work correctly regardless of the commit-time option chosen by the container. The Bean Provider
writes the entity bean in the same way.

Note: The Bean Provider relies on the ejbLoad method to be invoked in order to resynchro-
nize the bean’s transient state with its persistent state. It is the responsibility of the container to
call the ejbLoad method at the beginning of a new transaction if the bean instance’s persis-
tent data has changed.[40]

Table 7 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No

[40] It is consistent with this specification to provide options for this refresh to be deferred or avoided in the case of read-only beans.
 11/5/09 240

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.1, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.
8.5.12 Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about con-
current access from multiple transactions. The Bean Provider may assume that the container will ensure
appropriate synchronization for entity objects that are accessed concurrently from multiple transactions.

The container typically uses one of the following implementation strategies to achieve proper synchro-
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in which
the entity object is being accessed. The transaction synchronization is performed by the under-
lying database during the accessor method calls performed by the business methods, the ejb-
Timeout method, and by the ejbLoad, ejbCreate<METHOD>, ejbStore, and
ejbRemove methods. The commit-time options B and C in Subsection 8.5.11 apply to this
type of container.

Figure 16 Multiple Clients Can Access the Same Entity Object Using Multiple Instances

With this strategy, the type of lock acquired by ejbLoad or get accessor method (if a lazy loading
cache management strategy is used) leads to a trade-off. If ejbLoad or the accessor method acquires
an exclusive lock on the instance's state in the database, the throughput of read-only transactions could
be impacted. If ejbLoad or the accessor method acquires a shared lock and the instance is updated,
then either ejbStore or a set accessor method will need to promote the lock to an exclusive lock
(which may cause a deadlock if it happens concurrently under multiple transactions), or, if the con-
tainer uses an optimistic cache concurrency control strategy, the container will need to validate the
state of the cache against the database at transaction commit (which may result in a rollback of the
transaction).

It is expected that containers will provide deployment-time configuration options that will allow control
to be exercised over the logical transaction isolation levels that their caching strategies provide.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
241 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Instance Life

Sun Microsystems, Inc.
• The container acquires exclusive access to the entity object’s state in the database. The con-
tainer activates a single instance and serializes the access from multiple transactions to this
instance. The commit-time option A in Subsection 8.5.11 applies to this type of container.

Figure 17 Multiple Clients Can Access the Same Entity Object Using Single Instance

8.5.13 Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non-reen-
trant entity bean executes a client request in a given transaction context, and another request with the
same transaction context arrives for the same entity object, the container will throw an exception to the
second request. This rule allows the Bean Provider to program the entity bean as single-threaded,
non-reentrant code.

The functionality of entity beans with container-managed persistence may require loopbacks in the
same transaction context. An example of a loopback is when the client calls entity object A, A calls
entity object B, and B calls back A in the same transaction context. The entity bean’s method invoked
by the loopback shares the current execution context (which includes the transaction and security con-
texts) with the Bean’s method invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must reject an
attempt to re-enter the instance via the entity bean’s component interface while the instance is executing
a business method. (This can happen, for example, if the instance has invoked another enterprise bean,
and the other enterprise bean tries to make a loopback call.) If the attempt is made to reenter the instance
through the remote interface, the container must throw the java.rmi.RemoteException to the
caller. If the attempt is made to reenter the instance through the local interface, the container must throw
the javax.ejb.EJBException to the caller. The container must allow the call if the Bean’s
deployment descriptor specifies that the entity bean is re-entrant.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
 11/5/09 242

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider must code
the entity bean with the anticipation of a loopback call. Second, since the container cannot, in general,
tell a loopback from a concurrent call from a different client, the client programmer must be careful to
avoid code that could lead to a concurrent call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same entity object are illegal and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal con-
current call and a legal loopback, application programmers are encouraged to avoid using loopbacks.
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment descriptor,
allowing the container to detect and prevent illegal concurrent calls from clients.

8.6 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of an entity Bean Provider to ensure that an entity bean with
container-managed persistence can be deployed in any EJB container.

8.6.1 Classes and Interfaces

The entity Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes

• Primary key class

• Entity bean’s remote interface and entity bean’s remote home interface, if the entity bean pro-
vides a remote client view

• Entity bean’s local interface and local home interface, if the entity bean provides a local client
view

The Bean Provider must provide a remote interface and a remote home interface or a local interface and
a local home interface for the bean. The Bean Provider may provide a remote interface, remote home
interface, local interface, and local home interface for the bean. Other combinations are not allowed.

8.6.2 Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, the javax.ejb.EntityBean interface.

The class may implement, directly or indirectly, the javax.ejb.TimedObject interface.

The class must be defined as public and must be abstract. The class must be a top level class.

The class must define a public constructor that takes no arguments.
243 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities

Sun Microsystems, Inc.
The class must not define the finalize() method.

The class may, but is not required to, implement the entity bean’s component interface[41]. If the class
implements the entity bean’s component interface, the class must provide no-op implementations of the
methods defined by that interface. The container will never invoke these methods on the bean instances
at runtime.

The entity bean class must implement the business methods, and the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods as described later in this section.

The entity bean class must implement the ejbHome<METHOD> methods that correspond to the home
business methods specified in the bean’s home interface. These methods are executed on an instance in
the pooled state; hence they must not access state that is particular to a specific bean instance (e.g., the
accessor methods for the bean’s abstract persistence schema must not be used by these methods).

The entity bean class must implement the get and set accessor methods of the bean’s abstract persis-
tence schema as abstract methods.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has superclasses,
the business methods, the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods, and
the methods of the EntityBean interface and/or the TimedObject interface may be implemented
in the enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the EJB specification.

The entity bean class does not implement the finder methods. The implementations of the finder meth-
ods are provided by the container.

The entity bean class must implement any ejbSelect<METHOD> methods as abstract methods.

8.6.3 Dependent Value Classes

The following are the requirements for a dependent value class:

The class must be defined as public and must not be abstract.

The class must be serializable.

8.6.4 ejbCreate<METHOD> Methods

The entity bean class must implement the ejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface or local home interface.

[41] If the entity bean class does implement the component interface, care must be taken to avoid passing of this as a method argu-
ment or result. This potential error can be avoided by choosing not to implement the component interface in the entity bean class.
 11/5/09 244

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The entity bean class may define zero or more ejbCreate<METHOD> methods whose signatures
must follow these rules:

The method name must have ejbCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be the entity bean’s primary key type.

If the ejbCreate<METHOD> method corresponds to a create<METHOD> on the entity bean’s
remote home interface, the method arguments and return value types must be legal types for RMI-IIOP.

The throws clause must define the javax.ejb.CreateException. The throws clause may
define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw the java.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB
1.1 or EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another java.lang.RuntimeException to indicate non-application exceptions to the container
(see Section 14.2.2). The ejbCreate method of an entity bean with cmp-version 2.x must not throw
the java.rmi.RemoteException .

8.6.5 ejbPostCreate<METHOD> Methods

For each ejbCreate<METHOD> method, the entity bean class must define a matching ejbPost-
Create<METHOD> method, using the following rules:

The method name must have ejbPostCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be void.

The method arguments must be the same as the arguments of the matching ejbCreate<METHOD>
method.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException.

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throw the java.rmi.Remo-
teException to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
EJB 1.1 or EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBExcep-
tion or another java.lang.RuntimeException to indicate non-application exceptions to the
container (see Section 14.2.2). The ejbPostCreate method of an entity bean with cmp-version 2.x
must not throw the java.rmi.RemoteException .
245 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities

Sun Microsystems, Inc.
8.6.6 ejbHome<METHOD> Methods

The entity bean class may define zero or more home methods whose signatures must follow the follow-
ing rules:

An ejbHome<METHOD> method must exist for every home <METHOD> method on the entity bean’s
remote home or local home interface. The method name must have ejbHome as its prefix followed by
the name of the <METHOD> method in which the first character has been uppercased.

The method must be declared as public.

The method must not be declared as static.

If the ejbHome<METHOD> method corresponds to a home <METHOD> on the entity bean’s remote
home interface, the method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions. The throws clause must not
throw the java.rmi.RemoteException.

8.6.7 ejbSelect<METHOD> Methods

The entity bean class may define one or more select methods whose signatures must follow the follow-
ing rules:

The method name must have ejbSelect as its prefix.

The method must be declared as public.

The method must be declared as abstract.

The throws clause must define the javax.ejb.FinderException. The throws clause may
define arbitrary application specific exceptions.

8.6.8 Business Methods

The entity bean class may define zero or more business methods whose signatures must follow these
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the call-
back methods used by the EJB architecture.

The business method must be declared as public.

The method must not be declared as final or static.

If the business method corresponds to a method of the entity bean’s remote interface, the method argu-
ment and return value types must be legal types for RMI-IIOP.
 11/5/09 246

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw the java.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or
EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another java.lang.RuntimeException to indicate non-application exceptions to the container
(see Section 14.2.2).The business methods of an entity bean with cmp-version 2.x must not throw the
java.rmi.RemoteException.

8.6.9 Entity Bean’s Remote Interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend the javax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that their
argument and return value types must be valid types for RMI-IIOP, and their throws clauses must
include the java.rmi.RemoteException.

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity bean’s
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
Bean class must be defined in the throws clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types, timer
handles, or the managed collection classes that are used for entity beans with container-managed persis-
tence as arguments or results.

8.6.10 Entity Bean’s Remote Home Interface

The following are the requirements for the entity bean’s home interface:

The interface must extend the javax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ment and return types must be of valid types for RMI-IIOP, and their throws clauses must include the
java.rmi.RemoteException.

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI-IIOP rules for the definition of remote interfaces.
247 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities

Sun Microsystems, Inc.
Each method defined in the remote home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Each create method must be named “create<METHOD>”, e.g. createLargeAccounts. Each
create method name must match one of the ejbCreate<METHOD> methods defined in the enterprise
bean class. The matching ejbCreate<METHOD> method must have the same number and types of its
arguments. (Note that the return type is different.)

The return type for a create<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and ejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause
of the matching create method of the home interface (i.e., the set of exceptions defined for the cre-
ate method must be a superset of the union of exceptions defined for the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the javax.ejb.CreateEx-
ception.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for a find<METHOD> method must be the entity bean’s remote interface type (for a
single-object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

The throws clause of a finder method must include the javax.ejb.FinderException.

Home methods can have arbitrary names, but they must not start with “create”, “find”, or
“remove”. Their argument and return types must be of valid types for RMI-IIOP, and their throws
clauses must include the java.rmi.RemoteException. The matching ejbHome method speci-
fied in the entity bean class must have the same number and types of arguments and must return the
same type as the home method as specified in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface types,
timers or timer handles, or the managed collection classes that are used for entity beans with con-
tainer-managed persistence as arguments or results.

8.6.11 Entity Bean’s Local Interface

The following are the requirements for the entity bean’s local interface:

The interface must extend the javax.ejb.EJBLocalObject interface.
 11/5/09 248

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
For each method defined in the local interface, there must be a matching method in the entity bean’s
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
Bean class must be defined in the throws clause of the method of the local interface.

8.6.12 Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:

The interface must extend the javax.ejb.EJBLocalHome interface.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Each create method must be named “create<METHOD>”, e.g. createLargeAccounts. Each
create method name must match one of the ejbCreate<METHOD> methods defined in the enterprise
bean class. The matching ejbCreate<METHOD> method must have the same number and types of its
arguments. (Note that the return type is different.)

The return type for a create<METHOD> method on the local home interface must be the entity bean’s
local interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and ejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause
of the matching create method of the local home interface (i.e., the set of exceptions defined for the
create method must be a superset of the union of exceptions defined for the ejbCreate<METHOD>
and ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the javax.ejb.CreateEx-
ception.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for a find<METHOD> method defined on the local home interface must be the entity
bean’s local interface type (for a single-object finder), or a collection thereof (for a multi-object finder).

The local home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.
249 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.
The throws clause of a finder method must include the javax.ejb.FinderException.

Home methods can have arbitrary names, but they must not start with “create”, “find”, or
“remove”. The matching ejbHome method specified in the entity bean class must have the same
number and types of arguments and must return the same type as the home method as specified in the
home interface of the bean. The throws clause of a home method defined on the local home interface
must not include the java.rmi.RemoteException.

8.6.13 Entity Bean’s Primary Key Class

The Bean Provider must specify a primary key class in the deployment descriptor.

The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of the hashCode() and equals(Object
other) methods to simplify the management of the primary keys by the container.

8.6.14 Entity Bean’s Deployment Descriptor

The Bean Provider must specify the relationships in which the entity beans participate in the rela-
tionships element.

The Bean Provider must provide unique names to designate entity beans as follows, and as described in
Section 8.3.13.

• The Bean Provider must specify unique names for entity beans which are defined in the ejb-jar
file by using the ejb-name element.

• The Bean Provider must specify a unique abstract schema name for an entity bean using the
abstract-schema-name deployment descriptor element.

The Bean Provider must define a query for each finder or select method except findByPrima-
ryKey(key). Typically this will be provided as the content of the ejb-ql element contained in the
query element for the entity bean. The syntax of EJB QL is defined in Chapter 9.

Since EJB QL query strings are embedded in the deployment descriptor, which is an XML document, it
may be necessary to encode the following characters in the query string: “>”, “<“.

8.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support entity beans. The Con-
tainer Provider is responsible for providing the deployment tools, and for managing the entity beans at
runtime, including their persistent state and relationships.
 11/5/09 250

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools described in this section are provided by the Container Provider.
Alternatively, the deployment tools may be provided by a different vendor who uses the container ven-
dor’s specific API.

8.7.1 Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of addi-
tional classes when the entity bean is deployed. The tools obtain the information that they need for gen-
eration of the additional classes by introspecting the classes and interfaces provided by the Bean
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s remote home interface (i.e., the entity EJBHome
class).

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject class).

• A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalHome
class).

• A class that implements the entity bean’s local interface (i.e., the EJBLocalObject class).

• A class that implements the entity bean class (i.e., a concrete class corresponding to the
abstract entity bean class that was provided by the Bean Provider).

The deployment tools may also generate a class that mixes some container-specific code with the entity
bean class. The code may, for example, help the container to manage the entity bean instances at runt-
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business methods
and that is used to customize the business logic for an existing operational environment. For example, a
wrapper for a debit function on the Account bean may check that the debited amount does not
exceed a certain limit, or perform security checking that is specific to the operational environment.

8.7.2 Enterprise Bean Class

The following are the requirements for a concrete entity bean class:

The class must extend the abstract entity bean class provided by the Bean Provider.

The class must be defined as public and must not be abstract.

The class must define a public constructor that takes no arguments.

The class must implement the get and set accessor methods of the bean’s abstract persistence schema.
251 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.
The class must not define the finalize method.

The entity bean class must implement the ejbFind<METHOD> methods.

The entity bean class must implement the ejbSelect<METHOD> methods.

The entity bean class is allowed to implement other methods in addition to the methods required by the
EJB specification.

8.7.3 ejbFind<METHOD> Methods

For each find<METHOD> method in the remote home interface or local home interface of the entity
bean, there must be a corresponding ejbFind<METHOD> method with the same argument types in the
concrete entity bean class.

The method name must have ejbFind as its prefix.

The method must be declared as public.

If the ejbFind<METHOD> method corresponds to a find<METHOD> on the entity bean’s remote
home interface, the method argument and return value types must be legal types for RMI-IIOP.

The return type of an ejbFind<METHOD> method must be the entity bean’s primary key type, or a
collection of primary keys.

The throws clause must define the javax.ejb.FinderException. The throws clause may
define arbitrary application specific exceptions.

Every finder method except ejbFindByPrimaryKey(key) is specified in the query deployment
descriptor element for the entity. The container must use the EJB QL query string that is the content of
the ejb-ql element or the descriptive query specification contained in the description element as
the definition of the query of the corresponding ejbFind<METHOD> method.

8.7.4 ejbSelect<METHOD> Methods

For each ejbSelect<METHOD> method in the abstract entity bean class, there must be a method with
the same argument and result types in the concrete entity bean class.

Every select method is specified in a query deployment descriptor element for the entity. The con-
tainer must use the EJB QL query string that is the content of the ejb-ql element or the descriptive
query specification that is contained in the description element as the definition of the query of the
corresponding ejbSelect<METHOD>method.

The container must use the contents of the query element, the corresponding EJB QL string and the
type of the values selected as specified by the SELECT clause to determine the type of the values
returned by a select method.
 11/5/09 252

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The container must ensure that there are no duplicates returned by a select method if the return type is
java.util.Set.

8.7.5 Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s
remote home interface. This class implements the methods of the javax.ejb.EJBHome interface,
and the type-specific create and finder methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method, followed by the matching ejbPostCreate<METHOD> method, passing the cre-
ate<METHOD> parameters to these matching methods.

The implementation of the remove methods defined in the javax.ejb.EJBHome interface must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD>
method. The implementation of the find<METHOD> method must create an entity object reference
for the primary key returned from the ejbFind<METHOD> and return the entity object reference to the
client. If the ejbFind<METHOD> method returns a collection of primary keys, the implementation of
the find<METHOD> method must create a collection of entity object references for the primary keys
and return the collection to the client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD>
method (in which the first character of <METHOD> is uppercased in the name of the ejb-
Home<METHOD> method), passing the parameters of the <METHOD> method to the matching ejb-
Home<METHOD>method.

8.7.6 Entity EJBObject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity bean’s
remote interface. It implements the methods of the javax.ejb.EJBObject interface and the
remote business methods specific to the entity bean.

The implementation of the remove method (defined in the javax.ejb.EJBObject interface)
must activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove
method on the instance.

The implementation of each remote business method must activate an instance (if an instance is not
already in the ready state) and invoke the matching business method on the instance.

8.7.7 Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity bean’s
local home interface. This class implements the methods of the javax.ejb.EJBLocalHome inter-
face, and the type-specific create and finder methods specific to the entity bean.
253 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.
The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method, followed by the matching ejbPostCreate<METHOD> method, passing the cre-
ate<METHOD> parameters to these matching methods.

The implementation of the remove method defined in the javax.ejb.EJBLocalHome interface
must activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove
method on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD>
method. The implementation of the find<METHOD> method must create a local entity object refer-
ence for the primary key returned from the ejbFind<METHOD> and return the local entity object ref-
erence to the local client. If the ejbFind<METHOD> method returns a collection of primary keys, the
implementation of the find<METHOD> method must create a collection of local entity object refer-
ences for the primary keys and return the collection to the local client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD>
method (in which the first character of <METHOD> is uppercased in the name of the ejb-
Home<METHOD> method), passing the parameters of the <METHOD> method to the matching ejb-
Home<METHOD> method.

8.7.8 Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity bean’s
local interface. It implements the methods of the javax.ejb.EJBLocalObject interface and the
local business methods specific to the entity bean.

The implementation of the remove method (defined in the javax.ejb.EJBLocalObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke the ejbRe-
move method on the instance.

The implementation of each local business method must activate an instance (if an instance is not
already in the ready state) and invoke the matching business method on the instance.

8.7.9 Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The handle
class must be serializable by the Java Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a single
class for all deployed entity beans.

8.7.10 Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. The han-
dle class must be serializable by the Java Serialization protocol.
 11/5/09 254

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Because the home handle class is not entity bean specific, the container may, but is not required to, use
a single class for the home handles of all deployed entity beans.

8.7.11 Metadata Class

The deployment tools are responsible for implementing the class that provides metadata information to
the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must implement
the javax.ejb.EJBMetaData interface.

Because the metadata class is not entity bean specific, the container may, but is not required to, use a
single class for all deployed enterprise beans.

8.7.12 Instance’s Re-entrance

The container runtime must enforce the rules defined in Section 8.5.13.

8.7.13 Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exception
handling described in Chapters 13, 17, and 14.

8.7.14 Implementation of Object References

The container should implement the distribution protocol between the remote client and the container
such that the object references of the remote home and remote interfaces used by entity bean clients are
usable for a long period of time. Ideally, a remote client should be able to use an object reference across
a server crash and restart. An object reference should become invalid only when the entity object has
been removed, or after a reconfiguration of the server environment (for example, when the entity bean is
moved to a different EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the client
code needs to have a recovery handler for the system exceptions thrown from the individual method
invocations on the remote home and remote interface, the client should not be forced to re-obtain the
object references.

8.7.15 EntityContext

The container must implement the EntityContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the entity bean’s remote inter-
face type. Specifically, the bean instance does not have to use the PortableRemoteObject.nar-
row method for the type conversion.
255 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Primary Keys

Sun Microsystems, Inc.
8.8 Primary Keys

The container must be able to manipulate the primary key type of an entity bean. Therefore, the primary
key type for an entity bean with container-managed persistence must follow the rules in this subsection,
in addition to those specified in Subsection 8.6.13.

There are two ways to specify a primary key class for an entity bean with container-managed persis-
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is convenient for
single-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

8.8.1 Primary Key That Maps to a Single Field in the Entity Bean Class

The Bean Provider uses the primkey-field element of the deployment descriptor to specify the
container-managed field of the entity bean class that contains the primary key. The field’s type must be
the primary key type.

8.8.2 Primary Key That Maps to Multiple Fields in the Entity Bean Class

The primary key class must be public, and must have a public constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-managed
fields. (This allows the container to extract the primary key fields from an instance’s container-managed
fields, and vice versa.)

8.8.3 Special Case: Unknown Primary Key Class

In special situations, the entity Bean Provider may choose not to specify the primary key class or the
primary key fields for an entity bean with container-managed persistence. This case usually happens
when the entity bean does not have a natural primary key, and/or the Bean Provider wants to allow the
Deployer using the Container Provider’s tools to select the primary key fields at deployment time. The
entity bean’s primary key type will usually be derived from the primary key type used by the underlying
database system that stores the entity objects. The primary key used by the database system may not be
known to the Bean Provider.

In this special case, the type of the argument of the findByPrimaryKey method must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deployment
descriptor as of the type java.lang.Object.
 11/5/09 256

Primary Keys Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
When defining the primary key for the enterprise bean, the Deployer using the Container Provider’s
tools will typically add additional container-managed fields to the concrete subclass of the entity bean
class (this typically happens for entity beans that do not have a natural primary key, and the primary
keys are system-generated by the underlying database system that stores the entity objects). In this case,
the container must generate the primary key value when the entity bean instance is created (and before
ejbPostCreate is invoked on the instance.)

The primary key class is specified at deployment time in the situations when the Bean Provider develops
an entity bean that is intended to be used with multiple back-ends that provide persistence, and when
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application program-
ming model, because the clients written prior to deployment of the entity bean may not use, in general,
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, the
methods should not depend on the type of the object returned from EntityContext.getPrima-
ryKey, because the return type is determined by the Deployer after the EJB class has been written.
257 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Primary Keys

Sun Microsystems, Inc.
 11/5/09 258

Primary Keys Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
Chapter 9 EJB QL: EJB 2.1 Query Language for
Container-Managed Persistence Query
Methods

The Enterprise JavaBeans query language, EJB QL, is used to define queries for entity beans with con-
tainer-managed persistence. EJB QL enables the Bean Provider to specify the semantics of query meth-
ods in a portable way.

This chapter provides the complete definition of EJB QL that is required to be supported for
use with EJB 2.1 entity beans with container managed persistence. Implementations of this
specification are permitted, but not required, to provide the extensions to EJB QL defined by
the Java Persistence query language [2] for use with finder and select methods. Applications
that make use of such extensions in finder and select methods will not be portable.

The Enterprise JavaBeans query language, EJB QL, has been proposed for future removal. See Section
2.7 for more details.
259 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final Release Over-

Sun Microsystems, Inc.
9.1 Overview

EJB QL is a query specification language for the finder and select methods of entity beans with con-
tainer-managed persistence. EJB QL can be compiled to a target language, such as SQL, of a database
or other persistent store. This allows the execution of queries to be shifted to the native language facili-
ties provided by the persistent store, instead of requiring queries to be executed on the runtime represen-
tation of the entity beans’ state. As a result, query methods can be optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entity beans, includ-
ing their relationships, for its data model. It defines operators and expressions based on this data model.

The Bean Provider uses EJB QL to write queries based on the abstract persistence schemas and the rela-
tionships defined in the deployment descriptor. EJB QL depends on navigation and selection based on
the cmp-fields and cmr-fields of the related entity beans. The Bean Provider can navigate from an entity
bean to other entity beans by using the names of cmr-fields in EJB QL queries.

EJB QL allows the Bean Provider to use the abstract schema types of entity beans in a query if the
abstract persistence schemas of the beans are defined in the same deployment descriptor as the query.

It is possible to parse and validate EJB QL queries before entity beans are deployed because EJB QL is
based on the abstract schema types of entity beans.

EJB QL queries can be used in two different ways:

• as queries for selecting entity objects through finder methods defined in the home interface.
Finder methods allow the results of an EJB QL query to be used by the clients of the entity
bean.

• as queries for selecting entity objects or other values derived from an entity bean’s abstract
schema type through select methods defined on the entity bean class. Select methods allow the
Bean Provider to use EJB QL to find objects or values related to the state of an entity bean
without directly exposing the results to the client.

9.2 EJB QL Definition

EJB QL uses a SQL-like syntax to select objects or values based on the abstract schema types and rela-
tionships of entity beans. The path expressions of EJB QL allow the Bean Provider to navigate over
relationships defined by the cmr-fields of the abstract schema types of entity beans.

This chapter provides the full definition of the language.
 11/5/09 260

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
An EJB QL query is a string which consists of the following clauses:

• a SELECT clause, which determines the type of the objects or values to be selected.

• a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the SELECT clause and WHERE clause of the query apply.

• an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

• an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, an EJB QL query is defined as:

EJB QL :: = select_clause from_clause [where_clause] [orderby_clause]

An EJB QL query must always have a SELECT and a FROM clause. The square brackets [] indicate
that the WHERE and ORDER BY clauses are optional.

An EJB QL query may have parameters that correspond to the parameters of the finder or select method
for which it is defined.

An EJB QL query is statically defined in the ejb-ql deployment descriptor element.

9.2.1 Abstract Schema Types and Query Domains

EJB QL is a typed language whose design is based on the type model of EJB 2.0 container-managed
persistence. Every expression in EJB QL has a type. The type of the expression is derived from the
structure of the expression; the abstract schema types of the identification variable declarations; the
types to which the cmp-fields and cmr-fields evaluate; and the types of literals. The allowable types in
EJB QL are the abstract schema types of entity beans and cmp-fields.

The abstract schema type of an entity bean is derived from its entity bean class and the information pro-
vided in the deployment descriptor. There is a one-to-one mapping between entity bean abstract schema
types and entity bean homes. Abstract schema names, as specified by the abstract-schema-name
elements in the deployment descriptor, are used to denote entity bean abstract schema types in EJB QL.

Informally, the abstract schema type of an entity bean can be characterized as follows:

• For every get accessor method of the entity bean class that corresponds to a cmp-field ele-
ment in the deployment descriptor, there is a field (“cmp-field”) whose abstract schema type
corresponds to the result type of the accessor method.

• For every get accessor method of the entity bean that corresponds to a cmr-field element
in the deployment descriptor, there is a field (“cmr-field”) whose type is the abstract schema
type of the entity bean denoted by the ejb-name element contained in the corresponding
ejb-relationship-role element (or, if the role has a multiplicity of Many, a collection
of such).
261 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
Abstract schema types are specific to the EJB QL data model. The container is not required to imple-
ment or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entity beans with con-
tainer-managed persistence that are defined in the same deployment descriptor.

The Bean Provider creates an ejb-jar file which contains a deployment descriptor describing
several entity beans and their relationships. EJB QL assumes that a single deployment descrip-
tor in an ejb-jar file constitutes a nondecomposable unit for the container responsible for
implementing the abstract persistence schemas of the entity beans and the relationships
defined in the deployment descriptor and the ejb-jar file. Queries can be written by utilizing
navigation over the cmr-fields of related beans supplied in the same ejb-jar by the Bean Pro-
vider because they are implemented and managed by the same container.

The domain of a query may be restricted by the navigability of the relationships of the entity bean on
which it is based. The cmr-fields of an entity bean’s abstract schema type determine navigability. Using
the cmr-fields and their values, a query can select related entity beans and use their abstract schema
types in the query.

9.2.2 Query Methods

EJB QL is used for two types of query methods:

• Finder methods—Finder methods are defined in the home interface(s) of an entity bean and
return entity objects or local entity objects. A finder method that is defined on the remote home
interface must return either an EJBObject or a collection of EJBObjects; a finder method that is
defined on the local home interface must return either an EJBLocalObject or a collection of
EJBLocalObjects. The result type of a finder method defined on the remote home interface of
an entity bean is the entity bean’s remote interface (or a collection of objects implementing the
entity bean’s remote interface). The result type of a finder method defined on the local home
interface of an entity bean is the entity bean’s local interface (or a collection of objects imple-
menting the entity bean’s local interface).

• Select methods—Select methods are a special type of query method not directly exposed
through the client view. The Bean Provider typically uses select methods to select the persis-
tent state of an entity object or to select entities that are related to the entity bean for which the
query is defined. The result type of a select method can be an EJBLocalObject (or a collection
of EJBLocalObjects), an EJBObject (or a collection of EJBObjects), a cmp-field value (or a
collection of such), or the result of an aggregate function.

9.2.3 Naming

Entity beans are designated in EJB QL query strings by their abstract schema names. The Bean Provider
assigns unique abstract schema names to entity beans as part of the development process so that they
can be used within queries. These unique names are scoped within the deployment descriptor file.
 11/5/09 262

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
9.2.4 Examples

The following convention refers to the names used for entity beans in subsequent examples: An entity
bean as a whole is designated by <name>EJB, and its entity bean class and abstract schema type are
designated by <name>, following the convention used to name the local interface of an entity bean.

The first example assumes that the Bean Provider provides several entity beans, OrderEJB, Pro-
ductEJB, LineItemEJB, ShippingAddressEJB, and BillingAddressEJB. The abstract
schema types for these entity beans are Order, Product, LineItem, ShippingAddress, and
BillingAddress respectively. These beans are logically in the same ejb-jar file, as shown in
Figure 18. Only two of the entity beans, OrderEJB and ProductEJB, have remote interfaces and
remote home interfaces.

Figure 18 Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File.

The entity beans ShippingAddress and BillingAddress each have one-to-many relationships
with Order. There is also a one-to-many relationship between Order and Lineitem. The entity
bean LineItem is related to Product in a many-to-one relationship.

EJB QL allows the Bean Provider to specify finder queries for OrderEJB by navigating over the
cmr-fields and cmp-fields defined by Order and LineItem. A finder method query to find all orders
with pending line items might be written as follows:

SELECT DISTINCT OBJECT(o)
FROM Order AS o, IN(o.lineItems) AS l
WHERE l.shipped = FALSE

This query navigates over the cmr-field lineItems of the abstract schema type Order to find line
items, and uses the cmp-field shipped of LineItem to select those orders that have at least one line
item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although predefined reserved identifiers, such as DISTINCT, OBJECT, FROM, AS, IN, WHERE, and
FALSE appear in upper case in this example, predefined reserved identifiers are case insensitive.

Order

LineItem

Shipping
Address

Billing
Address

1
m

m

1

m
1

m

1

Product
263 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
The SELECT clause of this example designates the return type of this query to be of type Order. If this
query is defined for a finder method on the entity bean’s remote home interface, the finder method will
return objects of the entity bean’s remote interface type corresponding to the abstract schema type
instances selected by the query. If this same query is defined for a finder method on the entity bean’s
local home interface, the finder method will return objects of the entity bean’s local interface type corre-
sponding to these same abstract schema type instances. Finder methods must always return EJBObjects
or EJBLocalObjects of the bean type for which the query method is defined.

Because the same deployment descriptor defines the abstract persistence schemas of the related entity
beans, the Bean Provider can also specify a query for OrderEJB that utilizes the abstract schema type
of ProductEJB, and hence the cmp-fields and cmr-fields of both the abstract schema types Order
and Product. For example, if the abstract schema type Product has a cmp-field named
product_type, a finder query for OrderEJB can be specified using this cmp-field. Such a finder
query might be: “Find all orders for products with product type office supplies”. An EJB QL query
string for this might be as follows.

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type = ‘office_supplies’

Because Order is related to Product by means of the relationships between Order and LineItem
and between LineItem and Product, navigation using the cmr-fields lineItems and product
is needed to express the query. This query is specified by using the abstract-schema-name for
OrderEJB, namely Order, which designates the abstract schema type over which the query ranges.
The basis for the navigation is provided by the cmr-fields lineItems and product of the abstract
schema types Order and LineItem respectively.

9.2.5 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification vari-
ables. The domain of the query may be constrained by path expressions.

Identification variables designate instances of a particular entity bean abstract schema type. The FROM
clause can contain multiple identification variable declarations separated by a comma (,).

from_clause ::= FROM identification_variable_declaration
[, identification_variable_declaration]*

identification_variable_declaration ::= collection_member_declaration |
 range_variable_declaration

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier
range_variable_declaration :: abstract_schema_name [AS] identifier

The following subsections discuss the constructs used in the FROM clause.
 11/5/09 264

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
9.2.5.1 Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the method Character.isJavaIdentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the method Character.isJavaIdentifierPart
returns true. The question mark (?) character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB QL: SELECT, FROM, WHERE, DISTINCT, OBJECT,
NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN[42], EMPTY, MEMBER,
OF, IS, AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables.

It is recommended that the Bean Provider not use other SQL reserved words as identification
variables in EJB QL queries because they may be used as EJB QL reserved identifiers in future
versions of the EJB specification.

9.2.5.2 Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query. An
identification variable may be declared using the special operators IN and, optionally, AS.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the follow-
ing:

• abstract-schema-name

• ejb-name[43]

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous finder query for OrderEJB:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type = ‘office_supplies’

[42] Not currently used in EJB QL; reserved for future use.
[43] Use of ejb-names in EJB QL is reserved for future use.
265 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
In the FROM clause declaration IN(o.lineItems) l, the identification variable l evaluates to
any LineItem value directly reachable from Order. The cmr-field lineItems is a collection of
instances of the abstract schema type LineItem and the identification variable l refers to an element
of this collection. The type of l is the abstract schema type of LineItem.

An identification variable ranges over the abstract schema type of an entity bean. An identification vari-
able designates an instance of an entity bean abstract schema type or an element of a collection of entity
bean abstract schema types instances. Identification variables are existentially quantified in an EJB QL
query.

An identification variable always designates a reference to a single value. It is declared in one of two
ways; as a range variable or as a collection member identification variable:

• A range variable is declared using the abstract schema name of an entity bean.

• A collection member identification variable is declared using a collection-valued path expres-
sion.

The identification variable declarations are evaluated from left to right in the FROM clause. A collec-
tion member identification variable declaration can use the result of a preceding identification variable
declaration of the query string.

9.2.5.3 Range Variable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of SQL;
optionally, it uses the AS keyword.

range_variable_declaration ::= abstract_schema_name [AS] identifier

Objects or values that are related to an entity bean are typically obtained by navigation using path
expressions. However, navigation does not reach all objects. Range variable declarations allow the Bean
Provider to designate a “root” for objects which may not be reachable by navigation.

If the Bean Provider wants to select values by comparing more than one instance of an entity bean
abstract schema type, more than one identification variable ranging over the abstract schema type is
needed in the FROM clause.

The following finder method query returns orders whose quantity is greater than the order quantity for
John Smith. This example illustrates the use of two different identification variables in the FROM
clause, both of the abstract schema type Order. The SELECT clause of this query determines that it is
the orders with quantities larger than John Smith’s that are returned.

SELECT DISTINCT OBJECT(o1)
FROM Order o1, Order o2
WHERE o1.quantity > o2.quantity AND

o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’
 11/5/09 266

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
9.2.5.4 Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression. Such a path expression represents a navigation
involving the cmr-fields of an entity bean abstract schema type. Because a path expression can be based
on another path expression, the navigation can use the cmr-fields of related entity beans. Path expres-
sions are discussed in Section 9.2.5.6.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path
expression evaluates to a collection type specified as a result of navigation to a collection-valued
cmr-field of an entity bean abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier

For example, the FROM clause for a query defined for OrderEJB might contain the following collec-
tion member declaration:

IN(o.lineItems) l

In this example, lineItems is the name of a cmr-field whose value is a collection of instances of the
abstract schema type LineItem of the LineItemEJB entity bean. The identification variable l des-
ignates a member of this collection, a single LineItem abstract schema type instance. In this example,
o is an identification variable of the abstract schema type Order.

9.2.5.5 Example

The following FROM clause contains two identification variable declaration clauses. The identification
variable declared in the first clause is used in the second clause. The clauses declare the variables o and
l respectively. The range variable declaration Order AS o designates the identification variable o as
a range variable whose type is the abstract schema type, Order. The identification variable l has the
abstract schema type LineItem. Because the clauses are evaluated from left to right, the identification
variable l can utilize the results of the navigation on o.

FROM Order AS o, IN(o.lineItems) l

9.2.5.6 Path Expressions

An identification variable followed by the navigation operator (.) and a cmp-field or cmr-field is a path
expression. The type of the path expression is the type computed as the result of navigation; that is, the
type of the cmp-field or cmr-field to which the expression navigates.

Depending on navigability, a path expression that leads to a cmr-field may be further composed. Path
expressions can be composed from other path expressions if the original path expression evaluates to a
single-valued type (not a collection) corresponding to a cmr-field. A path expression that ends in a
cmp-field is terminal and cannot be further composed.
267 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal cmr-field in the path expression is null, the path is considered to have no value, and does not par-
ticipate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follows:

cmp_path_expression ::=
{identification_variable | single_valued_cmr_path_expression}.cmp_field

single_valued_cmr_path_expression ::=
identification_variable.[single_valued_cmr_field .]*single_valued_cmr_field

single_valued_path_expression ::=
cmp_path_expression | single_valued_cmr_path_expression

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field

A single_valued_cmr_field is designated by the name of a cmr-field in a one-to-one or many-to-one rela-
tionship. The type of a single_valued_cmr_path_expression is the abstract schema type of the related
entity bean.

A collection_valued_cmr_field is designated by the name of a cmr-field in a one-to-many or a
many-to-many relationship. The type of a collection_valued_cmr_field is a collection of values of the
abstract schema type of the related entity bean.

Navigation to a related entity bean results in a value of the related entity bean’s abstract schema type.

The evaluation of a path expression terminating in a cmp-field results in the abstract schema type corre-
sponding to the Java type designated by the cmp-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, if o designates Order, the path expression o.lineItems.product is illegal
since navigation to lineItems results in a collection. This case should produce an error when the EJB
QL query string is verified. To handle such a navigation, an identification variable must be declared in
the FROM clause to range over the elements of the lineItems collection. Another path expression
must be used to navigate over each such element in the WHERE clause of the query, as in the following:

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineItems) l
WHERE l.product.name = ‘widget’

9.2.6 WHERE Clause and Conditional Expressions

The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause thus restricts the result of a query.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression
 11/5/09 268

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
The following sections describe the language constructs that can be used in a conditional expression of
the WHERE clause.

9.2.6.1 Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
quote is represented by two single quotes—for example: ‘literal’’s’. EJB QL string literals, like Java
String literals, use unicode character encoding.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. Exact
numeric literals support numbers in the range of Java long. Exact numeric literals use the Java integer
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2, or a
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numbers in
the range of Java double. Approximate literals use the Java floating point literal syntax.

The Bean Provider may utilize appropriate suffixes to indicate the specific type of the literal in accor-
dance with the Java Language Specification.

The boolean literals are TRUE and FALSE.

Although predefined reserved literals appear in upper case, they are case insensitive.

9.2.6.2 Identification Variables

All identification variables used in the WHERE clause of an EJB QL query must be declared in the
FROM clause, as described in Section 9.2.5.2.

Identification variables are existentially quantified in the WHERE clause. This means that an identifica-
tion variable represents a member of a collection or an instance of an entity bean’s abstract schema type.
An identification variable never designates a collection in its entirety.

9.2.6.3 Path Expressions

It is illegal to use a collection_valued_path_expression within a WHERE clause as part of a conditional
expression except in an empty_collection_comparison_expression or collection_member_expression.
269 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
9.2.6.4 Input Parameters
The following rules apply to input parameters. Input parameters can only be used in the WHERE clause
of a query.

• Input parameters are designated by the question mark (?) prefix followed by an integer. For
example: ?1.

• Input parameters are numbered starting from 1.

• The number of distinct input parameters in an EJB QL query must not exceed the number of
input parameters for the finder or select method. It is not required that the EJB QL query use
all of the input parameters for the finder or select method.

• An input parameter evaluates to the abstract schema type of the corresponding parameter
defined in the signature of the finder or select method with which the query is associated. It is
the responsibility of the container to map the input parameter to the appropriate abstract
schema type value.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 9.2.10.

9.2.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are composed of
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric values,
and numeric literals.

Arithmetic operations use numeric promotion.

Standard bracketing () for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

9.2.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
 11/5/09 270

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
• Navigation operator (.)

• Arithmetic operators:
+, - unary
*, / multiplication and division
+, - addition and subtraction

• Comparison operators : =, >, >=, <, <=, <> (not equal)

• Logical operators: NOT, AND, OR

The following sections describe other operators used in specific expressions.

9.2.6.7 Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in an conditional expression is as
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 9.2.10.

Examples are:

p.age BETWEEN 15 and 19 is equivalent to p.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent to p.age < 15 OR p.age > 19

9.2.6.8 In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:

cmp_path_expression [NOT] IN ({literal | input_parameter} [, {literal | input_parameter}]*)

The cmp_path_expression must have a string or numeric value. The literal and/or input_parameter val-
ues must be like the same abstract schema type of the cmp_path_expression in type. (See Section
9.2.11).

Examples are:
271 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
o.country IN (’UK’, ’US’, ’France’) is true for UK and false for Peru, and is equivalent
to the expression (o.country = ’UK’) OR (o.country = ’US’) OR (o.country = ’
France’).

o.country NOT IN (’UK’, ’US’, ’France’) is false for UK and true for Peru, and is
equivalent to the expression NOT ((o.country = ’UK’) OR (o.country = ’US’) OR
(o.country = ’France’)).

There must be at least one element in the comma separated list that defines the set of values for the IN
expression.

If the value of a cmp_path_expression in an IN or NOT IN expression is NULL or unknown, the value
of the expression is unknown.

9.2.6.9 Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

cmp_path_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The cmp_path_expression must have a string value. The pattern_value is a string literal or a string-val-
ued input parameter in which an underscore (_) stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optional escape_character is a single-character string literal or a character-valued
input parameter (i.e., char or Character) and is used to escape the special meaning of the under-
score and percent characters in pattern_value.[44]

Examples are:

• address.phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

• asentence.word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

• aword.underscored LIKE ‘_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

• address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

If the value of the cmp_path_expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If the escape_character is specified and is NULL, the value of the LIKE expres-
sion is unknown.

9.2.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

[44] Refer to [24] for a more precise characterization of these rules.
 11/5/09 272

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
{single_valued_path_expression | input_parameter } IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter
is a NULL value.

9.2.6.11 Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Note that a collection-valued path expression can only be used in the WHERE clause in an
empty collection comparison expression or in a collection member expression.

The collection designated by the collection-valued path expression used in an empty collection compar-
ison expression must not be used in the FROM clause for the declaration of an identification variable.
An identification variable declared as a member of a collection implicitly designates the existence of a
non-empty relationship; testing whether the same collection is empty is contradictory. Therefore, the
following query is invalid.

SELECT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

9.2.6.12 Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF[45] in an
collection_member_expression is as follows:

{single_valued_cmr_path_expression | identification_variable | input_parameter }
[NOT] MEMBER [OF] collection_valued_path_expression

This expression tests whether the designated value is a member of the collection specified by the collec-
tion-valued path expression.

Note that a collection-valued path expression can only be used in the WHERE clause in an
empty collection comparison expression or in a collection member expression.

[45] The use of the reserved word OF is optional in this expression.
273 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection-valued path expression or single-valued cmr path expression in the collection
member expression is unknown, the value of the collection member expression is unknown.

9.2.6.13 Functional Expressions

EJB QL includes the following built-in functions[46], which may be used in the WHERE clause of a
query.

String Functions:

• CONCAT(String, String) returns a String

• SUBSTRING(String, start, length) returns a String

• LOCATE(String, String [, start])[47] returns an int

• LENGTH(String) returns an int

Note that start and length are integer values. The first position in a string is designated as 1 by
these functions.

Arithmetic Functions:

• ABS(number) returns a number (int, float, or double) of the same type as the argu-
ment to the function

• SQRT(double) returns a double

• MOD(int, int) returns an int

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

[46] These functions are a subset of the functions defined for JDBC 2.0 and later drivers, as described in Appendix C of the JDbc 3.0
specification [29].

[47] Containers and databases may not support the use of the optional, third argument of the LOCATE function. Portable applications
should therefore avoid use of this argument.
 11/5/09 274

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
9.2.7 SELECT Clause
The SELECT clause denotes the query result. The SELECT clause contains either a single range vari-
able that ranges over an entity bean abstract schema type, a single-valued path expression, or an aggre-
gate select expression. In the case of a finder method, the SELECT clause is restricted to contain either
a single range variable or a single-valued path expression that evaluates to the abstract schema type of
the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] {select_expression | OBJECT(identification_variable)}

select_expression ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM | COUNT} ([DISTINCT] cmp_path_expression) |
COUNT ([DISTINCT] identification_variable | single_valued_cmr_path_expression)

All standalone identification variables in the SELECT clause must be qualified by the OBJECT opera-
tor. The SELECT clause must not use the OBJECT operator to qualify path expressions.

Note that the SELECT clause must be specified to return a single-valued expression. The query below is
therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result. If DISTINCT is not specified, duplicate values are not eliminated unless the query is specified
for a method whose result type is java.util.Set. If a query is specified for a method whose result
type is java.util.Set, but does not specify DISTINCT, the container must interpret the query as if
SELECT DISTINCT had been specified. In general, however, the Bean Provider should specify the
DISTINCT keyword when writing queries for methods that return java.util.Set.

The SELECT clause determines the type of the values returned by a query. For example, the following
query returns a collection of products:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

It is the responsibility of the container to map the abstract schema types returned by the query to the
Java types that are returned by the finder or select method with which the query is associated and to
materialize those return types, as described in Section 9.2.9.

9.2.7.1 Null Values in the Query Result

If the result of an EJB QL query corresponds to a cmr-field or cmp-field whose value is null, the con-
tainer must include that null value in the result that is returned by the finder or select method. The Bean
Provider can use the IS NOT NULL construct to eliminate such null values from the result set of the
query.
275 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
If the finder or select method is a single-object finder or select method, and the result set of the query
consists of a single null value, the container must return the null value as the result of the method. If the
result set of a query for a single-object finder or select method contains more than one value (whether
non-null, null, or a combination), the container must throw the FinderException.

Note, however, that cmp-field types defined in terms of Java numeric primitive types cannot produce
NULL values in the query result. An EJB QL query that returns such a cmp-field type as a result type
must not return a null value. (If the Bean Provider wishes to allow null values for cmp-fields, he or she
should specify those cmp-fields to have the equivalent Java object types instead of primitive types, e.g.,
Integer rather than int.)

9.2.7.2 Aggregate Functions in the SELECT Clause
The result of an EJB QL query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of an EJB QL query: AVG,
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a cmp-field. The path expression argument to COUNT may terminate in
either a cmp-field or a cmr-field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable cmp-field types (i.e., numeric types, string types, character types, or
date types).

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is applied.[48]

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

9.2.7.3 Examples

The following example returns all line items related to some order:

SELECT OBJECT(l)
FROM Order o, IN(o.lineItems) l

The following query returns all line items regardless of whether a line item is related to any order or
product:

SELECT OBJECT(l)
FROM LineItems AS l

[48] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.
 11/5/09 276

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
The following query returns the average order quantity:

SELECT AVG(o.quantity)
FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

The following query returns the number of items in John Smith’s entire order.

SELECT COUNT(l)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

The following query returns the total number of orders.

SELECT COUNT(o)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.

SELECT COUNT(l.price)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

Note that this is equivalent to:

SELECT COUNT(l)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
AND l.price IS NOT NULL

9.2.8 ORDER BY Clause
The ORDER BY clause allows the objects or values that are returned by the query to be ordered.

The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, the SELECT clause of the query must be one
of the following:

1. an identification variable x, denoted as OBJECT(x)

2. a single_valued_cmr_path_expression
277 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
3. a cmp_path_expression

In the first two cases, each orderby_item must be an orderable cmp-field of the entity bean abstract
schema type value returned by the SELECT clause. In the third case, the orderby_item must evaluate to
the same cmp-field of the same entity bean abstract schema type as the cmp_path_expression in the
SELECT clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT OBJECT(o)
FROM Customer c, IN(c.orders) o
WHERE c.address.state = ‘CA’
ORDER BY o.quantity, o.totalcost

SELECT o.quantity
FROM Customer c, IN(c.orders) o
WHERE c.address.state = ‘CA’
ORDER BY o.quantity

SELECT l.product.product_name
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
ORDER BY l.product.price

SELECT l.product.product_name
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
ORDER BY o.quantity

If more than one orderby_item is specified, the left-to-right sequence of the orderby_item elements
determines the precedence, whereby the leftmost orderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that descend-
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not
specified which.

It is the container’s responsibility to ensure that the ordering of the query result is preserved in the result
of the finder or select method if the ORDER BY clause is used.

9.2.9 Return Value Types

The value of a query result, specified by the SELECT clause, is an entity bean abstract schema type, a
cmp-field type, or the result of an aggregate function. The finder or select method with which the query
is associated in the deployment descriptor determines how this result is mapped to the Java type that is
visible as the result of the query method.

How the result type of a query is mapped depends on whether the query is defined for a finder method
on the remote home interface, for a finder method on the local home interface, or for a select method.
 11/5/09 278

EJB QL Definition Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
• The result type of a query for a finder method must be the entity bean abstract schema type that
corresponds to the entity bean type of the entity bean on whose home interface the finder
method is defined. If the query is used for a finder method defined on the remote home inter-
face of the bean, the result of the finder method is the entity bean’s remote interface (or a col-
lection of objects implementing the entity bean’s remote interface). If the finder method is
defined on the local home interface, the result is the entity bean’s local interface (or a collec-
tion of objects implementing the entity bean’s local interface).

• If the result type of a query for a select method is an entity bean abstract schema type, the
return values for the query method are instances of the entity bean’s local interface or instances
of the entity bean’s remote interface, depending on whether the value of the
result-type-mapping deployment descriptor element contained in the query element
for the select method is Local or Remote. The default value for result-type-mapping
is Local.

• If the result type of a query used for a select method is an abstract schema type corresponding
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate func-
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

• If the Java type of the cmp-field is an object type and the select method is a sin-
gle-object select method, the result of the select method is an instance of that object
type. If the select method is a multi-object select method, the result is a collection of
instances of that type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a single-object select method, the result of the select method is that primi-
tive type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a multi-object select method, the result of the select method is a collection
of values of the corresponding wrappered type (e.g., Integer).

• If the select method query is an aggregate query, the select method must be a single-object
select method.

• The result type of the select method must be a primitive type, a wrappered type, or an
object type that is compatible with the standard JDBC conversion mappings for the
type of the cmp-field [29].

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is an object type and there are no values to which the aggre-
gate function can be applied, the select method returns null.

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is a primitive type and there are no values to which the
aggregate function can be applied, the container must throw the ObjectNotFoun-
dException.

• If the aggregate query uses the COUNT operator, the result of the select method
should be an exact numeric type. If there are no values to which the COUNT method
can be applied, the result of the select method is 0.

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the query
result is null.
279 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
9.2.10 Null Values

When the target of a reference does not exist in the persistent store, its value is regarded as NULL. SQL
92 NULL semantics [24] defines the evaluation of conditional expressions containing NULL values.

The following is a brief description of these semantics:

• Comparison or arithmetic operations with a NULL value always yield an unknown value.

• Two NULL values are not considered to be equal, the comparison yields an unknown value.

• Comparison or arithmetic operations with an unknown value always yield an unknown value.

• The IS NULL and IS NOT NULL operators convert a NULL cmp-field or single-valued
cmr-field value into the respective TRUE or FALSE value.

• Boolean operators use three valued logic, defined by Table 8, Table 9, and Table 10.

Table 8 Definition of the AND Operator

AND T F U

 T T F U

 F F F F

 U U F U

Table 9 Definition of the OR Operator

OR T F U

 T T T T

 F T F U

 U T U U

Table 10 Definition of the NOT Operator

NOT

 T F

 F T

 U U
 11/5/09 280

Examples Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
Note: EJB QL defines the empty string, ‘’, as a string with 0 length, which is not equal to a NULL value.
However, NULL values and empty strings may not always be distinguished when queries are mapped to
some persistent stores. The Bean Provider should therefore not rely on the semantics of EJB QL com-
parisons involving the empty string and NULL value.

9.2.11 Equality and Comparison Semantics

EJB QL only permits the values of like types to be compared. A type is like another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrappered Java class type equivalent (e.g., int and Integer are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
cmp-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.

Two entity objects of the same abstract schema type are equal if and only if they have the same primary
key value.

9.2.12 Restrictions

Date and time values should use the standard Java long millisecond value. The standard way to pro-
duce millisecond values is to use java.util.Calendar.

Although SQL requires support for fixed decimal comparison in arithmetic expressions, EJB QL does
not. For this reason EJB QL restricts exact numeric literals to those without a decimal point (and numer-
ics with a decimal point as an alternate representation for approximate numeric values).

Support for the BigDecimal and BigInteger types is optional for containers in EJB 2.1. Applications that
depend on such types in EJB QL queries may not be portable.

Boolean comparison is restricted to = and <>.

EJB QL does not support the use of comments.

The data model for container-managed persistence does not currently support inheritance. Therefore,
entity objects of different types cannot be compared. EJB QL queries that contain such comparisons are
invalid.

9.3 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are based on
the example presented in Section 9.2.4.
281 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final Release Exam-

Sun Microsystems, Inc.
9.3.1 Simple Queries

Find all orders:

SELECT OBJECT(o)
FROM Order o

Find all orders that need to be shipped to California:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shipping_address.state
FROM Order o

9.3.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT OBJECT(o)
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT OBJECT(o)
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.shipped = FALSE
 11/5/09 282

Examples Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
Find all orders in which the shipping address differs from the billing address. This example assumes
that the Bean Provider uses two distinct entity beans to designate shipping and billing addresses, as in
Figure 18.

SELECT OBJECT(o)
FROM Order o
WHERE
NOT (o.shipping_address.state = o.billing_address.state AND

 o.shipping_address.city = o.billing_address.city AND
 o.shipping_address.street = o.billing_address.street)

If the Bean Provider uses a single entity bean in two different relationships for both the shipping address
and the billing address, the above expression can be simplified based on the equality rules defined in
Section 9.2.11. The query can then be written as:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address <> o.billing_address

The query checks whether the same entity bean abstract schema type instance (identified by its primary
key) is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Development for
the J2EE Platform’:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.type = ‘book’ AND

l.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

9.3.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the cmp-field name, i.e., a string.

9.3.4 Queries for Select Methods
The following select queries illustrate the selection of values other than entity beans.

The following EJB QL query selects the names of all products that have been ordered.

SELECT DISTINCT l.product.name
FROM Order o, IN(o.lineItems) l
283 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final Release Exam-

Sun Microsystems, Inc.
The following query finds the names of all products in the order specified by a particular order number.
The order number is specified by a parameter that corresponds to the primary key of Order. Note that
because this query does not specify DISTINCT in its SELECT clause, if it is specified for a query
method whose return type is java.util.Collection, the collection that is returned may contain
duplicates. In this example, such duplicates correspond to products that have been ordered multiple
times in the given order.

SELECT l.product.name
FROM Order o, IN(o.lineItems) l
WHERE o.ordernumber = ?1

It is the responsibility of the container to interpret the query such that no duplicates are produced if the
result type of the query method is java.util.Set.

Consider the following query for a select method:

SELECT o.shipping_address.city
FROM Order o

This query returns the names of all the cities of the shipping addresses of all orders. The result type of
the select method, which is either java.util.Collection or java.util.Set, determines
whether the query may return duplicate city names.

9.3.5 EJB QL and SQL

EJB QL, like SQL, treats the FROM clause as a cartesian product. The FROM clause is similar to that
of SQL in that the declared identification variables affect the results of the query even if they are not
used in the WHERE clause. The Bean Provider should use caution in defining identification variables
because the domain of the query can depend on whether there are any values of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are no Product instances in the persistent store, the domain of the query is empty and
no order is selected.

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineItems) l, Product p

The container can represent the abstract schemas of a set of entity beans in an application using a rela-
tional database. There are multiple ways to define a mapping to a set of tables in a relational database.
Although this area is beyond the scope of this specification, a sample mapping and translation of EJB
QL to SQL is described to clarify the semantics of EJB QL.

A mapping strategy from a set of entity beans to a relational database might be to map each entity bean
to a separate table. One-to-many relationships may be represented by foreign keys in the related table
from the many side and many-to-many relationships may be represented by using an auxiliary table that
contains the primary keys of the related objects.
 11/5/09 284

EJB QL BNF Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
Because the FROM clause represents a cartesian product, the SQL result may contain duplicates. If the
query is for a method whose return type is java.util.Set, the container would therefore typically
utilize a SELECT DISTINCT clause in translating the query to SQL. The query method result may con-
tain duplicates if the return type of the query method is java.util.Collection and DISTINCT is
not specified in the SELECT clause of the EJB QL query.

The following translation example illustrates the mapping of entity beans to relational database tables.
The entity bean OrderEJB is represented by the table ORDER and the entity bean LineItemEJB is repre-
sented by the table LINEITEM. The column OKEY represents the primary key for OrderEJB entity
bean, FKEY represents the foreign key column of LINEITEM that holds the values of the ORDER pri-
mary keys. FKEY is defined in the LINEITEM table to model the one-to-many relationship.

Using this mapping, the following EJB QL finder query

SELECT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.quantity > 5

might be represented in SQL as

SELECT DISTINCT o.OKEY
FROM ORDERBEAN o, LINEITEM l
WHERE o.OKEY = l.FKEY AND l.QUANTITY > 5

9.4 EJB QL BNF

EJB QL BNF notation summary:

• { ... } grouping

• [...] optional constructs

• boldface keywords

The following is the complete BNF notation for EJB QL:

EJB QL ::= select_clause from_clause [where_clause] [orderby_clause]
from_clause ::= FROM identification_variable_declaration

[, identification_variable_declaration]*
identification_variable_declaration ::= collection_member_declaration |

 range_variable_declaration
collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier
range_variable_declaration ::= abstract_schema_name [AS] identifier
cmp_path_expression ::=

{identification_variable | single_valued_cmr_path_expression}.cmp_field
single_valued_cmr_path_expression ::=

identification_variable.[single_valued_cmr_field.]* single_valued_cmr_field
single_valued_path_expression ::=
285 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
cmp_path_expression | single_valued_cmr_path_expression
collection_valued_path_expression ::=

identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field
select_clause ::= SELECT [DISTINCT] {select_expression | OBJECT(identification_variable)}
select_expression ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM | COUNT} ([DISTINCT] cmp_path_expression) |
COUNT ([DISTINCT] identification_variable | single_valued_cmr_path_expression)

where_clause ::= WHERE conditional_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

between_expression ::=
arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression
in_expression ::=

cmp_path_expression [NOT] IN
({literal | input_parameter} [, { literal | input_parameter}]*)

like_expression ::=
cmp_path_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
{single_valued_cmr_path_expression | identification_variable | input_parameter}

[NOT] MEMBER [OF] collection_valued_path_expression
comparison_expression ::=

string_value comparison_operator string_expression |
boolean_value { =|<>} boolean_expression} |
datetime_value comparison_operator datetime_expression |
entity_bean_value { = | <> } entity_bean_expression |
arithmetic_value comparison_operator arithmetic_expression

arithmetic_value ::= cmp_path_expression | functions_returning_numerics
comparison_operator ::=

= | > | >= | < | <= | <>
arithmetic_expression ::= arithmetic_term | arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::= cmp_path_expression | literal | (arithmetic_expression) |

input_parameter | functions_returning_numerics
string_value ::= cmp_path_expression | functions_returning_strings
string_expression ::= string_primary | input_parameter
string_primary ::= cmp_path_expression | literal | (string_expression) |

functions_returning_strings
 11/5/09 286

EJB QL BNF Enterprise JavaBeans 3.1, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
datetime_value ::= cmp_path_expression
datetime_expression ::= datetime_value | input_parameter
boolean_value ::= cmp_path_expression
boolean_expression ::= cmp_path_expression | literal | input_parameter
entity_bean_value ::= single_valued_cmr_path_expression | identification_variable
entity_bean_expression ::= entity_bean_value | input_parameter
functions_returning_strings ::= CONCAT(string_expression, string_expression) |

SUBSTRING(string_expression, arithmetic_expression, arithmetic_expression)
functions_returning_numerics::=

LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression]) |
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression)

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]
287 November 5, 2009 11:00 am

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.1, Final ReleaseEJB QL

Sun Microsystems, Inc.
 11/5/09 288

EJB QL BNF Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Chapter 10 EJB 2.1 Entity Bean Component Contract
for Bean-Managed Persistence

The entity bean component contract for bean-managed persistence is the contract between an entity
bean and its container. It defines the life cycle of the entity bean instances and the model for method del-
egation of the client-invoked business methods. The main goal of this contract is to ensure that a com-
ponent using bean-managed persistence is portable across all compliant EJB containers.

This chapter defines the Enterprise Bean Provider’s view of this contract and the Container Provider’s
responsibility for managing the life cycle of the enterprise bean instances. It also describes the Bean
Provider’s responsibilities when persistence is provided by the Bean Provider.

The contents of this chapter apply only to bean-managed persistence entities as defined in the Enterprise
JavaBeans 2.1 specification [3]. The contracts for persistent entities are described in the document
“Java Persistence API” [2].

The EJB 2.1 Entity Bean Contracts have been proposed for future removal. See Section 2.7 for more
details.

Note that use of dependency injection, interceptors, and Java language metadata annotations is not
supported for EJB 2.1 entity beans.
289 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
10.1 Overview of Bean-Managed Entity Persistence

An entity bean implements an object view of an entity stored in an underlying database, or an entity
implemented by an existing enterprise application (for example, by a mainframe program or by an ERP
application). The data access protocol for transferring the state of the entity between the entity bean
instances and the underlying database is referred to as object persistence.

The entity bean component protocol for bean-managed persistence allows the entity Bean Provider to
implement the entity bean’s persistence directly in the entity bean class or in one or more helper classes
provided with the entity bean class. This chapter describes the contracts for bean-managed persistence.

Figure 19 Client View of Underlying Data Sources Accessed Through Entity Bean

10.1.1 Entity Bean Provider’s View of Persistence

Using bean-managed persistence, the entity Bean Provider writes database access calls (e.g. using
JDBCTM or SQLJ) directly in the entity bean component. The data access calls are performed in the
ejbCreate<METHOD>, ejbRemove, ejbFind<METHOD>, ejbLoad, and ejbStore methods,
and/or in the business methods.

Account

container

client
Account 100

entity bean

Account

container

client
Account 100

entity bean
existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application
 11/5/09 290

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The data access calls can be coded directly into the entity bean class, or they can be encapsulated in a
data access component that is part of the entity bean. Directly coding data access calls in the entity bean
class may make it more difficult to adapt the entity bean to work with a database that has a different
schema, or with a different type of database.

We expect that most enterprise beans with bean-managed persistence will be created by application
development tools which will encapsulate data access in components. These data access components
will probably not be the same for all tools. Further, if the data access calls are encapsulated in data
access components, the data access components may require deployment interfaces to allow adapting
data access to different schemas or even to a different database type. This EJB specification does not
define the architecture for data access objects, strategies for tailoring and deploying data access com-
ponents or ensuring portability of these components for bean-managed persistence.

10.1.2 Runtime Execution Model

This section describes the runtime model and the classes used in the description of the contract between
an entity bean with bean-managed persistence and its container.
291 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
Figure 20 Overview of the Entity Bean Runtime Execution Model

An enterprise bean instance is an object whose class is provided by the Bean Provider.

An entity EJBObject or EJBLocalObject is an object whose class is generated at deployment time by
the Container Provider’s tools. The entity EJBObject class implements the entity bean’s remote inter-
face. The entity EJBLocalObject class implements the entity bean’s local interface. A client never refer-
ences an entity bean instance directly—a client always references an entity EJBObject or entity
EJBLocalObject whose class is generated by the Container Provider’s tools.

An entity EJBHome or EJBLocalHome object provides the life cycle operations (create, remove, find)
for its entity objects as well as home business methods, which are not specific to an entity bean instance.
The class for the entity EJBHome or EJBLocalHome object is generated by the Container Provider’s
tools at deployment time. The entity EJBHome or EJBLocalHome object implements the entity bean’s
home interface that was defined by the Bean Provider.

Classes are provided by
Bean Provider

Classes are generated by
Container Provider tools

client

container

EJB objects

EJB Home

EJB objectsEJB Objects

enterprise bean
instances

EJB objects

EJB Local Home

EJB objectsEJB Local Objects

enterprise bean
instances

enterprise bean 1

enterprise bean 2
 11/5/09 292

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
10.1.3 Instance Life Cycle

Figure 21 Life Cycle of an Entity Bean Instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity object
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance using newIn-
stance. The container then invokes the setEntityContext method to pass the instance
a reference to the EntityContext interface. The EntityContext interface allows the

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()

ejbCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(...)

ejbPostCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(...)

ejbTimeout(arg)

293 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
instance to invoke services provided by the container and to obtain the information about the
caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool. While
the instance is in the available pool, the instance is not associated with any particular entity
object identity. All instances in the pool are considered equivalent, and therefore any instance
can be assigned by the container to any entity object identity at the transition to the ready state.
While the instance is in the pooled state, the container may use the instance to execute any of
the entity bean’s finder methods (shown as ejbFind<METHOD> in the diagram) or home
methods (shown as ejbHome<METHOD> in the diagram). The instance does not move to the
ready state during the execution of a finder or a home method.

• An instance transitions from the pooled state to the ready state when the container selects that
instance to service a client call to an entity object or an ejbTimeout method. There are two
possible transitions from the pooled to the ready state: through the ejbCreate<METHOD>
and ejbPostCreate<METHOD> methods, or through the ejbActivate method. The
container invokes the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods
when the instance is assigned to an entity object during entity object creation (i.e., when the
client invokes a create<METHOD> method on the entity bean’s home object). The container
invokes the ejbActivate method on an instance when an instance needs to be activated to
service an invocation on an existing entity object—this occurs because there is no suitable
instance in the ready state to service the client’s call or the ejbTimeout method.

• When an entity bean instance is in the ready state, the instance is associated with a specific
entity object identity. While the instance is in the ready state, the container can invoke the
ejbLoad and ejbStore methods zero or more times. A business method can be invoked on
the instance zero or more times. The ejbTimeout method can be invoked on the instance
zero or more times. Invocations of the ejbLoad and ejbStore methods can be arbitrarily
mixed with invocations of business methods or the ejbTimeout method. The purpose of the
ejbLoad and ejbStore methods is to synchronize the state of the instance with the state of
the entity in the underlying data source—the container can invoke these methods whenever it
determines a need to synchronize the instance’s state.

• The container can choose to passivate an entity bean instance within a transaction. To passivate
an instance, the container first invokes the ejbStore method to allow the instance to syn-
chronize the database state with the instance’s state, and then the container invokes the ejb-
Passivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three possi-
ble transitions from the ready to the pooled state: through the ejbPassivate method,
through the ejbRemove method, and because of a transaction rollback for ejbCreate,
ejbPostCreate, or ejbRemove (not shown in Figure 21). The container invokes the
ejbPassivate method when the container wants to disassociate the instance from the
entity object identity without removing the entity object. The container invokes the ejbRe-
move method when the container is removing the entity object (i.e., when the client invoked
the remove method on the entity object’s component interface, or a remove method on the
entity bean’s home interface). If ejbCreate, ejbPostCreate, or ejbRemove is called
and the transaction rolls back, the container will transition the bean instance to the pooled state.
 11/5/09 294

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
• When the instance is put back into the pool, it is no longer associated with an entity object
identity. The container can assign the instance to any entity object within the same entity bean
home.

• An instance in the pool can be removed by calling the unsetEntityContext method on
the instance.

Notes:

1. The EntityContext interface passed by the container to the instance in the setEntity-
Context method is an interface, not a class that contains static information. For example, the
result of the EntityContext.getPrimaryKey method might be different each time an
instance moves from the pooled state to the ready state, and the result of the getCaller-
Principal and isCallerInRole methods may be different in each business method.

2. A RuntimeException thrown from any method of the entity bean class (including the
business methods and the callbacks invoked by the container) results in the transition to the
“does not exist” state. The container must not invoke any method on the instance after a
RuntimeException has been caught. From the client perspective, the corresponding entity
object continues to exist. The client can continue accessing the entity object through its com-
ponent interface because the container can use a different entity bean instance to delegate the
client’s requests. Exception handling is described further in Chapter 14.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling
approach is an example of a possible implementation, but it is not the required implementation.
Whether the container uses a pool or not has no bearing on the entity bean coding style.

10.1.4 The Entity Bean Component Contract

This section specifies the contract between an entity bean with bean-managed persistence and its con-
tainer.

10.1.4.1 Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract:

The Bean Provider is responsible for implementing the following methods in the entity bean class:

• A public constructor that takes no arguments. The container uses this constructor to create
instances of the entity bean class.

• public void setEntityContext(EntityContext ic);
A container uses this method to pass a reference to the EntityContext interface to the
entity bean instance. If the entity bean instance needs to use the EntityContext interface
during its lifetime, it must remember the EntityContext interface in an instance variable.
This method executes with an unspecified transaction context (Refer to Subsection 13.6.5 for
how the container executes methods with an unspecified transaction context). An identity of an
entity object is not available during this method.
295 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
The instance can take advantage of the setEntityContext method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be specific
to an entity object identity because the instance might be reused during its lifetime to serve
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.
This method executes with an unspecified transaction context. An identity of an entity object is
not available during this method.
The instance can take advantage of the unsetEntityContext method to free any
resources that are held by the instance. (These resources typically had been allocated by the
setEntityContext method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...);
There are zero[49] or more ejbCreate<METHOD> methods, whose signatures match the sig-
natures of the create<METHOD> methods of the entity bean home interface. The container
invokes an ejbCreate<METHOD> method on an entity bean instance when a client invokes
a matching create<METHOD> method to create an entity object.
The implementation of the ejbCreate<METHOD> method typically validates the client-sup-
plied arguments, and inserts a record representing the entity object into the database. The
method also initializes the instance’s variables. The ejbCreate<METHOD> method must
return the primary key for the created entity object.
An ejbCreate<METHOD> method executes in the transaction context determined by the
transaction attribute of the matching create<METHOD> method, as described in subsection
13.6.2.

• public void ejbPostCreate<METHOD>(...);
For each ejbCreate<METHOD> method, there is a matching ejbPostCre-
ate<METHOD> method that has the same input parameters but whose return value is void.
The container invokes the matching ejbPostCreate<METHOD> method on an instance
after it invokes the ejbCreate<METHOD> method with the same arguments. The entity
object identity is available during the ejbPostCreate<METHOD> method. The instance
may, for example, obtain the component interface of the associated entity object and pass it to
another enterprise bean as a method argument.
An ejbPostCreate<METHOD> method executes in the same transaction context as the pre-
vious ejbCreate<METHOD> method.

• public void ejbActivate();
The container invokes this method on the instance when the container picks the instance from
the pool and assigns it to a specific entity object identity. The ejbActivate method gives
the entity bean instance the chance to acquire additional resources that it needs while it is in the
ready state.

[49] An entity Bean has no ejbCreate<METHOD> and ejbPostCreate<METHOD> methods if it does not define any create
methods in its home interface. Such an entity bean does not allow the clients to create new entity objects. The entity bean restricts
the clients to accessing entities that were created through direct database inserts.
 11/5/09 296

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
This method executes with an unspecified transaction context. The instance can obtain the
identity of the entity object via the getPrimaryKey, getEJBLocalObject, or getEJ-
BObject method on the entity context. The instance can rely on the fact that the primary key
and entity object identity will remain associated with the instance until the completion of
ejbPassivate or ejbRemove.
Note that the instance should not use the ejbActivate method to read the state of the entity
from the database; the instance should load its state only in the ejbLoad method.

• public void ejbPassivate();
The container invokes this method on an instance when the container decides to disassociate
the instance from an entity object identity, and to put the instance back into the pool of avail-
able instances. The ejbPassivate method gives the instance the chance to release any
resources that should not be held while the instance is in the pool. (These resources typically
had been allocated during the ejbActivate method.)
This method executes with an unspecified transaction context. The instance can still obtain the
identity of the entity object via the getPrimaryKey, getEJBLocalObject, or getEJ-
BObject method of the EntityContext interface.
Note that an instance should not use the ejbPassivate method to write its state to the data-
base; an instance should store its state only in the ejbStore method.

• public void ejbRemove();
The container invokes this method on an instance as a result of a client’s invoking a remove
method. The instance is in the ready state when ejbRemove is invoked and it will be entered
into the pool when the method completes.
This method executes in the transaction context determined by the transaction attribute of the
remove method that triggered the ejbRemove method. The instance can still obtain the
identity of the entity object via the getPrimaryKey, getEJBLocalObject, or getEJ-
BObject method of the EntityContext interface.
The container synchronizes the instance’s state before it invokes the ejbRemove method.
This means that the state of the instance variables at the beginning of the ejbRemove method
is the same as it would be at the beginning of a business method.
An entity bean instance should use this method to remove the entity object’s representation
from the database.
Since the instance will be entered into the pool, the state of the instance at the end of this
method must be equivalent to the state of a passivated instance. This means that the instance
must release any resource that it would normally release in the ejbPassivate method.

• public void ejbLoad();
The container invokes this method on an instance in the ready state to inform the instance that
it should synchronize the entity state cached in its instance variables from the entity state in the
database. The instance should be prepared for the container to invoke this method at any time
that the instance is in the ready state.
If the instance is caching the entity state (or parts of the entity state), the instance should not
use the previously cached state in the subsequent business method. The instance may take
advantage of the ejbLoad method, for example, to refresh the cached state by reading it from
the database.
297 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
This method executes in the transaction context determined by the transaction attribute of the
business method or ejbTimeout method that triggered the ejbLoad method.

• public void ejbStore();
The container invokes this method on an instance to inform the instance that the instance
should synchronize the entity state in the database with the entity state cached in its instance
variables. The instance should be prepared for the container to invoke this method at any time
that the instance is in the ready state.
An instance should write any updates cached in the instance variables to the database in the
ejbStore method.
This method executes in the same transaction context as the previous ejbLoad or ejbCre-
ate<METHOD> method invoked on the instance. All business methods or the ejbTimeout
method invoked between the previous ejbLoad or ejbCreate<METHOD> method and this
ejbStore method are also invoked in the same transaction context.

• public <primary key type or collection> ejbFind<METHOD>(...);
The container invokes this method on the instance when the container selects the instance to
execute a matching client-invoked find<METHOD> method. The instance is in the pooled
state (i.e., it is not assigned to any particular entity object identity) when the container selects
the instance to execute the ejbFind<METHOD> method on it, and it is returned to the pooled
state when the execution of the ejbFind<METHOD> method completes.
The ejbFind<METHOD> method executes in the transaction context determined by the trans-
action attribute of the matching find method, as described in subsection 13.6.2.
The implementation of an ejbFind<METHOD> method typically uses the method’s argu-
ments to locate the requested entity object or a collection of entity objects in the database. The
method must return a primary key or a collection of primary keys to the container (see Subsec-
tion 10.1.9).

• public <type> ejbHome<METHOD>(...);
The container invokes this method on any instance when the container selects the instance to
execute a matching client-invoked <METHOD> home method. The instance is in the pooled
state (i.e., it is not assigned to any particular entity object identity) when the container selects
the instance to execute the ejbHome<METHOD> method on it, and it is returned to the pooled
state when the execution of the ejbHome<METHOD> method completes.
The ejbHome<METHOD> method executes in the transaction context determined by the trans-
action attribute of the matching <METHOD> home method, as described in subsection 13.6.2.

• public void ejbTimeout(...);

The container invokes the ejbTimeout method on an instance when a timer for the instance
has expired. The ejbTimeout method notifies the instance of the time-based event and
allows the instance to execute the business logic to handle it.
The ejbTimeout method executes in the transaction context determined by its transaction
attribute.
 11/5/09 298

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
10.1.4.2 Container’s View

This subsection describes the container’s view of the state management contract. The container must
call the following methods:

• public void setEntityContext(ec);
The container invokes this method to pass a reference to the EntityContext interface to
the entity bean instance. The container must invoke this method after it creates the instance,
and before it puts the instance into the pool of available instances.
The container invokes this method with an unspecified transaction context. At this point, the
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext();
The container invokes this method when the container wants to reduce the number of instances
in the pool. After this method completes, the container must not reuse this instance.
The container invokes this method with an unspecified transaction context.

• public PrimaryKeyClass ejbCreate<METHOD>(...);
public void ejbPostCreate<METHOD>(...);
The container invokes these two methods during the creation of an entity object as a result of a
client invoking a create<METHOD> method on the entity bean’s home interface.
The container first invokes the ejbCreate<METHOD> method whose signature matches the
create<METHOD> method invoked by the client. The ejbCreate<METHOD> method
returns a primary key for the created entity object. The container creates an entity EJBObject
reference and/or EJBLocalObject reference for the primary key. The container then invokes a
matching ejbPostCreate<METHOD> method to allow the instance to fully initialize itself.
Finally, the container returns the entity object’s remote interface (i.e., a reference to the entity
EJBObject) to the client if the client is a remote client, or the entity object’s local interface (i.e.,
a reference to the entity EJBLocalObject) to the client if the client is a local client.
The container must invoke the ejbCreate<METHOD> and ejbPostCreate<METHOD>
methods in the transaction context determined by the transaction attribute of the matching
create<METHOD> method, as described in subsection 13.6.2.

• public void ejbActivate();
The container invokes this method on an entity bean instance at activation time (i.e., when the
instance is taken from the pool and assigned to an entity object identity). The container must
ensure that the primary key of the associated entity object is available to the instance if the
instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject
method on its EntityContext interface.
The container invokes this method with an unspecified transaction context.
Note that instance is not yet ready for the delivery of a business method. The container must
still invoke the ejbLoad method prior to a business method or ejbTimeout method invo-
cation.

• public void ejbPassivate();
The container invokes this method on an entity bean instance at passivation time (i.e., when the
instance is being disassociated from an entity object identity and moved into the pool). The
299 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
container must ensure that the identity of the associated entity object is still available to the
instance if the instance invokes the getPrimaryKey, getEJBLocalObject, or getEJ-
BObject method on its entity context.
The container invokes this method with an unspecified transaction context.
Note that if the instance state has been updated by a transaction, the container must first invoke
the ejbStore method on the instance before it invokes ejbPassivate on it.

• public void ejbRemove();
The container invokes this method before it ends the life of an entity object as a result of a cli-
ent invoking a remove operation.
The container invokes this method in the transaction context determined by the transaction
attribute of the invoked remove method. The container must ensure that the identity of the
associated entity object is still available to the instance in the ejbRemove method (i.e., the
instance can invoke the getPrimaryKey, getEJBLocalObject, or getEJBObject
method on its EntityContext in the ejbRemove method).
The container must ensure that the instance’s state is synchronized from the state in the data-
base before invoking the ejbRemove method (i.e., if the instance is not already synchronized
from the state in the database, the container must invoke ejbLoad before it invokes ejbRe-
move).

• public void ejbLoad();
The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its instance state from its state in the database. The exact times that the
container invokes ejbLoad depend on the configuration of the component and the container,
and are not defined by the EJB architecture. Typically, the container will call ejbLoad before
the first business method within a transaction or before invoking the ejbTimeout method to
ensure that the instance can refresh its cached state of the entity object from the database. After
the first ejbLoad within a transaction, the container is not required to recognize that the state
of the entity object in the database has been changed by another transaction, and it is not
required to notify the instance of this change via another ejbLoad call.
The container must invoke this method in the transaction context determined by the transaction
attribute of the business method or ejbTimeout method that triggered the ejbLoad
method.

• public void ejbStore();
The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its state in the database with the state of the instance’s fields. This syn-
chronization always happens at the end of a transaction, unless the bean is specified as
read-only (see section 10.1.5). However, the container may also invoke this method when it
passivates the instance in the middle of a transaction, or when it needs to transfer the most
recent state of the entity object to another instance for the same entity object in the same trans-
action (see Subsection 13.7).
The container must invoke this method in the same transaction context as the previously
invoked ejbLoad, ejbCreate<METHOD>, or ejbTimeout method.

• public <primary key type or collection> ejbFind<METHOD>(...);
 11/5/09 300

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The container invokes the ejbFind<METHOD> method on an instance when a client invokes
a matching find<METHOD> method on the entity bean’s home interface. The container must
pick an instance that is in the pooled state (i.e., the instance is not associated with any entity
object identity) for the execution of the ejbFind<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls the setEntityContext method on
the instance before dispatching the finder method.
Before invoking the ejbFind<METHOD> method, the container must first synchronize the
state of any non-read-only entity bean instances that are participating in the same transaction
context as is used to execute the ejbFind<METHOD> by invoking the ejbStore method
on those entity bean instances. [50]

After the ejbFind<METHOD> method completes, the instance remains in the pooled state.
The container may, but is not required to, immediately activate the objects that were located by
the finder using the transition through the ejbActivate method.
The container must invoke the ejbFind<METHOD> method in the transaction context deter-
mined by the transaction attribute of the matching find method, as described in subsection
13.6.2.
If the ejbFind<METHOD> method is declared to return a single primary key, the container
creates an entity EJBObject reference for the primary key and returns it to the client if the cli-
ent is a remote client. If the client is a local client, the container creates and returns an entity
EJBLocalObject reference for the primary key. If the ejbFind<METHOD> method is
declared to return a collection of primary keys, the container creates a collection of entity
EJBObject or EJBLocalObject references for the primary keys returned from
ejbFind<METHOD>, and returns the collection to the client. (See Subsection 10.1.9 for
information on collections.)

• public <type> ejbHome<METHOD>(...);
The container invokes the ejbHome<METHOD> method on an instance when a client invokes
a matching <METHOD> home method on the entity bean’s home interface. The container must
pick an instance that is in the pooled state (i.e., the instance is not associated with any entity
object identity) for the execution of the ejbHome<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls the setEntityContext method on
the instance before dispatching the home method.
After the ejbHome<METHOD> method completes, the instance remains in the pooled state.
The container must invoke the ejbHome<METHOD> method in the transaction context deter-
mined by the transaction attribute of the matching <METHOD> home method, as described in
subsection 13.6.2.

• public void ejbTimeout(...);

The container invokes the ejbTimeout method on the instance when a timer with which the
entity has been registered expires. If there is no suitable instance in the ready state, the con-
tainer must activate an instance, invoking the ejbActivate method and transitioning it to
the ready state.
The container invokes the ejbTimeout method in the context of a transaction determined by
its transaction attribute.

[50] The EJB specification does not require the distributed flushing of state. The container in which the ejbFind<METHOD>
method executes is not required to propagate the flush to a different container.
301 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
10.1.5 Read-only Entity Beans
Compliant implementations of this specification may optionally support read-only entity beans. A
read-only entity bean is an entity bean whose instances are not intended to be updated and/or created by
the application. Read-only beans are best suited for situations where the underlying data never changes
or changes infrequently.

Containers that support read-only beans do not call the ejbStore method on them. The ejbLoad
method should typically be called by the container when the state of the bean instance is initially loaded
from the database, or at designated refresh intervals.[51]

If a read-only bean is used, the state of such a bean should not be updated by the application, and the
behavior is unspecified if this occurs.[52]

Read-only beans are designated by vendor-specific means that are outside the scope of this specifica-
tion, and their use is therefore not portable.

10.1.6 The EntityContext Interface

A container provides the entity bean instances with an EntityContext, which gives the entity bean
instance access to the instance’s context maintained by the container. The EntityContext interface
has the following methods:

• The getEJBObject method returns the entity bean’s remote interface.

• The getEJBHome method returns the entity bean’s remote home interface.

• The getEJBLocalObject method returns the entity bean’s local interface.

• The getEJBLocalHome method returns the entity bean’s local home interface.

• The getCallerPrincipal method returns the java.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the entity bean instance’s caller has a particular role.

• The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback.

• The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback.

• The getPrimaryKey method returns the entity bean’s primary key.

• The getTimerService method returns the javax.ejb.TimerService interface.

[51] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-specific.]
[52] For example, an implementation might choose to ignore such updates or to disallow them.
 11/5/09 302

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
• The getUserTransaction method returns the javax.transaction.UserTrans-
action interface. Entity bean instances must not call this method.

• The lookup method enables the entity bean to look up its environment entries in the JNDI
naming context.

10.1.7 Operations Allowed in the Methods of the Entity Bean Class

Table 11 defines the methods of an entity bean class in which the enterprise bean instances can access
the methods of the javax.ejb.EntityContext interface, the java:comp/env environment
naming context, resource managers, TimerService and Timer methods, the EntityManager-
Factory and EntityManager methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of the EntityContext interface, and the
access is not allowed in Table 11, the container must throw the java.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to invoke a method of the TimerService or Timer interface and
the access is not allowed in Table 11, the container must throw the java.lang.IllegalState-
Exception.

If an entity bean instance attempts to access a resource manager, an enterprise bean, or an entity man-
ager or entity manager factory, and the access is not allowed in Table 11, the behavior is undefined by
the EJB architecture.

Table 11 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods: getEJBHome, getEJBLocalHome, lookup
JNDI access to java:comp/env

ejbCreate

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getTimerService,
lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
303 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
ejbPostCreate

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbRemove

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbFind

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbHome

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getTimerService,
lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbActivate
ejbPassivate

EntityContext methods: getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Table 11 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
 11/5/09 304

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the EntityContext
interface should be used only in the enterprise bean methods that execute in the context of a
transaction. The container must throw the java.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking the getEJBObject, getEJBLocalObject, and getPrimaryKey methods is
disallowed in the entity bean methods in which there is no entity object identity associated with
the instance.

ejbLoad
ejbStore

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

business method
from component inter-
face

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbTimeout

EntityContext methods: getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getRollbackOnly, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

Table 11 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
305 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
• Invoking the getEJBObject and getEJBHome methods is disallowed if the entity bean
does not define a remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the
entity bean does not define a local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
entity bean methods for which the container does not have a meaningful transaction context.
These are the methods that have the NotSupported, Never, or Supports transaction
attribute.

• Accessing resource managers and enterprise beans is disallowed in the entity bean methods for
which the container does not have a meaningful transaction context or client security context.

10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state between
business method invocations. An instance may choose to cache the entire entity object’s state, part of
the state, or no state at all.

The container-invoked ejbLoad and ejbStore methods assist the instance with the management of
the cached entity object’s state. The instance should handle the ejbLoad and ejbStore methods as
follows:

• When the container invokes the ejbStore method on the instance, the instance should push
all cached updates of the entity object’s state to the underlying database. The container invokes
the ejbStore method at the end of a transaction[53], and may also invoke it at other times
when the instance is in the ready state. (For example the container may invoke ejbStore
when passivating an instance in the middle of a transaction, or when transferring the instance’s
state to another instance to support distributed transactions in a multi-process server.)

• When the container invokes the ejbLoad method on the instance, the instance should dis-
card any cached entity object’s state. The instance may, but is not required to, refresh the
cached state by reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cache
the entity object’s state:

• An instance loads the entire entity object’s state in the ejbLoad method and caches it until
the container invokes the ejbStore method. The business methods read and write the cached
entity state. The ejbStore method writes the updated parts of the entity object’s state to the
database.

• An instance loads the most frequently used part of the entity object’s state in the ejbLoad
method and caches it until the container invokes the ejbStore method. Additional parts of

[53] This call may be omitted if the bean has been specified as read-only.
 11/5/09 306

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
the entity object’s state are loaded as needed by the business methods. The ejbStore method
writes the updated parts of the entity object’s state to the database.

• An instance does not cache any entity object’s state between business methods. The business
methods access and modify the entity object’s state directly in the database. The ejbLoad and
ejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data access
calls in the entity bean class. We expect that they will rely on application development tools to provide
various data access components that encapsulate data access and provide state caching.

10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attribute

The use of the ejbLoad and ejbStore methods for caching an entity object’s state in the instance
works well only if the container can use transaction boundaries to drive the ejbLoad and ejbStore
methods. When the NotSupported[54] transaction attribute is assigned to a component interface
method, the corresponding enterprise bean class method executes with an unspecified transaction con-
text (See Subsection 13.6.5). This means that the container does not have any well-defined transaction
boundaries to drive the ejbLoad and ejbStore methods on the instance.

Therefore, the ejbLoad and ejbStore methods are “unreliable” for the instances that the container
uses to dispatch the methods with an unspecified transaction context. The following are the only guar-
antees that the container provides for the instances that execute the methods with an unspecified trans-
action context:

• The container invokes at least one ejbLoad between ejbActivate and the first business
method in the instance.

• The container invokes at least one ejbStore between the last business method on the
instance and the ejbPassivate method[55].

Because the entity object’s state accessed between the ejbLoad and ejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transaction con-
text, the Bean Provider should not attempt to use the ejbLoad and ejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation of the ejbLoad and
ejbStore methods should be a no-op (i.e., an empty method), and each business method should
access the entity object’s state directly in the database.

[54] This applies also to the Never and Supports attribute.
[55] This ejbStore call may be omitted if the bean has been specified as read-only.
307 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
10.1.9 Finder Method Return Type

10.1.9.1 Single-Object Finder

Some finder methods (such as ejbFindByPrimaryKey) are designed to return at most one entity
object. For single-object finders, the result type of a find<METHOD>method defined in the entity
bean’s remote home interface is the entity bean’s remote interface, and the result type of the
find<METHOD>method defined in the entity bean’s local home interface is the entity bean’s local
interface. The result type of the corresponding ejbFind<METHOD> method defined in the entity’s
implementation class is the entity bean’s primary key type.

The following code illustrates the definition of a single-object finder on the remote home interface.

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

Note that a finder method defined on the local home interface, however, must not throw the
RemoteException.

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public AccountPrimaryKey ejbFindByPrimaryKey(

AccountPrimaryKey primkey)
throws FinderException

{
...

}
...

}

10.1.9.2 Multi-Object Finders

Some finder methods are designed to return multiple entity objects. For multi-object finders defined in
the entity bean’s remote home interface, the result type of the find<METHOD>method is a collection
of objects implementing the entity bean’s remote interface. For multi-object finders defined in the entity
bean’s local home interface, the result type is a collection of objects implementing the entity bean’s
local interface. In either case, the result type of the corresponding ejbFind<METHOD> implementa-
tion method defined in the entity bean’s implementation class is a collection of objects of the entity
bean’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:

• the Java™ 2 java.util.Collection interface

• the JDK™ 1.1 java.util.Enumeration interface
 11/5/09 308

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
A Bean Provider targeting containers and clients based on Java 2 should use the java.util.Col-
lection interface for the finder’s result type.

A Bean Provider who wants to ensure that the entity bean is compatible with containers and clients
based on JDK 1.1 must use the java.util.Enumeration interface for the finder’s result type[56].

The Bean Provider must ensure that the objects in the java.util.Enumeration or
java.util.Collection returned from the ejbFind<METHOD> method are instances of the
entity bean’s primary key class.

A client program must use the PortableRemoteObject.narrow method to convert the objects
contained in the collections returned by a finder method on the entity bean’s remote home interface to
the entity bean’s remote interface type.

The following is an example of a multi-object finder method definition that is compatible with contain-
ers and clients based on Java 2:

// Entity’s remote home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Collection ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

[56] The finder will be also compatible with Java 2-based containers and clients.
309 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
The following is an example of a multi-object finder method definition compatible with containers and
clients that are based on both JDK 1.1 and Java 2:

// Entity’s remote home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Enumeration ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

10.1.10 Timer Notifications
An entity bean can be registered with the EJB Timer Service for time-based event notifications if it
implements the javax.ejb.TimedObject interface. The container invokes the bean instance’s
ejbTimeout method when a timer for the bean has expired. See Chapter 18, “Timer Service”.

10.1.11 Standard Application Exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

10.1.11.1 CreateException

From the client’s perspective, a CreateException (or a subclass of CreateException) indi-
cates that an application level error occurred during the create<METHOD> operation. If a client
receives this exception, the client does not know, in general, whether the entity object was created but
not fully initialized, or not created at all. Also, the client does not know whether or not the transaction
has been marked for rollback. (However, the client may determine the transaction status using the
UserTransaction interface or the setRollbackOnly method of the EJBContext interface.)
 11/5/09 310

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The Bean Provider throws the CreateException (or subclass of CreateException) from the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods to indicate an application-level
error from the create or initialization operation. Optionally, the Bean Provider may mark the transaction
for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a CreateException is thrown,
it leaves the database in a consistent state, allowing the client to recover. For example, ejbCreate
may throw the CreateException to indicate that the some of the arguments to the cre-
ate<METHOD> method are invalid.

The container treats the CreateException as any other application exception. See Section 14.3.

10.1.11.2 DuplicateKeyException

The DuplicateKeyException is a subclass of CreateException. It is thrown by the ejb-
Create<METHOD> method to indicate to the client that the entity object cannot be created because an
entity object with the same key already exists. The unique key causing the violation may be the primary
key, or another key defined in the underlying database.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the excep-
tion.

When the client receives the DuplicateKeyException, the client knows that the entity was not
created, and that the client’s transaction has not typically been marked for rollback.

10.1.11.3 FinderException

From the client’s perspective, a FinderException (or a subclass of FinderException) indi-
cates that an application level error occurred during the find operation. Typically, the client’s transac-
tion has not been marked for rollback because of the FinderException.

The Bean Provider throws the FinderException (or subclass of FinderException) from the
ejbFind<METHOD> method to indicate an application-level error in the finder method. The Bean
Provider should not, typically, mark the transaction for rollback before throwing the FinderExcep-
tion.

The container treats the FinderException as any other application exception. See Section 14.3.

10.1.11.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass of FinderException. It is thrown by the
ejbFind<METHOD> method to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 10.1.9) should throw this exception. Multi-object finders
must not throw this exception. Multi-object finders should return an empty collection as an indication
that no matching objects were found.
311 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
10.1.11.5 RemoveException

From the client’s perspective, a RemoveException (or a subclass of RemoveException) indi-
cates that an application level error occurred during a remove operation. If a client receives this excep-
tion, the client does not know, in general, whether the entity object was removed or not. The client also
does not know if the transaction has been marked for rollback. (However, the client may determine the
transaction status using the UserTransaction interface.)

The Bean Provider throws the RemoveException (or subclass of RemoveException) from the
ejbRemove method to indicate an application-level error from the entity object removal operation.
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a RemoveException is thrown,
it leaves the database in a consistent state, allowing the client to recover.

The container treats the RemoveException as any other application exception. See Section 14.3.

10.1.12 Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition of the
instance state at transaction commit time. This flexibility allows the container to optimally manage the
caching of entity object’s state and the association of an entity object identity with the enterprise bean
instances.

The container can select from the following commit-time options:

• Option A: The container caches a “ready” instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in the persistent storage.
Therefore, the container does not have to synchronize the instance’s state from the persistent
storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. In contrast to Option
A, in this option the container does not ensure that the instance has exclusive access to the state
of the object in the persistent storage. Therefore, the container must synchronize the instance’s
state from the persistent storage at the beginning of the next transaction.

• Option C: The container does not cache a “ready” instance between transactions. The con-
tainer returns the instance to the pool of available instances after a transaction has completed.

The following table provides a summary of the commit-time options.

Table 12 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes
 11/5/09 312

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Note that the container synchronizes the instance’s state with the persistent storage at transaction com-
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity bean
will work correctly regardless of the commit-time option chosen by the container. The Bean Provider
writes the entity bean in the same way.

10.1.13 Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about con-
current access from multiple transactions. The Bean Provider may assume that the container will ensure
appropriate synchronization for entity objects that are accessed concurrently from multiple transactions.

The container typically uses one of the following implementation strategies to achieve proper synchro-
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in which
the entity object is being accessed. The transaction synchronization is performed automatically
by the underlying database during the database access calls performed by the business methods
and the ejbTimeout method; and by the ejbLoad, ejbCreate<METHOD>, ejbStore,
and ejbRemove methods. The database system provides all the necessary transaction syn-
chronization; the container does not have to perform any synchronization logic.

Option B Yes Yes No

Option C Yes No No

Table 12 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid
313 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Overview of

Sun Microsystems, Inc.
Figure 22 Multiple Clients Can Access the Same Entity Object Using Multiple Instances

With this strategy, the type of lock acquired by ejbLoad leads to a trade-off. If ejbLoad acquires an
exclusive lock on the instance's state in the database, then throughput of read-only transactions could
be impacted. If ejbLoad acquires a shared lock and the instance is updated, then ejbStore will
need to promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently
under multiple transactions.

• The container acquires exclusive access to the entity object’s state in the database. The con-
tainer activates a single instance and serializes the access from multiple transactions to this
instance. The commit-time option A applies to this type of container.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
 11/5/09 314

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
Figure 23 Multiple Clients Can Access the Same Entity Object Using Single Instance

10.1.14 Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non-reen-
trant entity bean executes a client request in a given transaction context, and another request with the
same transaction context arrives for the same entity object, the container will throw an exception to the
second request. This rule allows the Bean Provider to program the entity bean as single-threaded,
non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction context. An
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls back
A in the same transaction context. The entity bean’s method invoked by the loopback shares the current
execution context (which includes the transaction and security contexts) with the bean’s method
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must reject an
attempt to re-enter the instance via the entity bean’s component interface while the instance is executing
a business method. (This can happen, for example, if the instance has invoked another enterprise bean,
and the other enterprise bean tries to make a loopback call.) If the attempt is made to reenter the instance
through the remote interface, the container must throw the java.rmi.RemoteException to the
caller. If the attempt is made to reenter the instance through the local interface, the container must throw
the javax.ejb.EJBException to the caller. The container must allow the call if the bean’s
deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider must code
the entity bean with the anticipation of a loopback call. Second, since the container cannot, in general,
tell a loopback from a concurrent call from a different client, the client programmer must be careful to
avoid code that could lead to a concurrent call in the same transaction context.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
315 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities of

Sun Microsystems, Inc.
Concurrent calls in the same transaction context targeted at the same entity object are illegal and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal con-
current call and a legal loopback, application programmers are encouraged to avoid using loopbacks.
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment descriptor,
allowing the container to detect and prevent illegal concurrent calls from clients.

10.2 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of a bean-managed persistence entity Bean Provider to ensure
that the entity bean can be deployed in any EJB container.

10.2.1 Classes and Interfaces

The Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes

• Primary key class

• Entity bean’s remote interface and remote home interface, if the entity bean provides a remote
client view

• Entity bean’s local interface and local home interface, if the entity bean provides a local client
view

The Bean Provider must provide a remote interface and a remote home interface or a local interface an
local home interface for the bean. The Bean Provider may provide a remote interface, remote home
interface, local interface, and local home interface for the bean. Other combinations are not allowed.

10.2.2 Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, the javax.ejb.EntityBean interface.

The class may implement, directly or indirectly, the javax.ejb.TimedObject interface.

The class must be defined as public and must not be abstract. The class must be a top level class.

The class must not be defined as final.

The class must define a public constructor that takes no arguments.

The class must not define the finalize method.
 11/5/09 316

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
The class may, but is not required to, implement the entity bean’s component interface[57]. If the class
implements the entity bean’s component interface, the class must provide no-op implementations of the
methods defined in the javax.ejb.EJBObject or javax.ejb.EJBLocalObject interface.
The container will never invoke these methods on the bean instances at runtime.

A no-op implementation of these methods is required to avoid defining the entity bean class as abstract.

The entity bean class must implement the business methods, and the ejbCreate<METHOD>, ejb-
PostCreate<METHOD>, ejbFind<METHOD>, and ejbHome<METHOD> methods as described
later in this section.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has superclasses,
the business methods, the ejbCreate and ejbPostCreate methods, the finder methods, and the
methods of the EntityBean interface or the TimedObject interface may be implemented in the
enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the EJB specification.

10.2.3 ejbCreate<METHOD> Methods

The entity bean class must implement the ejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface.

The entity bean class may define zero or more ejbCreate<METHOD> methods whose signatures
must follow these rules:

The method name must have ejbCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP if the ejbCre-
ate<METHOD> corresponds to a create<METHOD> on the entity bean’s remote home interface.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException.

[57] If the entity bean class does implement the component interface, care must be taken to avoid passing of this as a method argu-
ment or result. This potential error can be avoided by choosing not to implement the component interface in the entity bean class.
317 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities of

Sun Microsystems, Inc.
Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw the java.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB
1.1 or EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another java.lang.RuntimeException to indicate non-application exceptions to the container
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw the java.rmi.Remote-
Exception. from the ejbCreate method.

The entity object created by the ejbCreate<METHOD> method must have a unique primary key. This
means that the primary key must be different from the primary keys of all the existing entity objects
within the same home. The ejbCreate<METHOD> method should throw the DuplicateKeyEx-
ception on an attempt to create an entity object with a duplicate primary key. However, it is legal to
reuse the primary key of a previously removed entity object.

10.2.4 ejbPostCreate<METHOD> Methods

For each ejbCreate<METHOD> method, the entity bean class must define a matching ejbPost-
Create<METHOD> method, using the following rules:

The method name must have ejbPostCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be void.

The method arguments must be the same as the arguments of the matching ejbCreate<METHOD>
method.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException.

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throw the java.rmi.Remo-
teException to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
EJB 1.1 or EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBExcep-
tion or another java.lang.RuntimeException to indicate non-application exceptions to the
container (see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw the
java.rmi.RemoteException. from the ejbPostCreate method.

10.2.5 ejbFind Methods

The entity bean class may also define additional ejbFind<METHOD> finder methods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrimaryKey,
ejbFindLargeAccounts, ejbFindLateShipments).
 11/5/09 318

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
A finder method must be declared as public.

The method must not be declared as final or static.

The method argument types must be legal types for RMI-IIOP if the ejbFind<METHOD> method cor-
responds to a find<METHOD> method on the entity bean’s remote home interface.

The return type of a finder method must be the entity bean’s primary key type, or a collection of primary
keys (see Subsection 10.1.9).

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.FinderException.

Compatibility Note: EJB 1.0 allowed the finder methods to throw the java.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or
EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another java.lang.RuntimeException to indicate non-application exceptions to the container
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw the java.rmi.Remote-
Exception. from the ejbFind method.

Every entity bean must define the ejbFindByPrimaryKey method. The result type for this method
must be the primary key type (i.e., the ejbFindByPrimaryKey method must be a single-object
finder).

10.2.6 ejbHome<METHOD> Methods
The entity bean class may define zero or more home methods whose signatures must follow the follow-
ing rules:

An ejbHome<METHOD> method must exist for every home <METHOD> method on the entity bean’s
remote home or local home interface. The method name must have ejbHome as its prefix followed by
the name of the <METHOD> method in which the first character has been uppercased.

The method must be declared as public.

The method must not be declared as static.

The method argument and return value types must be legal types for RMI-IIOP if the ejbHome method
corresponds to a method on the entity bean’s remote home interface.

The throws clause may define arbitrary application specific exceptions. The throws clause must not
throw the java.rmi.RemoteException.

10.2.7 Business Methods

The entity bean class may define zero or more business methods whose signatures must follow these
rules:
319 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities of

Sun Microsystems, Inc.
The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the call-
back methods used by the EJB architecture.

The business method must be declared as public.

The method must not be declared as final or static.

The method argument and return value types must be legal types for RMI-IIOP if the method corre-
sponds to a business method on the entity bean’s remote interface.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw the java.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or
EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another java.lang.RuntimeException to indicate non-application exceptions to the container
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw the java.rmi.Remote-
Exception. from a business method.

10.2.8 Entity Bean’s Remote Interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend the javax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that their
argument and return value types must be valid types for RMI-IIOP, and their throws clauses must
include the java.rmi.RemoteException.

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity bean’s
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
bean class must be defined in the throws clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types, timers
or timer handles, or the managed collection classes that are used for entity beans with container-man-
aged persistence as arguments or results.
 11/5/09 320

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
10.2.9 Entity Bean’s Remote Home Interface

The following are the requirements for the entity bean’s remote home interface:

The interface must extend the javax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ment and return types must be of valid types for RMI-IIOP, and that their throws clauses must include
the java.rmi.RemoteException.

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the remote home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Each create method must be the named “create<METHOD>”, and it must match one of the ejb-
Create<METHOD> methods defined in the enterprise bean class. The matching ejbCre-
ate<METHOD> method must have the same number and types of its arguments. (Note that the return
type is different.)

The return type for a create<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and ejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause
of the matching create<METHOD> method of the remote home interface (i.e., the set of exceptions
defined for the create<METHOD> method must be a superset of the union of exceptions defined for
the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the javax.ejb.CreateEx-
ception.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it must
match one of the ejbFind<METHOD> methods defined in the entity bean class (e.g. ejbFind-
LargeAccounts). The matching ejbFind<METHOD> method must have the same number and
types of arguments. (Note that the return type may be different.)

The return type for a find<METHOD> method must be the entity bean’s remote interface type (for a
single-object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.
321 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release Responsibilities of

Sun Microsystems, Inc.
All the exceptions defined in the throws clause of an ejbFind method of the entity bean class must
be included in the throws clause of the matching find method of the remote home interface.

The throws clause of a finder method must include the javax.ejb.FinderException.

Home methods can have arbitrary names, provided that they do not clash with create, find, and
remove method names. The matching ejbHome method specified in the entity bean class must have
the same number and types of arguments and must return the same type as the home method as specified
in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface types,
timer handles, or the managed collection classes that are used for entity beans with container-managed
persistence as arguments or results.

10.2.10 Entity Bean’s Local Interface

The following are the requirements for the entity bean’s local interface:

The interface must extend the javax.ejb.EJBLocalObject interface.

The throws clause of a method defined on the local interface must not include the
java.rmi.RemoteException.

The local interface is allowed to have superinterfaces.

For each method defined in the local interface, there must be a matching method in the entity bean’s
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
Bean class must be defined in the throws clause of the method of the local interface.

10.2.11 Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:

The interface must extend the javax.ejb.EJBLocalHome interface.

The throws clause of a method on the local home interface must not include the java.rmi.Remo-
teException.

The local home interface is allowed to have superinterfaces.

Each method defined in the local home interface must be one of the following:
 11/5/09 322

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
• A create method.

• A finder method.

• A home method.

Each create method must be the named “create<METHOD>”, and it must match one of the ejb-
Create<METHOD> methods defined in the enterprise bean class. The matching ejbCre-
ate<METHOD> method must have the same number and types of its arguments. (Note that the return
type is different.)

The return type for a create<METHOD> method must be the entity bean’s local interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and ejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause
of the matching create<METHOD> method of the local home interface (i.e., the set of exceptions
defined for the create<METHOD> method must be a superset of the union of exceptions defined for
the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the javax.ejb.CreateEx-
ception.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it
must match one of the ejbFind<METHOD> methods defined in the entity bean class (e.g.
ejbFindLargeAccounts). The matching ejbFind<METHOD> method must have the same num-
ber and types of arguments. (Note that the return type may be different.)

The return type for a find<METHOD> method must be the entity bean’s local interface type (for a sin-
gle-object finder), or a collection thereof (for a multi-object finder).

The local home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of an ejbFind method of the entity bean class must
be included in the throws clause of the matching find method of the local home interface.

The throws clause of a finder method must include the javax.ejb.FinderException.

Home methods can have arbitrary names, provided that they do not clash with create, find, and
remove method names. The matching ejbHome method specified in the entity bean class must have
the same number and types of arguments and must return the same type as the home method as specified
in the local home interface of the bean.

The throws clause of any method on the entity bean’s local home interface must not include the
java.rmi.RemoteException.

10.2.12 Entity Bean’s Primary Key Class

The Bean Provider must specify a primary key class in the deployment descriptor.
323 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Responsibilities

Sun Microsystems, Inc.
The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of the hashCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.

10.3 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support bean-managed persis-
tence entity beans. The Container Provider is responsible for providing the deployment tools, and for
managing entity bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

10.3.1 Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of addi-
tional classes when the entity bean is deployed. The tools obtain the information that they need for gen-
eration of the additional classes by introspecting the classes and interfaces provided by the entity Bean
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s remote home interface (i.e., the entity EJBHome
class).

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject class).

• A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalHome
class).

• A class that implements the entity bean’s local interface (i.e., the entity EJBLocalObject class).

The deployment tools may also generate a class that mixes some container-specific code with the entity
bean class. The code may, for example, help the container to manage the entity bean instances at runt-
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business methods
and that is used to customize the business logic for an existing operational environment. For example, a
wrapper for a debit function on the Account bean may check that the debited amount does not
exceed a certain limit, or perform security checking that is specific to the operational environment.
 11/5/09 324

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
10.3.2 Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s
remote home interface. This class implements the methods of the javax.ejb.EJBHome interface,
and the type-specific create, finder, and home methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method, followed by the matching ejbPostCreate<METHOD> method, passing the cre-
ate<METHOD> parameters to these matching methods.

The implementation of the remove methods defined in the javax.ejb.EJBHome interface must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD>
method. The implementation of the find<METHOD> method must create an entity object reference for
the primary key returned from the ejbFind<METHOD> and return the entity object reference (i.e.,
EJBObject) to the client. If the ejbFind<METHOD> method returns a collection of primary keys, the
implementation of the find<METHOD> method must create a collection of entity object references for
the primary keys and return the collection to the client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD>
method (in which the first character of <METHOD> is uppercased in the name of the ejb-
Home<METHOD> method), passing the <METHOD> parameters to the matching method.

10.3.3 Entity EJBObject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity bean’s
remote interface. It implements the methods of the javax.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of the remove method (defined in the javax.ejb.EJBObject interface)
must activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove
method on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

10.3.4 Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity bean’s
local home interface. This class implements the methods of the javax.ejb.EJBLocalHome inter-
face, and the type-specific create, finder, and home methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method, followed by the matching ejbPostCreate<METHOD> method, passing the cre-
ate<METHOD> parameters to these matching methods.
325 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Responsibilities

Sun Microsystems, Inc.
The implementation of the remove method defined in the javax.ejb.EJBLocalHome interface
must activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove
method on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD>
method. The implementation of the find<METHOD> method must create an entity object reference
for the primary key returned from the ejbFind<METHOD> and return the entity object reference (i.e.,
EJBLocalObject) to the client. If the ejbFind<METHOD> method returns a collection of primary
keys, the implementation of the find<METHOD> method must create a collection of entity object ref-
erences for the primary keys and return the collection to the client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD>
method (in which the first character of <METHOD> is uppercased in the name of the ejb-
Home<METHOD> method), passing the <METHOD> parameters to the matching method.

10.3.5 Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity bean’s
local interface. It implements the methods of the javax.ejb.EJBLocalObject interface and the
business methods specific to the entity bean.

The implementation of the remove method (defined in the javax.ejb.EJBLocalObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke the ejbRe-
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

10.3.6 Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The handle
class must be serializable by the Java Serialization protocol.

As the handle class is not entity-bean specific, the container may, but is not required to, use a single
class for all deployed entity beans.

10.3.7 Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. The han-
dle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity-bean specific, the container may, but is not required to, use
a single class for the home handles of all deployed entity beans.
 11/5/09 326

The Responsibilities of the Container Provider Enterprise JavaBeans 3.1, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.
10.3.8 Metadata Class

The deployment tools are responsible for implementing the class that provides metadata information to
the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must implement
the javax.ejb.EJBMetaData interface.

Because the metadata class is not entity-bean specific, the container may, but is not required to, use a
single class for all deployed enterprise beans.

10.3.9 Instance’s Re-entrance

The container runtime must enforce the rules defined in Section 10.1.14.

10.3.10 Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exception
handling described in Chapters 13, 17, and 14.

10.3.11 Implementation of Object References

The container should implement the distribution protocol between the client and the container such that
the object references of the remote home and remote interfaces used by entity bean clients are usable for
a long period of time. Ideally, a client should be able to use an object reference across a server crash and
restart. An object reference should become invalid only when the entity object has been removed, or
after a reconfiguration of the server environment (for example, when the entity bean is moved to a dif-
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the client
code needs to have a recovery handler for the system exceptions thrown from the individual method
invocations on the home and remote interface, the client should not be forced to re-obtain the object ref-
erences.

10.3.12 EntityContext

The container must implement the EntityContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the entity bean’s remote inter-
face type. Specifically, the bean instance does not have to use the PortableRemoteObject.nar-
row method for the type conversion.
327 November 5, 2009 11:00 am

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.1, Final Release The Responsibilities

Sun Microsystems, Inc.
 11/5/09 328

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.
Chapter 11 EJB 1.1 Entity Bean Component Contract
for Container-Managed Persistence

This chapter specifies the EJB 1.1 entity bean component contract for container-managed persistence.

The EJB 1.1 Entity Bean Contract has been proposed for future removal. See Section 2.7 for more
details.

11.1 EJB 1.1 Entity Beans with Container-Managed Persistence

Chapter 10, “EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence” describes the
component contract for entity beans with bean-managed persistence. The contract for an EJB 1.1 entity
bean with container-managed persistence is the same as the contract for an entity bean with bean-man-
aged persistence as described in Chapter 10, except for the differences described in this chapter.

An EJB 1.1 entity bean with container-managed persistence cannot have a local interface or local home
interface. Use of the local interfaces of other enterprise beans is not supported for an EJB 1.1 entity
bean with container-managed persistence.
329 November 5, 2009 11:00 am

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.
Use of the EJB Timer Service is not supported for an EJB 1.1 entity bean with container-managed per-
sistence. An EJB 1.1 entity bean with container-managed persistence should not implement the
javax.ejb.TimedObject interface. Use of dependency injection, interceptors, and any Java lan-
guage metadata annotations is not supported for EJB 1.1 entity beans.

11.1.1 Container-Managed Fields

An EJB 1.1 entity bean with container-managed persistence relies on the Container Provider’s tools to
generate methods that perform data access on behalf of the entity bean instances. The generated meth-
ods transfer data between the entity bean instance’s variables and the underlying resource manager at
the times defined by the EJB specification. The generated methods also implement the creation,
removal, and lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data access
must be deferred to the container.

The EJB 1.1 entity Bean Provider is responsible for using the cmp-field elements of the deployment
descriptor to declare the instance’s fields that the container must load and store at the defined times. The
fields must be defined in the entity bean class as public, and must not be defined as transient.

The container is responsible for transferring data between the entity bean’s instance variables and the
underlying data source before or after the execution of the ejbCreate, ejbRemove, ejbLoad, and
ejbStore methods, as described in the following subsections. The container is also responsible for
the implementation of the finder methods.

The EJB 2.0 or later deployment descriptor for an EJB 1.1 entity bean with container-managed persis-
tence indicates that the entity bean uses container-managed persistence and that the value of its
cmp-version element is 1.x.

The EJB 1.1 component contract does not architect support for relationships for entity beans with con-
tainer-managed persistence. The EJB 2.0 and later specifications do not support the use of the
cmr-field, ejb-relation, or query deployment descriptor elements or their subelements for
EJB 1.1 entity beans.

The following requirements ensure that an EJB 1.1 entity bean with container-managed persistence can
be deployed in any compliant container.

• The Bean Provider must ensure that the Java types assigned to the container-managed fields
are restricted to the following: Java primitive types, Java serializable types, and references of
enterprise beans’ remote or remote home interfaces.

• The Container Provider may, but is not required to, use Java Serialization to store the con-
tainer-managed fields in the database. If the container chooses a different approach, the effect
should be equivalent to that of Java Serialization. The container must also be capable of per-
sisting references to enterprise beans’ remote and remote home interfaces (for example, by
storing their handle or primary key).
 11/5/09 330

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.
Although the above requirements allow the Bean Provider to specify almost any arbitrary type for the
container-managed fields, we expect that in practice the Bean Provider of EJB 1.1 entity beans with
container-managed persistence will use relatively simple Java types, and that most containers will be
able to map these simple Java types to columns in a database schema to externalize the entity state in
the database, rather than use Java serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fields, he or
she should provide mapping instructions to the Deployer. The mapping between the instance’s con-
tainer-managed fields and the schema of the underlying database manager will be then realized by the
data access classes generated by the Container Provider’s tools. Because entity beans are typically
coarse-grained objects, the content of the container-managed fields may be stored in multiple rows,
possibly spread across multiple database tables. These mapping techniques are beyond the scope of the
EJB specification, and do not have to be supported by an EJB compliant container. (The container may
simply use the Java serialization protocol in all cases).

11.1.2 ejbCreate, ejbPostCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that inserts
a record into the database in the ejbCreate methods. However, with container-managed persistence,
the container performs the database insert after the ejbCreate method completes.

The container must ensure that the values of the container-managed fields are set to the Java language
defaults (e.g. 0 for integer, null for pointers) prior to invoking an ejbCreate method on an instance.

The EJB 1.1 entity Bean Provider’s responsibility is to initialize the container-managed fields in the
ejbCreate methods from the input arguments such that when an ejbCreate method returns, the
container can extract the container-managed fields from the instance and insert them into the database.

The ejbCreate methods must be defined to return the primary key class type. The implementation of
the ejbCreate methods should be coded to return a null. The returned value is ignored by the con-
tainer.

Note: The above requirement is to allow the creation of an entity bean with bean-managed persistence
by subclassing an EJB 1.1 entity bean with container-managed persistence. The Java language rules for
overriding methods in subclasses requires the signatures of the ejbCreate methods in the subclass
and the superclass be the same.

The container is responsible for creating the entity object’s representation in the underlying database,
extracting the primary key fields of the newly created entity object representation in the database, and
for creating an entity EJBObject reference for the newly created entity object. The container must estab-
lish the primary key before it invokes the ejbPostCreate method. The container may create the rep-
resentation of the entity in the database immediately after ejbCreate returns, or it can defer it to a
later time (for example to the time after the matching ejbPostCreate has been called, or to the end
of the transaction).

The container then invokes the matching ejbPostCreate method on the instance. The instance can
discover the primary key by calling the getPrimaryKey method on its entity context object.
331 November 5, 2009 11:00 am

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.
The container must invoke ejbCreate, perform the database insert operation, and invoke ejbPost-
Create in the transaction context determined by the transaction attribute of the matching create
method, as described in subsection 13.6.2.

The container throws the DuplicateKeyException if the newly created entity object would have
the same primary key as one of the existing entity objects within the same home.

11.1.3 ejbRemove

The container invokes the ejbRemove method on an entity bean instance with container-managed per-
sistence in response to a client-invoked remove operation on the entity bean’s remote home or remote
interface.

The entity Bean Provider can use the ejbRemove method to implement any actions that must be done
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokes the ejbRemove method. This means
that the state of the instance variables at the beginning of the ejbRemove method is the same as it
would be at the beginning of a business method.

After ejbRemove returns, the container removes the entity object’s representation from the database.

The container must perform ejbRemove and the database delete operation in the transaction context
determined by the transaction attribute of the invoked remove method, as described in subsection
13.6.2.

11.1.4 ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity object’s
state in the database, the container reads the entity object’s state from the database into the con-
tainer-managed fields and then it invokes the ejbLoad method on the instance.

The entity Bean Provider can rely on the container’s having loaded the container-managed fields from
the database just before the container invokes the ejbLoad method. The entity bean can use the ejb-
Load method, for instance, to perform some computation on the values of the fields that were read by
the container (for example, uncompressing text fields).

11.1.5 ejbStore

When the container needs to synchronize the state of the entity object in the database with the state of
the enterprise bean instance, the container first calls the ejbStore method on the instance, and then it
extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use the ejbStore method to set up the values of the container-man-
aged fields just before the container writes them to the database. For example, the ejbStore method
may perform compression of text before the text is stored in the database.
 11/5/09 332

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.
11.1.6 Finder Hethods

The entity Bean Provider does not write the finder (ejbFind<METHOD>) methods.

The finder methods are generated at the entity bean deployment time using the Container Provider’s
tools. The tools can, for example, create a subclass of the entity bean class that implements the
ejbFind<METHOD> methods, or the tools can generate the implementation of the finder methods
directly in the class that implements the entity bean’s remote home interface.

Note that the ejbFind<METHOD> names and parameter signatures of EJB 1.1 entity beans do not pro-
vide the container tools with sufficient information for automatically generating the implementation of
the finder methods for methods other than ejbFindByPrimaryKey. Therefore, the Bean Provider is
responsible for providing a description of each finder method. The entity bean Deployer uses container
tools to generate the implementation of the finder methods based in the description supplied by the
Bean Provider. The EJB1.1 component contract for container-managed persistence does not specify the
format of the finder method description.

11.1.7 Home Methods
The EJB1.1 entity bean contract does not support ejbHome methods.

11.1.8 Create Methods

The EJB1.1 entity bean contract does not support create<METHOD> methods.

11.1.9 Primary Key Type

The container must be able to manipulate the primary key type. Therefore, the primary key type for an
entity bean with container-managed persistence must follow the rules in this subsection, in addition to
those specified in Subsection 10.2.12.

There are two ways to specify a primary key class for an entity bean with container-managed persis-
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is convenient for
single-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Class

The Bean Provider uses the primkey-field element of the deployment descriptor to specify the
container-managed field of the entity bean class that contains the primary key. The field’s type must be
the primary key type.
333 November 5, 2009 11:00 am

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.1, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.
11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Class

The primary key class must be public, and must have a public constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-managed
fields. (This allows the container to extract the primary key fields from an instance’s container-managed
fields, and vice versa.)

11.1.9.3 Special Case: Unknown Primary Key Class

In special situations, the entity Bean Provider may choose not to specify the primary key class for an
entity bean with container-managed persistence. This case usually happens when the entity bean does
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the primary
key fields at deployment time. The entity bean’s primary key type will usually be derived from the pri-
mary key type used by the underlying database system that stores the entity objects. The primary key
used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to subclass
the entity bean class to add additional container-managed fields (this typically happens for entity beans
that do not have a natural primary key, and the primary keys are system-generated by the underlying
database system that stores the entity objects).

In this special case, the type of the argument of the findByPrimaryKey method must be declared as
java.lang.Object, and the return value of ejbCreate must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deployment
descriptor as of the type java.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider develops
an entity bean that is intended to be used with multiple back-ends that provide persistence, and when
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application program-
ming model, because the clients written prior to deployment of the entity bean may not use, in general,
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, the
methods should not depend on the type of the object returned from EntityContext.getPrima-
ryKey, because the return type is determined by the Deployer after the EJB class has been written.
 11/5/09 334

Overview Enterprise JavaBeans 3.1, Final Release Interceptors

Sun Microsystems, Inc.
Chapter 12 Interceptors

Interceptors are used to interpose on business method invocations and lifecycle events that occur on an
enterprise bean instance.

12.1 Overview

The general rules for defining Interceptor classes, their lifecycle, and associated metadata are described
in a separate Interceptors document. This chapter describes the set of requirements that are specific to
the use of Interceptors with Enterprise JavaBeans.

For the use of interceptors with Enterprise JavaBeans, the Interceptor “target class” is the bean class.
Interceptors may be used with session beans and message-driven beans.

The programming restrictions that apply to enterprise bean components apply to interceptors as well.
See Section 21.2.2

Default interceptors may be defined to apply to all components within an ejb-jar file or .war file.
335 November 5, 2009 11:00 am

Interceptors Enterprise JavaBeans 3.1, Final Release Interceptor Life Cycle

Sun Microsystems, Inc.
12.2 Interceptor Life Cycle

The lifecycle of an interceptor instance is the same as that of the bean instance with which it is associ-
ated. In the case of interceptors associated with stateful session beans, the interceptor instances are pas-
sivated upon bean instance passivation, and activated when the bean instance is activated. See sections
4.6, 4.7.1, and 5.5.

In addition to the PostConstruct and PreDestroy callback support required by the Interceptors
specificatoin, interceptors associated with Stateful Session Beans may define PostActivate and
PrePassivate callbacks. Both the interceptor instance and the bean instance are created or activated
before any of the respective PostConstruct or PostActivate callbacks are invoked. Any Pre-
Destroy and PrePassivate callbacks are invoked before the respective destruction or passivation
of either the bean instance or interceptor instance.

The use of an extended persistence context is only supported for interceptors that are associated with
stateful session beans.

12.3 Business Method Interceptors

Interceptor methods may be defined for business methods of sessions beans and for the message listener
methods of message-driven beans.

12.3.1 Exceptions

Business method interceptor methods may throw runtime exceptions or application exceptions that are
allowed in the throws clause of the business method.

AroundInvoke methods are allowed to catch and suppress exceptions and recover by calling pro-
ceed(). AroundInvoke methods are allowed to throw runtime exceptions or any checked excep-
tions that the business method allows within its throws clause.

AroundInvoke methods can mark the transaction for rollback by throwing a runtime exception or by
calling the EJBContext setRollbackOnly() method. AroundInvoke methods may cause this
rollback before or after InvocationContext.proceed() is called.

If a system exception escapes the interceptor chain the bean instance and any associated interceptor
instances are discarded.[58] The PreDestroy callbacks are not invoked in this case: the interceptor
methods in the chain should perform any necessary clean-up operations as the interceptor chain
unwinds.

[58] Except for singletons. See Section 4.8.4
 11/5/09 336

Timer Timeout Method Interceptors Enterprise JavaBeans 3.1, Final Release Interceptors

Sun Microsystems, Inc.
12.4 Timer Timeout Method Interceptors

Interceptor methods may be defined for EJB timer timeout methods of session beans and mes-
sage-driven beans. These are referred to as AroundTimeout methods.

Within an AroundTimeout method, the InvocationContext.getTimer() method returns the
javax.ejb.Timer object associated with the timeout being intercepted.

12.4.1 Exceptions
AroundTimeout methods may throw system exceptions, but not application exceptions.

12.5 Interceptors for LifeCycle Event Callbacks

Lifecycle callback interceptor methods may be defined for session beans and message driven beans.

Interceptor methods for lifecycle event callbacks can be defined on an interceptor class and/or directly
on the bean class. The PostConstruct, PreDestroy, PostActivate, and PrePassivate
annotations are used to define an interceptor method for a lifecycle callback event..

Lifecycle callback interceptor methods are invoked in an unspecified security context. Lifecycle call-
back interceptor methods are invoked in an unspecified transaction context, except for Singleton
PostConstruct / PreDestroy methods, whose transaction context is based on their associated tx
attribute. See Section 4.3.4.

12.5.1 Exceptions
Lifecycle callback interceptor methods may throw system runtime exceptions, but not application
exceptions.

A runtime exception thrown by any lifecycle interceptor callback method causes the bean instance and
its interceptors to be discarded[59] after the interceptor chain unwinds.

The PreDestroy callbacks are not invoked when the bean and the interceptors are discarded as a
result of such exceptions: the lifecycle callback interceptor methods in the chain should perform any
necessary clean-up operations as the interceptor chain unwinds.

[59] Except for Singletons. See Section 4.8.4
337 November 5, 2009 11:00 am

Interceptors Enterprise JavaBeans 3.1, Final Release InvocationContext

Sun Microsystems, Inc.
12.6 InvocationContext

The InvocationContext object provides metadata that enables interceptor methods to control the
behavior of the invocation chain. The contextual data is not sharable across separate business method
invocations or lifecycle callback events. If interceptors are invoked as a result of the invocation on a
web service endpoint, the map returned by getContextData will be the JAX-WS MessageContext
[32]. The lifecycle of the InvocationContext instance is otherwise unspecified.

12.7 Specification of Interceptors in the Deployment Descriptor

The deployment descriptor can be used as an alternative to metadata annotations to specify interceptors
and their binding to enterprise beans or to override the invocation order of interceptors as specified in
annotations. See the Interceptors specification for a definition of the interceptor deployment descriptor
elements.

The pre-passivate and post-activate methods are specified using the pre-passivate and
post-activate elements.

In the interceptor-binding element, the target-name element must be the name of one of
the enterprise beans contained in the ejb-jar or the wildcard value “*”.

Default interceptors may be declared in the ejb-jar.xml file. Default interceptors apply to all enter-
prise beans in the containing module.
 11/5/09 338

Overview Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
Chapter 13 Support for Transactions

One of the key features of the Enterprise JavaBeans™ architecture is support for distributed transac-
tions. The Enterprise JavaBeans architecture allows an application developer to write an application that
atomically updates data in multiple databases which may be distributed across multiple sites. The sites
may use EJB servers from different vendors.

13.1 Overview

This section provides a brief overview of transactions and illustrates a number of transaction scenarios
in EJB.

13.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free the
application programmer from dealing with the complex issues of failure recovery and multi-user pro-
gramming. If the application programmer uses transactions, the programmer divides the application’s
work into units called transactions. The transactional system ensures that a unit of work either fully
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the program-
mer to design the application as if it ran in an environment that executes units of work serially.
339 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
Support for transactions is an essential element of the Enterprise JavaBeans architecture. The Enterprise
Bean Provider and the client application programmer are not exposed to the complexity of distributed
transactions. The Bean Provider can choose between using programmatic transaction demarcation in the
enterprise bean code (this style is called bean-managed transaction demarcation) or declarative transac-
tion demarcation performed automatically by the EJB container (this style is called container-managed
transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using
the javax.transaction.UserTransaction interface. All resource manager accesses between
the UserTransaction.begin and UserTransaction.commit calls are part of a transaction.

The terms resource and resource manager used in this chapter refer to the resources declared
using the Resource annotation in the enterprise bean class or using the resource-ref element in
the enterprise bean’s deployment descriptor. This includes not only database resources, but
also other resources, such as JMS Connections. These resources are considered to be “man-
aged” by the container.[60]

With container-managed transaction demarcation, the container demarcates transactions per instructions
provided by the developer in metadata annotations or in the deployment descriptor. These instructions,
called transaction attributes, tell the container whether it should include the work performed by an
enterprise bean method in a client’s transaction, run the enterprise bean method in a new transaction
started by the container, or run the method with “no transaction” (Refer to Subsection 13.6.5 for the
description of the “no transaction” case).

Regardless of whether an enterprise bean uses bean-managed or container-managed transaction demar-
cation, the burden of implementing transaction management is on the EJB container and server pro-
vider. The EJB container and server implement the necessary low-level transaction protocols, such as
the two-phase commit protocol between a transaction manager and a database system or messaging pro-
vider, transaction context propagation, and distributed two-phase commit.

Many applications will consist of one or several enterprise beans that all use a single resource manager
(typically a relational database management system). The EJB container can make use of resource
manager local transactions as an optimization technique for enterprise beans for which distributed
transactions are not needed. A resource manager local transaction does not involve control or coordi-
nation by an external transaction manager. The container’s use of local transactions as an optimization
technique for enterprise beans with either container-managed transaction demarcation or bean-man-
aged transaction demarcation is not visible to the enterprise beans. For a discussion of the use of
resource manager local transactions as a container optimization strategy, refer to [12] and [15].

13.1.2 Transaction Model

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot have any
child (nested) transactions.

[60] Note that environment entries other than resources are specified with the Resource annotation and/or resource-ref deploy-
ment descriptor element as well.
 11/5/09 340

Sample Scenarios Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
Note: The decision not to support nested transactions allows vendors of existing transaction
processing and database management systems to incorporate support for Enterprise Java-
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java-
Beans may be enhanced to take advantage of nested transactions.

13.1.3 Relationship to JTA and JTS
The Java™ Transaction API (JTA) [8] is a specification of the interfaces between a transaction manager
and the other parties involved in a distributed transaction processing system: the application programs,
the resource managers, and the application server.

The Java Transaction Service (JTS) [9] API is a Java binding of the CORBA Object Transaction Service
(OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP protocol for
transaction propagation between servers. The JTS API is intended for vendors who implement transac-
tion processing infrastructure for enterprise middleware. For example, an EJB server vendor may use a
JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB container to support the JTS interfaces. The EJB archi-
tecture requires that the EJB container support the JTA API defined in [8] and the Connector APIs
defined in [15].

13.2 Sample Scenarios

This section describes several scenarios that illustrate the distributed transaction capabilities of the
Enterprise JavaBeans architecture.

13.2.1 Update of Multiple Databases
The Enterprise JavaBeans architecture makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data using two database
connections that the Deployer configured to connect with two different databases, A and B. Then X calls
another enterprise bean, Y. Bean Y updates data in database C. The EJB server ensures that the updates
to databases A, B, and C are either all committed or all rolled back.
341 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Sample Scenarios

Sun Microsystems, Inc.
Figure 24 Updates to Simultaneous Databases

The application programmer does not have to do anything to ensure transactional semantics. Behind
the scenes, the EJB server enlists the database connections as part of the transaction. When the trans-
action commits, the EJB server and the database systems perform a two-phase commit protocol to
ensure atomic updates across all three databases.

13.2.2 Messages Sent or Received Over JMS Sessions and Update of Multiple Databases
The Enterprise JavaBeans architecture makes it possible for an application program to send messages to
or receive messages from one or more JMS Destinations and/or to update data in one or more databases
in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X sends a message to a JMS queue
A and updates data in a database B using connections that the Deployer configured to connect with a
JMS provider and a database. Then X calls another enterprise bean, Y. Bean Y updates data in database
C. The EJB server ensures that the operations on A, B, and C are either all committed, or all rolled
back.

X

client EJB Server

Y

database A database B database C
 11/5/09 342

Sample Scenarios Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
Figure 25 Message Sent to JMS Queue and Updates to Multiple Databases

The application programmer does not have to do anything to ensure transactional semantics. The enter-
prise beans X and Y perform the message send and database updates using the standard JMS and
JDBC™ APIs. Behind the scenes, the EJB server enlists the session on the connection to the JMS pro-
vider and the database connections as part of the transaction. When the transaction commits, the EJB
server and the messaging and database systems perform a two-phase commit protocol to ensure atomic
updates across all the three resources.

In the following figure, a client sends a message to the JMS queue A serviced by the message-driven
bean X. Bean X updates data using two database connections that the deployer configured to connect
with two different databases, B and C. The EJB server ensures that the dequeuing of the JMS message,
its receipt by bean X, and the updates to databases B and C are either all committed or all rolled back.

X

client EJB Server

Y

queue A database B database C
343 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Sample Scenarios

Sun Microsystems, Inc.
Figure 26 Message Sent to JMS Queue Serviced by Message-Driven Bean and Updates to Multiple Databases

13.2.3 Update of Databases via Multiple EJB Servers
The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in a sin-
gle transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data in database A, and
then calls another enterprise bean Y that is installed in a remote EJB server. Bean Y updates data in
database B. The Enterprise JavaBeans architecture makes it possible to perform the updates to data-
bases A and B in a single transaction.

Figure 27 Updates to Multiple Databases in Same Transaction

X

client EJB Server
queue A

database B database C

X

client EJB Server

database A

Y

EJB Server

database B
 11/5/09 344

Sample Scenarios Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
When X invokes Y, the two EJB servers cooperate to propagate the transaction context from X to Y. This
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB servers use a distributed two-phase commit protocol (if the
capability exists) to ensure the atomicity of the database updates.

13.2.4 Client-Managed Demarcation

A Java client can use the javax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtains the javax.transaction.User-
Transaction interface through dependency injection or lookup in the bean’s EJBContext or in the
JNDI name space.

A client program using explicit transaction demarcation may perform, via enterprise beans, atomic
updates across multiple databases residing at multiple EJB servers, as illustrated in the following figure.

Figure 28 Updates on Multiple Databases on Multiple Servers

The application programmer demarcates the transaction with begin and commit calls. If the enter-
prise beans X and Y are configured to use a client transaction (i.e., their methods have transaction
attributes that either require or support an existing transaction context), the EJB server ensures that the
updates to databases A and B are made as part of the client’s transaction.

X client

EJB Server

database A

Y

EJB Server

database B

begin

commit
345 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Sample Scenarios

Sun Microsystems, Inc.
13.2.5 Container-Managed Demarcation

Whenever a client invokes a method on an enterprise bean’s business interface (or on the no-interface
view or home or component interface of an enterprise bean), the container interposes on the method
invocation. The interposition allows the container to control transaction demarcation declaratively
through the transaction attribute set by the developer. (See Section 13.3.7 for a description of transac-
tion attributes.)

For example, if an enterprise bean method is configured with the REQUIRED transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, the con-
tainer automatically initiates a transaction whenever a client invokes an enterprise bean method that
requires a transaction context. If the client request contains a transaction context, the container includes
the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise bean
X, and the invoked method has the REQUIRED[61] transaction attribute. Because the message from the
client does not include a transaction context, the container starts a new transaction before dispatching
the method on X. Bean X’s work is performed in the context of the transaction. When X calls other enter-
prise beans (Y in our example), the work performed by the other enterprise beans is also automatically
included in the transaction (subject to the transaction attribute of the other enterprise bean).

Figure 29 Update of Multiple Databases from Non-Transactional Client

The container automatically commits the transaction at the time X returns a reply to the client.

If a message-driven bean’s message listener method is configured with the REQUIRED transaction
attribute, the container automatically starts a new transaction before the delivery of the message and,
hence, before the invocation of the method.[62]

[61] In this chapter we use the TransactionAttribute annotation values to refer to transaction attributes. The deployment
descriptor may be used as an overriding mechanism or an alternative to the use of annotations, and must be used for EJB 2.1 and
1.1 entity beans, for which the use of annotations is not supported.

X

client EJB Server

Y

database A database B

begin

commit
 11/5/09 346

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
JMS requires that the transaction be started before the dequeuing of the message. See [13].

The container automatically enlists the resource manager associated with the arriving message and all
the resource managers accessed by the message listener method with the transaction.

13.3 Bean Provider’s Responsibilities

This section describes the Bean Provider’s view of transactions and defines the Bean Provider’s respon-
sibilities.

13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation
When designing an enterprise bean, the developer must decide whether the enterprise bean will demar-
cate transactions programmatically in the business methods (bean-managed transaction demarcation),
or whether the transaction demarcation is to be performed by the container based on the transaction
attributes specified in metadata annotations or in the deployment descriptor (container-managed trans-
action demarcation). Typically enterprise beans will be specified to have container-managed transaction
demarcation. This is the default if no transaction management type is specified.

A session bean or a message-driven bean can be designed with bean-managed transaction demarcation
or with container-managed transaction demarcation. (But it cannot be both at the same time.)

An EJB 2.1 or EJB 1.1 entity bean must always use container-managed transaction demarcation. An
EJB 2.1 or EJB 1.1 entity bean must not be designated with bean-managed transaction demarcation.

A transaction management type cannot be specified for Java Persistence entities. Java Persistence enti-
ties execute within the transactional context of the caller. See the “Java Persistence API” specification
[2] for a discussion of transactions involving Java Persistence entities.

An enterprise bean instance can access resource managers in a transaction only in the enterprise bean’s
methods in which there is a transaction context available.

13.3.1.1 Non-Transactional Execution

Some enterprise beans may need to access resource managers that do not support an external transaction
coordinator. The container cannot manage the transactions for such enterprise beans in the same way
that it can for the enterprise beans that access resource managers that support an external transaction
coordinator.

If an enterprise bean needs to access a resource manager that does not support an external transaction
coordinator, the Bean Provider should design the enterprise bean with container-managed transaction
demarcation and assign the NOT_SUPPORTED transaction attribute to the bean class or to all the bean’s
methods. The EJB architecture does not specify the transactional semantics of the enterprise bean meth-
ods. See Subsection 13.6.5 for how the container implements this case.

[62] We use the term “container” here to encompass both the container and the messaging provider. When the contracts outlined in
[15] are used, it may be the messaging provider that starts the transaction.
347 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
13.3.2 Isolation Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation level describes the degree to which the access to a resource manager by a transaction is
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

• The API for managing an isolation level is resource-manager-specific. (Therefore, the EJB
architecture does not define an API for managing isolation levels.)

• If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same
or different isolation level for each resource manager. This means, for example, that if an enter-
prise bean accesses multiple resource managers in a transaction, access to each resource man-
ager may be associated with a different isolation level.

• The Bean Provider must take care when setting an isolation level. Most resource managers
require that all accesses to the resource manager within a transaction are done with the same
isolation level. An attempt to change the isolation level in the middle of a transaction may
cause undesirable behavior, such as an implicit sync point (a commit of the changes done so
far).

• For session beans and message-driven beans with bean-managed transaction demarcation, the
Bean Provider can specify the desirable isolation level programmatically in the enterprise
bean’s methods, using the resource-manager specific API. For example, the Bean Provider can
use the java.sql.Connection.setTransactionIsolation method to set the
appropriate isolation level for database access.

• The container provider should insure that suitable isolation levels are provided to guarantee
data consistency for EJB 2.1 and 2.0 entity beans. Typically this means that an equivalent of a
repeatable read or serializable isolation level should be available for applications that require a
high degree of isolation.

• For entity beans with EJB 2.1 container-managed persistence and earlier, transaction isolation
is managed by the data access classes that are generated by the container provider’s tools. The
tools must ensure that the management of the isolation levels performed by the data access
classes will not result in conflicting isolation level requests for a resource manager within a
transaction.

• Additional care must be taken if multiple enterprise beans access the same resource manager in
the same transaction. Conflicts in the requested isolation levels must be avoided.

13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean with bean-man-
aged transaction demarcation.
 11/5/09 348

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
The enterprise bean with bean-managed transaction demarcation must be a session bean or a mes-
sage-driven bean.

An instance that starts a transaction must complete the transaction before it starts a new transaction.

The Bean Provider uses the UserTransaction interface to demarcate transactions. All updates to
the resource managers between the UserTransaction.begin and UserTransaction.com-
mit methods are performed in a transaction. While an instance is in a transaction, the instance must not
attempt to use the resource-manager specific transaction demarcation API (e.g. it must not invoke the
commit or rollback method on the java.sql.Connection interface or on the
javax.jms.Session interface).[63]

A stateful session bean instance may, but is not required to, commit a started transaction before a busi-
ness method returns. If a transaction has not been completed by the end of a business method, the con-
tainer retains the association between the transaction and the instance across multiple client calls until
the instance eventually completes the transaction.

A stateless session bean instance must commit a transaction before a business method or timeout call-
back method returns.

A singleton session bean instance must commit a transaction before a business method or timeout call-
back method or PostConstruct/PreDestroy lifecycle callback interceptor method returns.

A message-driven bean instance must commit a transaction before a message listener method or timeout
callback method returns.

[63] However, use of the Java Persistence API EntityTransaction interface is supported. See [2] for a description of the EntityTransac-
tion interface and its use.
349 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The following example illustrates a business method that performs a transaction involving two database
connections.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.sql.DataSource database2;

public void someMethod(...) {
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 object and set it up for transactions
con1 = database1.getConnection();

stmt1 = con1.createStatement();

// obtain con2 object and set it up for transactions
con2 = database2.getConnection();

stmt2 = con2.createStatement();

//
// Now do a transaction that involves con1 and con2.
//
// start the transaction
ut.begin();

// Do some updates to both con1 and con2. The container
// automatically enlists con1 and con2 with the transaction.
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt1.close();
stmt2.close();
con1.close();
con2.close();

}
...

}

 11/5/09 350

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
The following example illustrates a business method that performs a transaction involving both a data-
base connection and a JMS connection.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.jms.QueueConnectionFactory qcf1;
@Resource javax.jms.Queue queue1;

public void someMethod(...) {
java.sql.Connection dcon;
java.sql.Statement stmt;
javax.jms.QueueConnection qcon;
javax.jms.QueueSession qsession;
javax.jms.QueueSender qsender;
javax.jms.Message message;

// obtain db conn object and set it up for transactions

dcon = database1.getConnection();

stmt = dcon.createStatement();

// obtain jms conn object and set up session for transactions
qcon = qcf1.createQueueConnection();
qsession = qcon.createQueueSession(true,0);
qsender = qsession.createSender(queue1);
message = qsession.createTextMessage();
message.setText(“some message”);

//
// Now do a transaction that involves the two connections.
//
// start the transaction
ut.begin();

// Do database updates and send message. The container
// automatically enlists dcon and qsession with the
// transaction.
stmt.executeQuery(...);
stmt.executeUpdate(...);
stmt.executeUpdate(...);
qsender.send(message);

// commit the transaction
ut.commit();

// release connections
stmt.close();
qsender.close();
qsession.close();
dcon.close();
qcon.close();

}
...

}

351 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The following example illustrates a stateful session bean that retains a transaction across three client
calls, invoked in the following order: method1, method2, and method3.[64]

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.sql.DataSource database2;
java.sql.Connection con1;
java.sql.Connection con2;

public void method1(...) {
java.sql.Statement stmt;

// start a transaction
ut.begin();

// make some updates on con1
con1 = database1.getConnection();
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

//
// The container retains the transaction associated with the
// instance to the next client call (which is method2(...)).

}

public void method2(...) {
java.sql.Statement stmt;

con2 = database2.getConnection();
stmt = con2.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// The container retains the transaction associated with the
// instance to the next client call (which is method3(...)).

}

public void method3(...) {
java.sql.Statement stmt;

// make some more updates on con1 and con2
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt.close();

[64] Note that the Bean Provider must use the pre-passivation callback method here to close the connections and set the instance vari-
ables for the connection to null.
 11/5/09 352

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
con1.close();
con2.close();

}
...

}

It is possible for an enterprise bean to open and close a database connection in each business method
(rather than hold the connection open until the end of transaction). In the following example, if the cli-
ent executes the sequence of methods (method1, method2, method2, method2, and method3),
all the database updates done by the multiple invocations of method2 are performed in the scope of the
same transaction, which is the transaction started in method1 and committed in method3.

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;

public void method1(...) {
// start a transaction
ut.begin();

}

public void method2(...) {
java.sql.Connection con;
java.sql.Statement stmt;

// open connection
con = database1.getConnection();

// make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// close the connection
stmt.close();
con.close();

}

public void method3(...) {

// commit the transaction
ut.commit();

}
...

}

13.3.3.1 getRollbackOnly and setRollbackOnly Methods

An enterprise bean with bean-managed transaction demarcation must not use the getRollbackOnly
and setRollbackOnly methods of the EJBContext interface.

An enterprise bean with bean-managed transaction demarcation has no need to use these methods,
because of the following reasons:
353 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
• An enterprise bean with bean-managed transaction demarcation can obtain the status of a
transaction by using the getStatus method of the javax.transaction.User-
Transaction interface.

• An enterprise bean with bean-managed transaction demarcation can rollback a transaction
using the rollback method of the javax.transaction.UserTransaction inter-
face.

13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean using con-
tainer-managed transaction demarcation.

The enterprise bean’s business methods, message listener methods, business method interceptor meth-
ods, lifecycle callback interceptor methods, or timeout callback methods must not use any
resource-manager specific transaction management methods that would interfere with the container’s
demarcation of transaction boundaries. For example, the enterprise bean methods must not use the fol-
lowing methods of the java.sql.Connection interface: commit, setAutoCommit, and
rollback; or the following methods of the javax.jms.Session interface: commit and roll-
back.

The enterprise bean’s business methods, message listener methods, business method interceptor meth-
ods, lifecycle callback interceptor methods, or timeout callback methods must not attempt to obtain or
use the javax.transaction.UserTransaction interface.
 11/5/09 354

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
The following is an example of a business method in an enterprise bean with container-managed trans-
action demarcation. The business method updates two databases using JDBC™ connections. The con-
tainer provides transaction demarcation as specified by the transaction attribute.[65]

@Stateless public class MySessionBean implements MySession {
...

@TransactionAttribute(REQUIRED)
public void someMethod(...) {

java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 and con2 connection objects
con1 = ...;
con2 = ...;

stmt1 = con1.createStatement();
stmt2 = con2.createStatement();

//
// Perform some updates on con1 and con2. The container
// automatically enlists con1 and con2 with the container-
// managed transaction.
//
stmt1.executeQuery(...);
stmt1.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// release connections
con1.close();
con2.close();

}
...

}

13.3.4.1 javax.ejb.SessionSynchronization Interface

A stateful session bean with container-managed transaction demarcation can optionally implement the
javax.ejb.SessionSynchronization interface or use the session synchronization annota-
tions. Their use is described in Subsection 4.3.7.

[65] REQUIRED is the default transaction attribute value for container managed transaction demarcation. The explicit specification of
the transaction attribute is therefore not required in this example.
355 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method

An enterprise bean with container-managed transaction demarcation can use the setRollbackOnly
method of its EJBContext object to mark the transaction such that the transaction can never commit.
Typically, an enterprise bean marks a transaction for rollback to protect data integrity before throwing
an application exception, if the application exception class has not been specified to automatically cause
the container to rollback the transaction.

For example, an AccountTransfer bean which debits one account and credits another account
could mark a transaction for rollback if it successfully performs the debit operation, but encounters a
failure during the credit operation.

13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method

An enterprise bean with container-managed transaction demarcation can use the getRollbackOnly
method of its EJBContext object to test if the current transaction has been marked for rollback. The
transaction might have been marked for rollback by the enterprise bean itself, by other enterprise beans,
or by other components (outside of the EJB specification scope) of the transaction processing infrastruc-
ture.

13.3.5 Use of JMS APIs in Transactions
The Bean Provider should not make use of the JMS request/reply paradigm (sending of a JMS message,
followed by the synchronous receipt of a reply to that message) within a single transaction. Because a
JMS message is typically not delivered to its final destination until the transaction commits, the receipt
of the reply within the same transaction will not take place.

Because the container manages the transactional enlistment of JMS sessions on behalf of a bean, the
parameters of the createSession(boolean transacted, int acknowledgeMode), cre-
ateQueueSession(boolean transacted, int acknowledgeMode) and createTop-
icSession(boolean transacted, int acknowledgeMode) methods are ignored. It is
recommended that the Bean Provider specify that a session is transacted, but provide 0 for the value of
the acknowledgment mode.

The Bean Provider should not use the JMS acknowledge method either within a transaction or within
an unspecified transaction context. Message acknowledgment in an unspecified transaction context is
handled by the container. Section 13.6.5 describes some of the techniques that the container can use for
the implementation of a method invocation with an unspecified transaction context.

13.3.6 Specification of a Bean’s Transaction Management Type

By default, a session bean or message-driven bean has container managed transaction demarcation if the
transaction management type is not specified. The Bean Provider of a session bean or a message-driven
bean can use the TransactionManagement annotation to declare whether the session bean or mes-
sage-driven bean uses bean-managed or container-managed transaction demarcation. The value of the
TransactionManagement annotation is either CONTAINER or BEAN. The TransactionMan-
agement annotation is applied to the enterprise bean class.
 11/5/09 356

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
Alternatively, the Bean Provider can use the transaction-type deployment descriptor element to
specify the bean’s transaction management type. If the deployment descriptor is used, it is only neces-
sary to explicitly specify the bean’s transaction management type if bean-managed transaction is used.

The transaction management type of a bean is determined by the Bean Provider. The application assem-
bler is not permitted to use the deployment descriptor to override a bean’s transaction management type
regardless of whether it has been explicitly specified or defaulted by the Bean Provider. (See Chapter 19
for information about the deployment descriptor.)

13.3.7 Specification of the Transaction Attributes for a Bean’s Methods

The Bean Provider of an enterprise bean with container-managed transaction demarcation may specify
the transaction attributes for the enterprise bean’s methods. By default, the value of the transaction
attribute for a method of a bean with container-managed transaction demarcation is the REQUIRED
transaction attribute, and the transaction attribute does not need to be explicitly specified in this case.

A transaction attribute is a value associated with each of the following methods

• a method of a bean’s business interface

• a method exposed through the bean class no-interface view

• a message listener method of a message-driven bean

• a timeout callback method

• a session bean’s web service endpoint method

• for beans written to the EJB 2.1 and earlier client view, a method of a session or entity bean’s
home or component interface

• a singleton session bean’s PostConstruct/PreDestroy lifecycle callback interceptor
methods

The transaction attribute specifies how the container must manage transactions for a method when a cli-
ent invokes the method.

Transaction attributes are specified for the following methods:

• For a session bean written to the EJB 3.x client view API, the transaction attributes are speci-
fied for those methods of the session bean class that correspond to the bean’s business inter-
face, the direct and indirect superinterfaces of the business interface, methods exposed through
the bean class no-interface view, and for the timeout callback methods, if any.

• For a stateless session bean or singleton session bean that provides a web service client view,
the transaction attributes are specified for the bean’s web service endpoint methods, and for the
timeout callback methods, if any.
357 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
• For a singleton session bean the PostConstruct/PreDestroy lifecycle callback inter-
ceptor methods, if any. In order to specify the transaction attribute for a PostCon-
stuct/PreDestroy method of a singleton session bean, the transaction attribute must be
specified for the method(s) on the bean class, rather than for a superclass or PostCon-
struct/PreDestroy interceptor method.

• For a message-driven bean, the transaction attributes are specified for those methods on the
message-driven bean class that correspond to the bean’s message listener interface and for the
timeout callback methods, if any.

• For a session bean written to the EJB 2.1 and earlier client view, the transaction attributes are
specified for the methods of the component interface and all the direct and indirect superinter-
faces of the component interface, excluding the methods of the javax.ejb.EJBObject or
javax.ejb.EJBLocalObject interface; and for the timeout callback methods, if any.
Transaction attributes must not be specified for the methods of a session bean’s home interface.

• For a EJB 2.1 (and earlier) entity bean, the transaction attributes are specified for the methods
defined in the bean’s component interface and all the direct and indirect superinterfaces of the
component interface, excluding the getEJBHome, getEJBLocalHome, getHandle,
getPrimaryKey, and isIdentical methods; for the methods defined in the bean’s home
interface and all the direct and indirect superinterfaces of the home interface, excluding the
getEJBMetaData and getHomeHandle methods specific to the remote home interface;
and for the timeout callback methods, if any.[66]

By default, if a TransactionAttribute annotation is not specified for a method of an enterprise
bean with container-managed transaction demarcation, the value of the transaction attribute for the
method is defined to be REQUIRED. The rules for the specification of transaction attributes are defined
in Section 13.3.7.1.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to spec-
ify the transaction attributes (or as a means to supplement or override metadata annotations for transac-
tion attributes). Transaction attributes specified in the deployment descriptor are assumed to override or
supplement transaction attributes specified in annotations. If a transaction attribute value is not speci-
fied in the deployment descriptor, it is assumed that the transaction attribute specified in annotations
applies, or—in the case that no annotation has been specified—that the value is Required.

The application assembler is permitted to override the transaction attribute values using the bean’s
deployment descriptor. The deployer is also permitted to override the transaction attribute values at
deployment time. Caution should be exercised when overriding the transaction attributes of an applica-
tion, as the transactional structure of an application is typically intrinsic to the semantics of the applica-
tion.

Enterprise JavaBeans defines the following values for the TransactionAttribute metadata anno-
tation:

• MANDATORY

[66] Note that the deployment descriptor must be used to specify transaction attributes for EJB 2.1 and earlier entity bean methods if
the transaction attribute is not Required (the default value).
 11/5/09 358

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
• REQUIRED

• REQUIRES_NEW

• SUPPORTS

• NOT_SUPPORTED

• NEVER

The deployment descriptor values that correspond to these annotation values are the following:

• Mandatory

• Required

• RequiresNew

• Supports

• NotSupported

• Never

In this chapter, we use the TransactionAttribute annotation values to refer to transaction
attributes. As noted, however, the deployment descriptor may be used.

Refer to Subsection 13.6.2 for the specification of how the value of the transaction attribute affects the
transaction management performed by the container.

For a message-driven bean’s message listener methods (or interface), only the REQUIRED and
NOT_SUPPORTED TransactionAttribute values may be used.

For an enterprise bean’s timeout callback methods, only the REQUIRED, REQUIRES_NEW and
NOT_SUPPORTED transaction attributes may be used.

For a session bean’s asynchronous business methods, only the REQUIRED, REQUIRES_NEW, and
NOT_SUPPORTED transaction attributes may be used.

For a singleton session bean’s PostConstruct/PreDestroy lifecycle callback interceptor meth-
ods, only the REQUIRED, REQUIRES_NEW, and NOT_SUPPORTED transaction attributes may be
used.

If an enterprise bean implements the javax.ejb.SessionSynchronization interface or uses
at least one of the session synchronization annotations, only the following values may be used for the
transaction attributes of the bean’s methods: REQUIRED, REQUIRES_NEW, MANDATORY.
359 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The above restriction is necessary to ensure that the enterprise bean is invoked only in a transaction. If
the bean were invoked without a transaction, the container would not be able to send the transaction
synchronization calls.

For entity beans that use EJB 2.1 container-managed persistence, only the Required,
RequiresNew, or Mandatory deployment descriptor transaction attribute values should be used for
the methods defined in the bean’s component interface and all the direct and indirect superinterfaces of
the component interface, excluding the getEJBHome, getEJBLocalHome, getHandle,
getPrimaryKey, and isIdentical methods; and for the methods defined in the bean’s home
interface and all the direct and indirect superinterfaces of the home interface, excluding the getEJB-
MetaData and getHomeHandle methods specific to the remote home interface.

The Bean Provider and Application Assembler must exercise caution when using the
RequiresNew transaction attributes with the navigation of container-managed relation-
ships. If higher levels of isolation are used, navigating a container-managed relationship in a
new transaction context may result in deadlock.

Containers may optionally support the use of the NotSupported, Supports, and Never transac-
tion attributes for the methods of EJB 2.1 entity beans with container-managed persistence. However,
entity beans with container-managed persistence that use these transaction attributes will not be porta-
ble.

Containers may optionally support the use of the NotSupported, Supports, and Never
transaction attributes for the methods of EJB 2.1 entity beans with container-managed persis-
tence because the use of these transaction modes may be needed to make use of con-
tainer-managed persistence with non-transactional data stores. In general, however, the Bean
Provider and Application Assembler should avoid use of the NotSupported,Supports,
and Never transaction attribute values for the methods of entity beans with container-man-
aged persistence because it may lead to inconsistent results or to the inconsistent and/or to the
partial updating of persistent state and relationships in the event of concurrent use.

13.3.7.1 Specification of Transaction Attributes with Metadata Annotations
The following is the description of the rules for the specification of transaction attributes using Java lan-
guage metadata annotations.

The TransactionAttribute annotation is used to specify a transaction attribute. The value of the
transaction attribute annotation is given by the enum TransactionAttributeType:

public enum TransactionAttributeType {
MANDATORY,
REQUIRED,
REQUIRES_NEW,
SUPPORTS,
NOT_SUPPORTED,
NEVER

}

The transaction attributes for the methods of a bean class may be specified on the class, the business
methods of the class, or both.
 11/5/09 360

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
Specifying the TransactionAttribute annotation on the bean class means that it applies to all
applicable business interface methods of the class. If the transaction attribute type is not specified, it is
assumed to be REQUIRED. The absence of a transaction attribute specification on the bean class is
equivalent to the specification of TransactionAttribute(REQUIRED) on the bean class.

A transaction attribute may be specified on a method of the bean class to override the transaction
attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A transaction attribute specified on a superclass S applies to the business methods defined by
S. If a class-level transaction attribute is not specified on S, it is equivalent to specification of
TransactionAttribute(REQUIRED) on S.

• A transaction attribute may be specified on a business method M defined by class S to override
for method M the transaction attribute value explicitly or implicitly specified on the class S.

• If a method M of class S overrides a business method defined by a superclass of S, the transac-
tion attribute of M is determined by the above rules as applied to class S.

Example:

@TransactionAttribute(SUPPORTS)
public class SomeClass {

public void aMethod () {...}
public void bMethod () {...}
...

}

@Stateless public class ABean extends SomeClass implements A {

public void aMethod () {...}

@TransactionAttribute(REQUIRES_NEW)
public void cMethod () {...}

 ...
}

Assuming aMethod, bMethod, cMethod are methods of interface A, their transaction attributes are
REQUIRED, SUPPORTS, and REQUIRES_NEW respectively.

13.3.7.2 Specification of Transaction Attributes in the Deployment Descriptor

The following is the description of the rules for the specification of transaction attributes in the deploy-
ment descriptor. (See Section 19.5 for the complete syntax of the deployment descriptor.)

Note that even in the absence of the use of annotations, it is not necessary to explicitly specify transac-
tion attributes for all of the methods listed in section 13.3.7. If a transaction attribute is not specified for
a method in an EJB 3.1 deployment descriptor, the transaction attribute defaults to Required.

If the deployment descriptor is used to override annotations, and transaction attributes are not specified
for some methods, the values specified in annotations (whether explicit or defaulted) will apply for
those methods.
361 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
13.3.7.2.1 Use of the container-transaction element

The container-transaction element may be used to define the transaction attributes for busi-
ness, home, component, and message-listener interface methods; no-interface view methods; web ser-
vice endpoint methods; and timeout callback methods. Each container-transaction element
consists of a list of one or more method elements, and the trans-attribute element. The con-
tainer-transaction element specifies that all the listed methods are assigned the specified trans-
action attribute value. It is required that all the methods specified in a single
container-transaction element be methods of the same enterprise bean.

The method element uses the ejb-name, method-name, and method-params elements to
denote one or more methods. There are three legal styles of composing the method element:

Style 1:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used to specify a default value of the transaction attribute for the methods for
which there is no Style 2 or Style 3 element specified. There must be at most one con-
tainer-transaction element that uses the Style 1 method element for a given enter-
prise bean.

Style 2:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

This style is used for referring to a specified method of a business, home, component or mes-
sage listener interface method; no-interface view method; web service endpoint method; or
timeout callback method of the specified enterprise bean. If there are multiple methods with
the same overloaded name, this style refers to all the methods with the same name. There must
be at most one container-transaction element that uses the Style 2 method element
for a given method name. If there is also a container-transaction element that uses
Style 1 element for the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAMETER_1</method-param>
...
<method-param>PARAMETER_N</method-param>

</method-params>
</method>
 11/5/09 362

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.

This style is used to refer to a single method within a set of methods with an overloaded name.
If there is also a container-transaction element that uses the Style 2 element for the
method name, or the Style 1 element for the bean, the value specified by the Style 3 element
takes precedence.

The optional method-intf element can be used to differentiate between methods with the same
name and signature that are multiply defined across the business, component, and home interfaces,
and/or web service endpoint, and/or no-interface view. However, if the same method is a method of a
local business interface, local component interface, or no-interface view, the same transaction attribute
applies to the method for all of them. Likewise, if the same method is a method of both a remote busi-
ness interface and the remote component interface, the same transaction attribute applies to the method
for both interfaces.

The following is an example of the specification of the transaction attributes in the deployment descrip-
tor. The updatePhoneNumber method of the EmployeeRecord enterprise bean is assigned the
transaction attribute Mandatory; all other methods of the EmployeeRecord bean are assigned the
attribute Required. All the methods of the enterprise bean AardvarkPayroll are assigned the
attribute RequiresNew.

<ejb-jar>
...
<assembly-descriptor>

...
<container-transaction>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
 </assembly-descriptor>
</ejb-jar>
363 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Application Assembler’s Responsibilities

Sun Microsystems, Inc.
13.4 Application Assembler’s Responsibilities

This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-managed
transaction demarcation. The Application Assembler must not define transaction attributes for an enter-
prise bean with bean-managed transaction demarcation.

The Application Assembler can use the deployment descriptor transaction attribute mechanism
described above to override or change the transaction attributes for enterprise beans using con-
tainer-managed transaction demarcation.

The Application Assembler should exercise caution in the changing the transaction attributes,
as the behavior specified by the transaction attributes is typically an intrinsic part of the
semantics of an application.

13.5 Deployer’s Responsibilities

The Deployer is permitted to override or change the values of transaction attributes at deployment time.

The Deployer should exercise caution in the changing the transaction attributes, as the behav-
ior specified by the transaction attributes is typically an intrinsic part of the semantics of an
application.

Compatibility Note: For applications written to the EJB 2.1 specification (and earlier), the deployer is
responsible for ensuring that the methods of the deployed enterprise beans with container-managed
transaction demarcation have been assigned a transaction attribute if this has not be specified in the
deployment descriptor.

13.6 Container Provider Responsibilities

This section defines the responsibilities of the Container Provider.

Every client method invocation on a session or entity bean via the bean’s business interface (and/or
home and component interface), no-interface view, web service endpoint, and every invocation of a
message listener method on a message-driven bean is interposed by the container, and every connection
to a resource manager used by an enterprise bean is obtained via the container. This managed execution
environment allows the container to affect the enterprise bean’s transaction management.
 11/5/09 364

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
This does not imply that the container must interpose on every resource manager access performed by
the enterprise bean. Typically, the container interposes only on the resource manager connection fac-
tory (e.g. a JDBC data source) JNDI look up by registering the container-specific implementation of the
resource manager connection factory object. The resource manager connection factory object allows
the container to obtain the javax.transaction.xa.XAResource interface as described in the
JTA specification and pass it to the transaction manager. After the set up is done, the enterprise bean
communicates with the resource manager without going through the container.

13.6.1 Bean-Managed Transaction Demarcation
This subsection defines the container’s responsibilities for the transaction management of enterprise
beans with bean-managed transaction demarcation.

Note that only session and message-driven beans can be used with bean-managed transaction demarca-
tion.

The container must manage client invocations to an enterprise bean instance with bean-managed trans-
action demarcation as follows. When a client invokes a business method via one of the enterprise bean’s
client views, the container suspends any transaction that may be associated with the client request. If
there is a transaction associated with the instance (this would happen if a stateful session bean instance
started the transaction in some previous business method), the container associates the method execu-
tion with this transaction. If there are interceptor methods associated with the bean instances, these
actions are taken before the interceptor methods are invoked.

The container must make the javax.transaction.UserTransaction interface available to
the enterprise bean’s business method, message listener method, interceptor method, or timeout call-
back method via dependency injection into the enterprise bean class or interceptor class, and through
lookup via the javax.ejb.EJBContext interface, and in the JNDI naming context under
java:comp/UserTransaction. When an instance uses the javax.transaction.User-
Transaction interface to demarcate a transaction, the container must enlist all the resource manag-
ers used by the instance between the begin and commit—or rollback—methods with the
transaction. When the instance attempts to commit the transaction, the container is responsible for the
global coordination of the transaction commit[67].

In the case of a stateful session bean, it is possible that the business method that started a transaction
completes without committing or rolling back the transaction. In such a case, the container must retain
the association between the transaction and the instance across multiple client calls until the instance
commits or rolls back the transaction. When the client invokes the next business method, the container
must invoke the business method (and any applicable interceptor methods for the bean) in this transac-
tion context.

If a stateless or singleton session bean instance starts a transaction in a business method or interceptor
method, it must commit the transaction before the business method (or all its interceptor methods)
returns. The container must detect the case in which a transaction was started, but not completed, in the
business method or interceptor method for the business method, and handle it as follows:

[67] The container typically relies on a transaction manager that is part of the EJB server to perform the two-phase commit across all
the enlisted resource managers. If only a single resource manager is involved in the transaction and the deployment descriptor
indicates that connection sharing may be used, the container may use the local transaction optimization. See [12] and [15] for fur-
ther discussion.
365 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• If this a stateless session bean, discard the bean instance.

• Throw the javax.ejb.EJBException[68]. If the EJB 2.1 client view is used, the con-
tainer should throw java.rmi.RemoteException if the client is a remote client, or
throw the javax.ejb.EJBException if the client is a local client.

If a message-driven bean instance starts a transaction in a message listener method or interceptor
method, it must commit the transaction before the message listener method (or all its interceptor meth-
ods) returns. The container must detect the case in which a transaction was started, but not completed, in
a message listener method or interceptor method for the message listener method, and handle it as fol-
lows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• Discard the instance of the message-driven bean.

If a session bean or message-driven bean instance starts a transaction in a timeout callback method, it
must commit the transaction before the timeout callback method returns. The container must detect the
case in which a transaction was started, but not completed, in a timeout callback method, and handle it
as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• If this is a stateless session bean or message-driven bean, discard the instance of the bean.

The actions performed by the container for an instance with bean-managed transaction are summarized
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that is cur-
rently associated with the instance (i.e. a transaction that was started but not completed by a previous
business method).

[68] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-
tion is thrown to the client instead.

Table 13 Container’s Actions for Methods of Beans with Bean-Managed Transaction

Client’s transaction
Transaction currently
associated with instance

Transaction associated
with the method

none none none

T1 none none
 11/5/09 366

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
The following items describe each entry in the table:

• If the client request is not associated with a transaction and the instance is not associated with a
transaction, or if the bean is a message-driven bean, the container invokes the instance with an
unspecified transaction context.

• If the client request is associated with a transaction T1, and the instance is not associated with
a transaction, the container suspends the client’s transaction association and invokes the
method with an unspecified transaction context. The container resumes the client’s transaction
association (T1) when the method (together with any associated interceptor methods) com-
pletes. This case can never happen for a message-driven bean or for the invocation of a web
service endpoint method of a session bean.

• If the client request is not associated with a transaction and the instance is already associated
with a transaction T2, the container invokes the instance with the transaction that is associated
with the instance (T2). This case can never happen for a stateless session bean, singleton ses-
sion bean, or a message-driven bean: it can only happen for a stateful session bean.

• If the client is associated with a transaction T1, and the instance is already associated with a
transaction T2, the container suspends the client’s transaction association and invokes the
method with the transaction context that is associated with the instance (T2). The container
resumes the client’s transaction association (T1) when the method (together with any associ-
ated interceptor methods) completes. This case can never happen for a stateless session bean,
singleton session bean, or a message-driven bean: it can only happen for a stateful session
bean.

The container must allow the enterprise bean instance to serially perform several transactions in a
method.

When an instance attempts to start a transaction using the begin method of the javax.transac-
tion.UserTransaction interface while the instance has not committed the previous transaction,
the container must throw the javax.transaction.NotSupportedException in the begin
method.

The container must throw the java.lang.IllegalStateException if an instance of a bean
with bean-managed transaction demarcation attempts to invoke the setRollbackOnly or
getRollbackOnly method of the javax.ejb.EJBContext interface.

none T2 T2

T1 T2 T2

Table 13 Container’s Actions for Methods of Beans with Bean-Managed Transaction

Client’s transaction
Transaction currently
associated with instance

Transaction associated
with the method
367 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
13.6.2 Container-Managed Transaction Demarcation for Session and Entity Beans

The container is responsible for providing the transaction demarcation for the session beans declared
with container-managed transaction demarcation, entity beans with bean-managed persistence, and for
EJB 2.1 and EJB 1.1 entity beans with container-managed persistence. For these enterprise beans, the
container must demarcate transactions as specified by the transaction attribute values specified using
metadata annotations in the bean class or specified in the deployment descriptor.

The following subsections define the responsibilities of the container for managing the invocation of an
enterprise bean business method when the method is invoked via the enterprise bean’s business inter-
face (and/or home or component interface), no-interface view, or web service endpoint. The container’s
responsibilities depend on the value of the transaction attribute.

13.6.2.1 NOT_SUPPORTED

The container invokes an enterprise bean method whose transaction attribute is set to the
NOT_SUPPORTED value with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before invoking the enterprise bean’s business method. The container
resumes the suspended association when the business method has completed. The suspended transac-
tion context of the client is not passed to the resource managers or other enterprise bean objects that are
invoked from the business method.

If the business method invokes other enterprise beans, the container passes no transaction context with
the invocation.

Refer to Subsection 13.6.5 for more details of how the container can implement this case.

13.6.2.2 REQUIRED

The container must invoke an enterprise bean method whose transaction attribute is set to the
REQUIRED value with a valid transaction context.

If a client invokes the enterprise bean’s method while the client is associated with a transaction context,
the container invokes the enterprise bean’s method in the client’s transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers accessed
by the business method with the transaction. If the business method invokes other enterprise beans, the
container passes the transaction context with the invocation. The container attempts to commit the
transaction when the business method has completed. The container performs the commit protocol
before the method result is sent to the client.
 11/5/09 368

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
13.6.2.3 SUPPORTS

The container invokes an enterprise bean method whose transaction attribute is set to SUPPORTS as
follows.

• If the client calls with a transaction context, the container performs the same steps as described
in the REQUIRED case.

• If the client calls without a transaction context, the container performs the same steps as
described in the NOT_SUPPORTED case.

The SUPPORTS transaction attribute must be used with caution. This is because of the different trans-
actional semantics provided by the two possible modes of execution. Only the enterprise beans that will
execute correctly in both modes should use the SUPPORTS transaction attribute.

13.6.2.4 REQUIRES_NEW

The container must invoke an enterprise bean method whose transaction attribute is set to
REQUIRES_NEW with a new transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers accessed
by the business method with the transaction. If the business method invokes other enterprise beans, the
container passes the transaction context with the invocation. The container attempts to commit the
transaction when the business method has completed. The container performs the commit protocol
before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before starting the new transaction and invoking the business method. The
container resumes the suspended transaction association after the business method and the new transac-
tion have been completed.

13.6.2.5 MANDATORY

The container must invoke an enterprise bean method whose transaction attribute is set to MANDATORY
in a client’s transaction context. The client is required to call with a transaction context.

• If the client calls with a transaction context, the container performs the same steps as described
in the REQUIRED case.

• If the client calls without a transaction context, the container throws the javax.ejb.EJB-
TransactionRequiredException[69]. If the EJB 2.1 client view is used, the container
throws the javax.transaction.TransactionRequiredException exception if

[69] If the business interface is a remote business interface that extends java.rmi.Remote, the javax.transac-
tion.TransactionRequiredException is thrown to the client instead.
369 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
the client is a remote client, or the javax.ejb.TransactionRequiredLocalExcep-
tion if the client is a local client.

13.6.2.6 NEVER

The container invokes an enterprise bean method whose transaction attribute is set to NEVER without a
transaction context defined by the EJB specification. The client is required to call without a transaction
context.

• If the client calls with a transaction context, the container throws the javax.ejb.EJBEx-
ception[70]. If the EJB 2.1 client view is used, the container throws the java.rmi.Remo-
teException exception if the client is a remote client, or the
javax.ejb.EJBException if the client is a local client.

• If the client calls without a transaction context, the container performs the same steps as
described in the NOT_SUPPORTED case.

13.6.2.7 Transaction Attribute Summary

The following table provides a summary of the transaction context that the container passes to the busi-
ness method and resource managers used by the business method, as a function of the transaction
attribute and the client’s transaction context. T1 is a transaction passed with the client request, while T2
is a transaction initiated by the container.

[70] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-
tion is thrown to the client instead.

Table 14 Transaction Attribute Summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers

NOT_SUPPORTED
none none none

T1 none none

REQUIRED
none T2 T2

T1 T1 T1

SUPPORTS
none none none

T1 T1 T1

REQUIRES_NEW
none T2 T2

T1 T2 T2
 11/5/09 370

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
If the enterprise bean’s business method invokes other enterprise beans via their business interfaces or
home and component interfaces, the transaction indicated in the column “Transaction associated with
business method” will be passed as part of the client context to the target enterprise bean.

See Subsection 13.6.5 for how the container handles the “none” case in Table 14.

13.6.2.8 Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a business
method executing with the REQUIRED, REQUIRES_NEW, or MANDATORY transaction attribute as fol-
lows:

• The container must ensure that the transaction will never commit. Typically, the container
instructs the transaction manager to mark the transaction for rollback.

• If the container initiated the transaction immediately before dispatching the business method to
the instance (as opposed to the transaction being inherited from the caller), the container must
note that the instance has invoked the setRollbackOnly method. When the business
method invocation completes, the container must roll back rather than commit the transaction.
If the business method has returned normally or with an application exception, the container
must pass the method result or the application exception to the client after the container per-
formed the rollback.

The container must throw the java.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly method is invoked from a business method executing with the SUP-
PORTS, NOT_SUPPORTED, or NEVER transaction attribute.

13.6.2.9 Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly method invoked from a business
method executing with the REQUIRED, REQUIRES_NEW, or MANDATORY transaction attribute.

The container must throw the java.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly method is invoked from a business method executing with the SUP-
PORTS, NOT_SUPPORTED, or NEVER transaction attribute.

MANDATORY
none error N/A

T1 T1 T1

NEVER
none none none

T1 error N/A

Table 14 Transaction Attribute Summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers
371 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
13.6.2.10 Handling of getUserTransaction Method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to invoke
the getUserTransaction method of the EJBContext interface, the container must throw the
java.lang.IllegalStateException.

13.6.2.11 Session Synchronization Callbacks

If a session bean class implements the javax.ejb.SessionSynchronization interface or uses
the session synchronization annotations, the container must invoke the afterBegin, beforeCom-
pletion, and afterCompletion callbacks on the instance as part of the transaction commit proto-
col.

The container invokes the afterBegin method on an instance before it invokes the first business
method in a transaction.

The container invokes the beforeCompletion method to give the enterprise bean instance the last
chance to cause the transaction to rollback. The instance may cause the transaction to roll back by
invoking the EJBContext.setRollbackOnly method.

The container invokes the afterCompletion(boolean committed) method after the comple-
tion of the transaction commit protocol to notify the enterprise bean instance of the transaction outcome.

13.6.2.12 Timing of Return Value Marshalling w.r.t. Transaction Boundaries

When demarcating a container-managed transaction for a business method invocation through a Remote
view or Web Service view, the container must complete the commit protocol before marshalling the
return value.

13.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans

The container is responsible for providing the transaction demarcation for the message-driven beans
that the Bean Provider declared as with container-managed transaction demarcation. For these enter-
prise beans, the container must demarcate transactions as specified by annotations on the bean class or
in the deployment descriptor. (See Chapter 19 for more information about the deployment descriptor.)

The following subsections define the responsibilities of the container for managing the invocation of a
message-driven bean’s message listener method. The container’s responsibilities depend on the value of
the transaction attribute.

Only the NOT_SUPPORTED and REQUIRED transaction attributes may be used for message-driven
bean message listener methods. The use of the other transaction attributes is not meaningful for mes-
sage-driven bean message listener methods because there is no pre-existing client transaction context
(REQUIRES_NEW, SUPPORTS) and no client to handle exceptions (MANDATORY, NEVER).
 11/5/09 372

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
13.6.3.1 NOT_SUPPORTED

The container invokes a message-driven bean message listener method whose transaction attribute is set
to NOT_SUPPORTED with an unspecified transaction context.

If the message listener method invokes other enterprise beans, the container passes no transaction con-
text with the invocation.

13.6.3.2 REQUIRED

The container must invoke a message-driven bean message listener method whose transaction attribute
is set to REQUIRED with a valid transaction context. The resource managers accessed by the message
listener method within the transaction are enlisted with the transaction. If the message listener method
invokes other enterprise beans, the container passes the transaction context with the invocation. The
container attempts to commit the transaction when the message listener method has completed.

Messaging systems may differ in quality of service with regard to reliability and transactionality of the
dequeuing of messages.

The requirement for JMS are as follows:

A transaction must be started before the dequeuing of the JMS message and, hence, before the
invocation of the message-driven bean’s onMessage method. The resource manager associ-
ated with the arriving message is enlisted with the transaction as well as all the resource man-
agers accessed by the onMessage method within the transaction. If the onMessage method
invokes other enterprise beans, the container passes the transaction context with the invoca-
tion. The transaction is committed when the onMessage method has completed. If the
onMessage method does not successfully complete or the transaction is rolled back, message
redelivery semantics apply.

13.6.3.3 Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a message
listener method executing with the REQUIRED transaction attribute as follows:

• The container must ensure that the transaction will never commit. Typically, the container
instructs the transaction manager to mark the transaction for rollback.

• The container must note that the instance has invoked the setRollbackOnly method.
When the method invocation completes, the container must roll back rather than commit the
transaction.

The container must throw and log the java.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly method is invoked from a message listener method executing with the
NotSupported transaction attribute
373 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
13.6.3.4 Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly() method invoked from a mes-
sage listener method executing with the REQUIRED transaction attribute.

The container must throw and log the java.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly method is invoked from a message listener method executing with the
NOT_SUPPORTED transaction attribute.

13.6.3.5 Handling of getUserTransaction Method

If an instance of a message-driven bean with container-managed transaction demarcation attempts to
invoke the getUserTransaction method of the EJBContext interface, the container must throw
and log the java.lang.IllegalStateException.

13.6.4 Local Transaction Optimization

The container may use a local transaction optimization for enterprise beans whose metadata annotations
or deployment descriptor indicates that connections to a resource manager are shareable (see Section
16.7.1.3, “Declaration of Resource Manager Connection Factory References in Deployment Descrip-
tor”). The container manages the use of the local transaction optimization transparent to the application.

The container may use the optimization for transactions initiated by the container for a bean with con-
tainer-managed transaction demarcation and for transactions initiated by a bean with bean-managed
transaction demarcation with the UserTransaction interface. The container cannot apply the opti-
mization for transactions imported from a different container.

The use of local transaction optimization approach is discussed in [12] and [15].

13.6.5 Handling of Methods that Run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the cases in
which the EJB architecture does not fully define the transaction semantics of an enterprise bean method
execution.

This includes the following cases:

• The execution of a method of an enterprise bean with container-managed transaction demarca-
tion for which the value of the transaction attribute is NOT_SUPPORTED, NEVER, or SUP-
PORTS.

• The execution of a PostConstruct, PreDestroy, PostActivate, or PrePassi-
vate callback method of a session bean with container-managed transaction demarcation.[71]

[71] Except Singleton PostConstruct/PreDestroy methods. See Chapter 4, “Session Bean Component Contract”.
 11/5/09 374

Access from Multiple Clients in the Same Transaction ContextEnterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
• The execution of a PostConstruct or PreDestroy callback method of a message-driven
bean with container-managed transaction demarcation.[72]

The EJB specification does not prescribe how the container should manage the execution of a method
with an unspecified transaction context—the transaction semantics are left to the container implementa-
tion. Some techniques for how the container may choose to implement the execution of a method with
an unspecified transaction context are as follows (the list is not inclusive of all possible strategies):

• The container may execute the method and access the underlying resource managers without a
transaction context.

• The container may treat each call of an instance to a resource manager as a single transaction
(e.g. the container may set the auto-commit option on a JDBC connection).

• The container may merge multiple calls of an instance to a resource manager into a single
transaction.

• The container may merge multiple calls of an instance to multiple resource managers into a
single transaction.

• If an instance invokes methods on other enterprise beans, and the invoked methods are also
designated to run with an unspecified transaction context, the container may merge the
resource manager calls from the multiple instances into a single transaction.

• Any combination of the above.

Since the enterprise bean does not know which technique the container implements, the enterprise bean
must be written conservatively not to rely on any particular container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified transac-
tion context may leave the resource managers accessed from the method in an unpredictable state. The
EJB architecture does not define how the application should recover the resource managers’ state after
such a failure.

13.7 Access from Multiple Clients in the Same Transaction
Context

This section describes a more complex distributed transaction scenario, and specifies the container’s
behavior required for this scenario.

[72] See Chapter 5, “Message-Driven Bean Component Contract”.
375 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Access from Multiple Clients in the Same

Sun Microsystems, Inc.
13.7.1 Transaction “Diamond” Scenario with an Entity Object

An entity object may be accessed by multiple clients in the same transaction. For example, program A
may start a transaction, call program B and program C in the transaction context, and then commit the
transaction. If programs B and C access the same entity object, the topology of the transaction creates a
diamond.

Figure 30 Transaction Diamond Scenario with Entity Object

An example (not realistic in practice) is a client program that tries to perform two purchases at two dif-
ferent stores within the same transaction. At each store, the program that is processing the client’s pur-
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C access an
entity object through different network paths. This case is challenging because many EJB servers imple-
ment the EJB container as a collection of multiple processes, running on the same or multiple machines.
Each client is typically connected to a single process. If clients B and C connect to different EJB con-
tainer processes, and both B and C need to access the same entity object in the same transaction, the
issue is how the container can make it possible for B and C to see a consistent state of the entity object
within the same transaction[73].

The above example illustrates a simple diamond. We use the term diamond to refer to any distributed
transaction scenario in which an entity object is accessed in the same transaction through multiple net-
work paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent access
to an entity object in the same transaction context would be considered an application programming
error, and it would be handled in a container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists in all
distributed transaction processing systems.

[73] This diamond problem applies only to the case when B and C are in the same transaction.

Program A

Program C

Program B

Entity
object

TX1

TX1

TX1

TX1

EJB Container
 11/5/09 376

Access from Multiple Clients in the Same Transaction ContextEnterprise JavaBeans 3.1, Final Release Support for Transactions

Sun Microsystems, Inc.
The following subsections define the responsibilities of the EJB Roles when handling distributed trans-
action topologies that may lead to a diamond involving an entity object.

13.7.2 Container Provider’s Responsibilities
This Subsection specifies the EJB container’s responsibilities with respect to the diamond case involv-
ing an entity object.

The EJB specification requires that the container provide support for local diamonds. In a local dia-
mond, components A, B, C, and D are deployed in the same EJB container.

The EJB specification does not require an EJB container to support distributed diamonds. In a distrib-
uted diamond, a target entity object is accessed from multiple clients in the same transaction through
multiple network paths, and the clients (programs B and C) are not enterprise beans deployed in the
same EJB container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the container can detect
that a client invocation would lead to a diamond, the container should throw the
javax.ejb.EJBException (or java.rmi.RemoteException if the EJB 2.1 remote client
view is used).

13.7.3 Bean Provider’s Responsibilities
This Subsection specifies the Bean Provider’s responsibilities with respect to the diamond case involv-
ing an entity object.

The diamond case is transparent to the Bean Provider—the Bean Provider does not have to code the
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond prob-
lem implemented by the container is transparent to the bean and does not change the semantics of the
bean.

13.7.4 Application Assembler and Deployer’s Responsibilities
This Subsection specifies the Application Assembler and Deployer’s responsibilities with respect to the
diamond case involving an entity object.

The Application Assembler and Deployer should be aware that distributed diamonds might occur. In
general, the Application Assembler should try to avoid creating unnecessary distributed diamonds.

If a distributed diamond is necessary, the Deployer should advise the container (using a container-spe-
cific API) that an entity objects of the entity bean may be involved in distributed diamond scenarios.

13.7.5 Transaction Diamonds involving Session Objects
While it is illegal for two clients to access the same session object, it is possible for applications that use
session beans to encounter the diamond case. For example, program A starts a transaction and then
invokes two different session objects.
377 November 5, 2009 11:00 am

Support for Transactions Enterprise JavaBeans 3.1, Final Release Access from Multiple Clients in the Same

Sun Microsystems, Inc.
Figure 31 Transaction Diamond Scenario with a Session Bean

If the session bean instances cache the same data item (e.g. the current balance of Account 100) across
method invocations in the same transaction, most likely the program is going to produce incorrect
results.

The problem may exist regardless of whether the two session objects are the same or different session
beans. The problem may exist (and may be harder to discover) if there are intermediate objects between
the transaction initiator and the session objects that cache the data.

There are no requirements for the Container Provider because it is impossible for the container to detect
this problem.

The Bean Provider and Application Assembler must avoid creating applications that would result in
inconsistent caching of data in the same transaction by multiple session objects.

Program A

Session
instance 1

TX1

TX1

EJB Container

Session
instance 2

read and cache
Account 100

read and cache
Account 100
 11/5/09 378

Overview and Concepts Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Chapter 14 Exception Handling

14.1 Overview and Concepts

14.1.1 Application Exceptions

An application exception is an exception defined by the Bean Provider as part of the business logic of
an application. Application exceptions are distinguished from system exceptions in this specification.

Enterprise bean business methods use application exceptions to inform the client of abnormal applica-
tion-level conditions, such as unacceptable values of the input arguments to a business method. A client
can typically recover from an application exception. Application exceptions are not intended for report-
ing system-level problems.

For example, the Account enterprise bean may throw an application exception to report that a
debit operation cannot be performed because of an insufficient balance. The Account bean should
not use an application exception to report, for example, the failure to obtain a database connection.

An application exception may be defined in the throws clause of a method of an enterprise bean’s
business interface, no-interface view, home interface, component interface, message listener interface,
or web service endpoint.
379 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
An application exception may be a subclass (direct or indirect) of java.lang.Exception (i.e., a
“checked exception”), or an application exception class may be defined as a subclass of the
java.lang.RuntimeException (an “unchecked exception”). An application exception may not
be a subclass of the java.rmi.RemoteException. The java.rmi.RemoteException and
its subclasses are reserved for system exceptions.

The javax.ejb.CreateException, javax.ejb.RemoveException, javax.ejb.Fin-
derException, and subclasses thereof are considered to be application exceptions. These exceptions
are used as standard application exceptions to report errors to the client from the create, remove,
and finder methods of the EJBHome and/or EJBLocalHome interfaces of components written to the
EJB 2.1 client view (see Subsections 8.5.10 and 10.1.11). These exceptions are covered by the rules on
application exceptions that are defined in this chapter.

14.1.2 Goals for Exception Handling

The EJB specification for exception handling is designed to meet these high-level goals:

• An application exception thrown by an enterprise bean instance should be reported to the client
precisely (i.e., the client gets the same exception)[74].

• An application exception thrown by an enterprise bean instance should not automatically roll-
back a client’s transaction unless the application exception was defined to cause transaction
rollback. The client should typically be given a chance to recover a transaction from an appli-
cation exception.

• An unexpected exception that may have left the instance’s state variables and/or underlying
persistent data in an inconsistent state can be handled safely.

14.2 Bean Provider’s Responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exception han-
dling.

14.2.1 Application Exceptions

The Bean Provider defines application exceptions. Application exceptions that are checked exceptions
may be defined as such by being listed in the throws clauses of the methods of the bean’s business
interface, no-interface view, home interface, component interface, and web service endpoint. An appli-
cation exception that is an unchecked exception is defined as an application exception by annotating it
with the ApplicationException metadata annotation, or denoting it in the deployment descriptor
with the application-exception element.

[74] This may not be the case where web services protocols are used. See [25].
 11/5/09 380

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Because application exceptions are intended to be handled by the client, and not by the System Admin-
istrator, they should be used only for reporting business logic exceptions, not for reporting system level
problems.

Certain messaging types may define application exceptions in their message listener inter-
faces. The resource adapter in use for the particular messaging type determines how the
exception is processed. See [15].

The Bean Provider is responsible for throwing the appropriate application exception from the business
method to report a business logic exception to the client.

An application exception does not automatically result in marking the transaction for rollback unless the
ApplicationException annotation is applied to the exception class and is specified with the
rollback element value true or the application-exception deployment descriptor element
for the exception specifies the rollback element as true. The rollback subelement of the
application-exception deployment descriptor element may be explicitly specified to override
the rollback value specified or defaulted by the ApplicationException annotation.

The Bean Provider must do one of the following to ensure data integrity before throwing an application
exception from an enterprise bean instance:

• Ensure that the instance is in a state such that a client’s attempt to continue and/or commit the
transaction does not result in loss of data integrity. For example, the instance throws an appli-
cation exception indicating that the value of an input parameter was invalid before the instance
performed any database updates.

• If the application exception is not specified to cause transaction rollback, mark the transaction
for rollback using the EJBContext.setRollbackOnly method before throwing the
application exception. Marking the transaction for rollback will ensure that the transaction can
never commit.

The Bean Provider is also responsible for using the standard EJB application exceptions
(javax.ejb.CreateException, javax.ejb.RemoveException, javax.ejb.Find-
erException, and subclasses thereof) for beans written to the EJB 2.1 and earlier client view as
described in Subsections 8.5.10 and 10.1.11.

Bean Providers may define subclasses of the standard EJB application exceptions and throw instances
of the subclasses in the enterprise bean methods. A subclass will typically provide more information to
the client that catches the exception.

By default, designating an unchecked exception as an application exception also applies to subclasses of
that exception. The inheriting behavior can be disabled by setting the @ApplicationException
inherited attribute to false or by setting the inherited element of the applica-
tion-exception deployment descriptor to false.
381 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
In the following example :

@ApplicationException(rollback=true)
public class ExceptionA extends RuntimeException

public class ExceptionB extends ExceptionA

@ApplicationException(inherited=false, rollback=false)
public class ExceptionC extends ExceptionB

public class ExceptionD extends ExceptionC

ExceptionA is an application exception with transaction rollback.

ExceptionB is an application exception with transaction rollback.

ExceptionC is an application exception without transaction rollback.

ExceptionD is not an application exception.

14.2.2 System Exceptions

A system exception is an exception that is a java.rmi.RemoteException (or one of its sub-
classes) or a RuntimeException that is not an application exception.

This subsection describes how the Bean Provider should handle various system-level exceptions and
errors that an enterprise bean instance may encounter during the execution of a session or entity bean
business method, a message-driven bean message listener method, an interceptor method, or a callback
method (e.g. ejbLoad).

An enterprise bean business method, message listener method, business method interceptor method, or
lifecycle callback interceptor method may encounter various exceptions or errors that prevent the
method from successfully completing. Typically, this happens because the exception or error is unex-
pected, or the exception is expected but the EJB Provider does not know how to recover from it. Exam-
ples of such exceptions and errors are: failure to obtain a database connection, JNDI exceptions,
unexpected RemoteException from invocation of other enterprise beans[75], unexpected Runt-
imeException, JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allow the
method to successfully complete, the method should throw a suitable non-application exception that is
compatible with the method’s throws clause. While the EJB specification does not prescribe the exact
usage of the exception, it encourages the Bean Provider to follow these guidelines:

• If the bean method encounters a system exception or error, it should simply propagate the error
from the bean method to the container (i.e., the bean method does not have to catch the excep-
tion).

[75] Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this subsection
applies only to the case when the business method does not wish to recover from the RemoteException.
 11/5/09 382

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
• If the bean method performs an operation that results in a checked exception[76] that the bean
method cannot recover, the bean method should throw the javax.ejb.EJBException
that wraps the original exception.

• Any other unexpected error conditions should be reported using the javax.ejb.EJBEx-
ception.

Note that the javax.ejb.EJBException is a subclass of the java.lang.RuntimeExcep-
tion, and therefore it does not have to be listed in the throws clauses of the business methods.

The container catches a non-application exception; logs it (which can result in alerting the System
Administrator); and, unless the bean is a message-driven bean, throws the javax.ejb.EJBExcep-
tion[77] or, if the web service client view is used, the java.rmi.RemoteException. If the EJB
2.1 client view is used, the container throws the java.rmi.RemoteException (or subclass
thereof) to the client if the client is a remote client, or throws the javax.ejb.EJBException (or
subclass thereof) to the client if the client is a local client. In the case of a message-driven bean, the con-
tainer logs the exception and then throws a javax.ejb.EJBException that wraps the original
exception to the resource adapter. (See [15]).

The exception that is seen by the client is described in section 14.3. It is determined both by the excep-
tion that is thrown by the container and/or bean and the client view.

The Bean Provider can rely on the container to perform the following tasks when catching a non-appli-
cation exception:

• The transaction in which the bean method participated will be rolled back.

• Unless the bean is a Singleton bean, no other method will be invoked on an instance that threw
a non-application exception.

This means that unless the bean is a Singleton the Bean Provider does not have to perform any cleanup
actions before throwing a non-application exception. It is the container that is responsible for the
cleanup.

14.2.2.1 javax.ejb.NoSuchEntityException

The NoSuchEntityException is a subclass of EJBException. It should be thrown by the EJB
2.1 entity bean class methods to indicate that the underlying entity has been removed from the database.

A bean-managed persistence entity bean class typically throws this exception from the ejbLoad and
ejbStore methods, and from the methods that implement the business methods defined in the compo-
nent interface.

[76] A checked exception is one that is not a subclass of java.lang.RuntimeException.
[77] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-

tion is thrown to the client instead.
383 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
14.3 Container Provider Responsibilities

This section describes the responsibilities of the Container Provider for handling exceptions. The EJB
architecture specifies the container’s behavior for the following exceptions:

• Exceptions from the business methods of session and entity beans, including session bean
business method interceptor methods.

• Exceptions from message-driven bean message listener methods and business method inter-
ceptor methods.

• Exceptions from timeout callback methods.

• Exceptions from other container-invoked callbacks on the enterprise bean.

• Exceptions from management of container-managed transaction demarcation.

14.3.1 Exceptions from a Session Bean’s Business Interface Methods and No-Interface
 11/5/09 384

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
View Methods
Table 15 specifies how the container must handle the exceptions thrown by the methods of the business
interface and No-interface view for beans with container-managed transaction demarcation, including
the exceptions thrown by business method interceptor methods which intercept the invocation of busi-
ness methods. The table specifies the container’s action as a function of the condition under which the
business interface method executes and the exception thrown by the method. The table also illustrates
the exception that the client will receive and how the client can recover from the exception. (Section
14.4 describes the client’s view of exceptions in detail.) The notation “AppException” denotes an appli-
cation exception.

Table 15 Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required, Man-
datory, and Sup-
ports attributes.

AppException Re-throw AppException.
Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

Receives AppException.
Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
unless the application
exception is specified as
causing rollback (the
commit would fail if the
instance called set-
RollbackOnly).

all other exceptions and
errors

Log the exception or
error [Note B].
Mark the transaction for
rollback.
Discard instance
[Note C].
Throw javax.ejb.EJB-
TransactionRolled-
backException to client.
[Note D]

Receives
javax.ejb.EJBTransac-
tionRolledbackExcep-
tion
Continuing transaction is
fruitless.
385 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called
setRollback-
Only(), then rollback
the transaction, and
re-throw AppException.
If the application excep-
tion is specified as caus-
ing rollback, then
rollback the transaction
and then re-throw
AppException.
Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.
If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.
Rollback the con-
tainer-started transaction.
Discard instance.
Throw EJBException to
client.[Note E]

Receives EJBException.
If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with the NotSup-
ported, Never, and
Supports attributes.

AppException Re-throw AppException. Receives AppException.
If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.
Discard instance.
Throw EJBException to
client.[Note F]

Receives EJBException.
If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Notes:
[A] The caller can be another enterprise bean or an arbitrary client program.
[B] Log the exception or error means that the container logs the exception or error so that the System Admin-

istrator is alerted of the problem.
[C] Discard instance means that the container must not invoke any business methods or container callbacks

on the instance. Discarding does not apply if the bean is a Singleton.
[D] If the business interface is a remote business interface that extends java.rmi.Remote, the javax.transac-

tion.TransactionRolledbackException is thrown to the client, which will receive this exception.
[E] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.Remo-

teException is thrown to the client, which will receive this exception.
[F] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.Remo-

teException is thrown to the client, which will receive this exception.

Table 15 Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view
 11/5/09 386

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Table 16 specifies how the container must handle the exceptions thrown by the methods of the business
interface or No-interface view for beans with bean-managed transaction demarcation, including the
exceptions thrown by business method interceptor methods which intercept the invocation of business
methods. The table specifies the container’s action as a function of the condition under which the busi-
ness interface method executes and the exception thrown by the method. The table also illustrates the
exception that the client will receive and how the client can recover from the exception. (Section 14.4
describes the client’s view of exceptions in detail.)

14.3.2 Exceptions from Method Invoked via Session or Entity Bean’s 2.1 Client View or
through Web Service Client View

Business methods in this context are considered to be the methods defined in the enterprise bean’s busi-
ness interface, home interface, component interface, or web service endpoint (including superinterfaces
of these); and the following session bean or entity bean methods: ejbCreate<METHOD>, ejb-
PostCreate<METHOD>, ejbRemove, ejbHome<METHOD>, and ejbFind<METHOD> methods.

Table 16 Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method of a
Session Bean with Bean-Managed Transaction Demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less or singleton session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.
Rollback a transaction
that has been started, but
not yet completed, by the
instance.
Discard instance.[Note A]
Throw EJBException to
client. [Note B]

Notes:
[A] Discarding not apply if the bean is a Singleton.
[B] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.Remo-

teException is thrown to the client, which will receive this exception.

Receives EJBException.
387 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
Table 17 specifies how the container must handle the exceptions thrown by the business methods for
beans with container-managed transaction demarcation, including the exceptions thrown by business
method interceptor methods which intercept the invocation of business methods. The table specifies the
container’s action as a function of the condition under which the business method executes and the
exception thrown by the business method. The table also illustrates the exception that the client will
receive and how the client can recover from the exception. (Section 14.4 describes the client’s view of
exceptions in detail.) The notation “AppException” denotes an application exception.

Table 17 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View of a
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required, Man-
datory, and Sup-
ports attributes.

AppException Re-throw AppException
Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

Receives AppException.
Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
unless the application
exception is specified as
causing rollback (the
commit would fail if the
instance called set-
RollbackOnly).

all other exceptions and
errors

Log the exception or
error [Note B].
Mark the transaction for
rollback.
Discard instance
[Note C].
Throw javax.transac-
tion.Transaction-
RolledbackException to
remote client; throw
javax.ejb.Transac-
tionRolledbackLocal-
Exception to local client.

Receives javax.trans-
action.Transaction-
RolledbackException or
javax.ejb.Transac-
tionRolledbackLocal-
Exception

Continuing transaction is
fruitless.
 11/5/09 388

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called
setRollback-
Only(), then rollback
the transaction, and
re-throw AppException.
If the application excep-
tion is specified as caus-
ing rollback, then
rollback the transaction
and then re-throw
AppException.
Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.
If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.
Rollback the con-
tainer-started transaction.
Discard instance.
Throw RemoteException
to remote or web service
client [Note D]; throw
EJBException to local
client.

Receives RemoteExcep-
tion or EJBException.
If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with the NotSup-
ported, Never, and
Supports attributes.

AppException Re-throw AppException. Receives AppException.
If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.
Discard instance.
Throw RemoteException
to remote or web service
client; throw EJBExcep-
tion to local client.

Receives RemoteExcep-
tion or EJBException.
If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Notes:
[A] The caller can be another enterprise bean or an arbitrary client program. This case is not applicable for

methods of the web service endpoint.
[B] Log the exception or error means that the container logs the exception or error so that the System Admin-

istrator is alerted of the problem.
[C] Discard instance means that the container must not invoke any business methods or container callbacks

on the instance. Discarding does not apply if the bean is a Singleton.
[D] Throw RemoteException to web service client means that the container maps the RemoteExcep-

tion to the appropriate SOAP fault. See [25].

Table 17 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View of a
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view
389 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
Table 18 specifies how the container must handle the exceptions thrown by the business methods for
beans with bean-managed transaction demarcation, including the exceptions thrown by business
method interceptor methods which intercept the invocation of business methods. The table specifies the
container’s action as a function of the condition under which the business method executes and the
exception thrown by the business method. The table also illustrates the exception that the client will
receive and how the client can recover from the exception. (Section 14.4 describes the client’s view of
exceptions in detail.)

Table 18 Handling of Exceptions Thrown by a EJB 2.1 Client View Business Method of a Session Bean with
Bean-Managed Transaction Demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less or singleton session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.
Rollback a transaction
that has been started, but
not yet completed, by the
instance.
Discard instance.[Note A]
Throw RemoteException
to remote or web service
client [Note B]; throw
EJBException to local
client.

Notes:
[A] Discarding does not apply if the bean is a Singleton.
[B] Throw RemoteException to web service client means that the container maps the RemoteExcep-

tion to the appropriate SOAP fault. See [25].

Receives RemoteExcep-
tion or EJBException.
 11/5/09 390

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Session Bean
Table 19 specifies how the container must handle the exceptions thrown by the PostConstruct and
PreDestroy methods for session beans.

14.3.4 Exceptions from Message-Driven Bean Message Listener Methods

This section specifies the container’s handling of exceptions thrown from a message-driven bean’s mes-
sage listener method.

Table 19 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful or Stateless or
Singleton Session Bean.

Bean method condition Bean method exception Container action

Bean is stateful or state-
less or singleton session
bean

system exceptions Log the exception or
error.
If Singleton, rollback any
container-started transac-
tion.

Discard instance.
391 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
Table 20 specifies how the container must handle the exceptions thrown by a message listener method
of a message-driven bean with container-managed transaction demarcation, including the exceptions
thrown by business method interceptor methods which intercept the invocation of message listener
methods. The table specifies the container’s action as a function of the condition under which the
method executes and the exception thrown by the method.

Table 20 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the method.
This case happens with
Required attribute.

AppException
Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

If the instance called
setRollbackOnly,
rollback the transaction
and re-throw AppExcep-
tion to resource adapter.
Otherwise, attempt to
commit the transaction
unless the application
exception is specified as
causing rollback and
re-throw AppException
to resource adapter.

system exceptions Log the exception or
error[Note A].
Rollback the con-
tainer-started transaction.
Discard instance[Note B].
Throw EJBException
that wraps the original
exception to resource
adapter.

Notes:
[A] Log the exception or error means that the container logs the exception or

error so that the System Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on

the instance.

Bean method runs with
an unspecified transac-
tion context.
This case happens with
the NotSupported
attribute.

AppException Re-throw AppException
to resource adapter.

system exceptions Log the exception or
error.
Discard instance.
Throw EJBException
that wraps the original
exception to resource
adapter
 11/5/09 392

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Table 21 specifies how the container must handle the exceptions thrown by a message listener method
of a message-driven bean with bean-managed transaction demarcation. The table specifies the con-
tainer’s action as a function of the condition under which the method executes and the exception thrown
by the method.

14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Message-Driven
Bean
Table 22 specifies how the container must handle the exceptions thrown by the PostConstruct and
PreDestroy methods of message-driven beans.

14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method

This section specifies the container’s handling of exceptions thrown from an enterprise bean’s timeout
callback method.

Table 21 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Bean-Managed Transaction Demarcation.

Bean method condition Bean method exception Container action

Bean is message-driven
bean

AppException Re-throw AppException
to resource adapter.

system exceptions Log the exception or
error.
Rollback a transaction
that has been started, but
not yet completed, by the
instance.
Discard instance.
Throw EJBException
that wraps the original
exception to resource
adapter.

Table 22 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Message-Driven Bean.

Bean method condition Bean method exception Container action

Bean is message-driven
bean

system exceptions Log the exception or
error.
Discard instance.
393 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
Table 23 and Table 24 specify how the container must handle the exceptions thrown by the timeout call-
back method of an enterprise bean. The timeout callback method does not throw application exceptions
and cannot throw exceptions to the client.

14.3.7 Exceptions from Other Container-invoked Callbacks

This subsection specifies the container’s handling of exceptions thrown from the other con-
tainer-invoked callbacks on the enterprise bean. This subsection applies to the following callback meth-
ods:

Table 23 Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with
Container-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

Bean timeout callback
method runs in the con-
text of a transaction that
the container started
immediately before dis-
patching the method.

system exceptions Log the exception or
error[Note A].
Rollback the con-
tainer-started transaction.
Discard instance[Note B].

Notes:
[A] Log the exception or error means that the container logs the exception or

error so that the System Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on

the instance. Discarding does not apply if the bean is a Singleton.

Table 24 Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with
Bean-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

The bean timeout call-
back method may make
use of UserTransaction.

system exceptions Log the exception or
error[Note A].
Rollback a transaction
that has been started, but
not yet completed, by the
instance.
Discard instance[Note B].

Notes:
[A] Log the exception or error means that the container logs the exception or

error so that the System Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on

the instance. Discarding does not apply if the bean is a Singleton.
 11/5/09 394

Container Provider Responsibilities Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
• Dependency injection methods.

• The ejbActivate, ejbLoad, ejbPassivate, ejbStore, setEntityContext,
and unsetEntityContext methods of the EntityBean interface.

• The PostActivate and PrePassivate callback methods, and/or ejbActivate,
ejbPassivate, and setSessionContext methods of the SessionBean interface.

• The setMessageDrivenContext method of the MessageDrivenBean interface.

• The afterBegin, beforeCompletion and afterCompletion session synchroniz-
iation methods.

The container must handle all exceptions or errors from these methods as follows:

• Log the exception or error to bring the problem to the attention of the System Administrator.

• If the instance is in a transaction, mark the transaction for rollback.

• Discard the instance (i.e., the container must not invoke any business methods or container
callbacks on the instance).

• If the exception or error happened during the processing of a client invoked method, throw the
javax.ejb.EJBException[78]. If the EJB 2.1 client view or web service client view is
used, throw the java.rmi.RemoteException to the client if the client is a remote client
or throw the javax.ejb.EJBException to the client if the client is a local client. If the
instance executed in the client’s transaction, the container should throw the
javax.ejb.EJBTransactionRolledbackException[79]. If the EJB 2.1 client view
or web service client view is used, the container should throw the javax.transac-
tion.TransactionRolledbackException to a remote client or the
javax.ejb.TransactionRolledbackLocalException to a local client, because it
provides more information to the client. (The client knows that it is fruitless to continue the
transaction.)

14.3.8 javax.ejb.NoSuchEntityException

The NoSuchEntityException is a subclass of EJBException. If it is thrown by a method of an
entity bean class, the container must handle the exception using the rules for EJBException
described in Sections 14.3.2, 14.3.4, and 14.3.7.

To give the client a better indication of the cause of the error, the container should throw the
java.rmi.NoSuchObjectException (which is a subclass of java.rmi.RemoteExcep-
tion) to a remote client, or the javax.ejb.NoSuchObjectLocalException to a local client.

[78] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-
tion is thrown to the client instead.

[79] If the business interface is a remote business interface that extends java.rmi.Remote, the javax.transac-
tion.TransactionRolledbackException is thrown to the client instead.
395 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.
14.3.9 Non-existing Stateful Session or Entity Object

If a client makes a call to a stateful session or entity object that has been removed, the container should
throw the javax.ejb.NoSuchEJBException[80]. If the EJB 2.1 client view is used, the container
should throw the java.rmi.NoSuchObjectException (which is a subclass of
java.rmi.RemoteException) to a remote client, or the javax.ejb.NoSuchObjectLo-
calException to a local client.

14.3.10 Exceptions from the Management of Container-Managed Transactions

The container is responsible for starting and committing the container-managed transactions, as
described in Subsection 13.6.2. This subsection specifies how the container must deal with the excep-
tions that may be thrown by the transaction start and commit operations.

If the container fails to start or commit a container-managed transaction, the container must throw the
javax.ejb.EJBException[81]. If the web service client view or EJB 2.1 client view is used, the
container must throw the java.rmi.RemoteException to a remote or web service client and the
javax.ejb.EJBException to a local client. In the case where the container fails to start or com-
mit a container-managed transaction on behalf of a message-driven bean or a timeout callback method,
the container must throw and log the javax.ejb.EJBException.

However, the container should not throw the javax.ejb.EJBException or java.rmi.Remo-
teException if the container performs a transaction rollback because the transaction has been
marked for rollback and no EJBException or RemoteException would otherwise be thrown
according to sections [14.3.1] through [14.3.9]. In this case, the container must rollback the transaction
and pass the business method result or the application exception thrown by the business method to the
client.

Note that some implementations of the container may retry a failed transaction transparently to the cli-
ent and enterprise bean code. Such a container would throw the javax.ejb.EJBException or
java.rmi.RemoteException or after a number of unsuccessful tries.

14.3.11 Release of Resources

When the container discards an instance because of a system exception, the container should release all
the resources held by the instance that were acquired through the resource factories declared in the
enterprise bean environment (See Subsection 16.7).

[80] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.NoSuchObject-
Exception is thrown to the client instead.

[81] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteExcep-
tion is thrown to the client instead.
 11/5/09 396

Client’s View of Exceptions Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
Note: While the container should release the connections to the resource managers that the instance
acquired through the resource factories declared in the enterprise bean environment, the container can-
not, in general, release “unmanaged” resources that the instance may have acquired through the JDK
APIs. For example, if the instance has opened a TCP/IP connection, most container implementations
will not be able to release the connection. The connection will be eventually released by the JVM gar-
bage collector mechanism.

14.3.12 Support for Deprecated Use of java.rmi.RemoteException
The EJB 1.0 specification allowed the business methods, ejbCreate, ejbPostCreate,
ejbFind<METHOD>, ejbRemove, and the container-invoked callbacks (i.e., the methods defined in
the EntityBean, SessionBean, and SessionSynchronization interfaces) implemented in
the enterprise bean class to use the java.rmi.RemoteException to report non-application excep-
tions to the container.

This use of the java.rmi.RemoteException was deprecated in EJB 1.1—enterprise beans writ-
ten for the EJB 1.1 specification should use the javax.ejb.EJBException instead, and enterprise
beans written for the EJB 2.0 or later specification must use the javax.ejb.EJBException
instead.

The EJB 1.1 and EJB 2.0 or later specifications require that a container support the deprecated use of
the java.rmi.RemoteException. The container should treat the java.rmi.RemoteExcep-
tion thrown by an enterprise bean method in the same way as it is specified for the
javax.ejb.EJBException.

14.4 Client’s View of Exceptions

This section describes the client’s view of exceptions received from an enterprise bean invocation.

A client accesses an enterprise bean either through the enterprise bean’s business interface (whether
local or remote), through the enterprise bean’s no-interface view, through the enterprise bean’s remote
home and remote interfaces, through the enterprise bean’s local home and local interfaces, or through
the enterprise bean’s web service client view depending on whether the client is written to the EJB 3.x
API or earlier API and whether the client is a remote client, a local client, or a web service client.

The methods of the business interface typically do not throw the java.rmi.RemoteException,
regardless of whether the interface is a remote or local interface.

The remote home interface, the remote component interface, and the JAX-RPC web service endpoint
interface are Java RMI interfaces, and therefore the throws clauses of all their methods (including
those inherited from superinterfaces) include the mandatory java.rmi.RemoteException.The
throws clauses may include an arbitrary number of application exceptions.

The local home and local interfaces are both Java local interfaces, and the throws clauses of all their
methods (including those inherited from superinterfaces) must not include the java.rmi.Remote-
Exception.The throws clauses may include an arbitrary number of application exceptions.
397 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release Client’s View of Exceptions

Sun Microsystems, Inc.
The no-interface view is a local view, and the throws clauses of all its methods must not include the
java.rmi.RemoteException. The throws clauses may include an arbitrary number of applica-
tion exceptions.

14.4.1 Application Exception

14.4.1.1 Local and Remote Clients

If a client program receives an application exception from an enterprise bean invocation, the client can
continue calling the enterprise bean. An application exception does not result in the removal of the EJB
object.

Although the container does not automatically mark for rollback a transaction because of a thrown
application exception, the transaction might have been marked for rollback by the enterprise bean
instance before it threw the application exception or the application exception may have been specified
to require the container to rollback the transaction. There are two ways to learn if a particular applica-
tion exception results in transaction rollback or not:

• Statically. Programmers can check the documentation of the enterprise bean’s client view inter-
face. The Bean Provider may have specified (although he or she is not required to) the applica-
tion exceptions for which the enterprise bean marks the transaction for rollback before
throwing the exception.

• Dynamically. Clients that are enterprise beans with container-managed transaction demarca-
tion can use the getRollbackOnly method of the javax.ejb.EJBContext object to
learn if the current transaction has been marked for rollback; other clients may use the get-
Status method of the javax.transaction.UserTransaction interface to obtain
the transaction status.

14.4.1.2 Web Service Clients

If a stateless session bean throws an application exception from one of its web service methods, it is the
responsibility of the container to map the exception to the SOAP fault specified in the WSDL that
describes the port type that the stateless session bean implements. For Java clients, the exceptions
received by the client are described by the mapping rules in [25].

14.4.2 java.rmi.RemoteException and javax.ejb.EJBException

As described above, a client receives the javax.ejb.EJBException or the java.rmi.Remo-
teException as an indication of a failure to invoke an enterprise bean method or to properly com-
plete its invocation. The exception can be thrown by the container or by the communication subsystem
between the client and the container.

If the client receives the javax.ejb.EJBException or the java.rmi.RemoteException
exception from a method invocation, the client, in general, does not know if the enterprise bean’s
method has been completed or not.
 11/5/09 398

Client’s View of Exceptions Enterprise JavaBeans 3.1, Final Release Exception Handling

Sun Microsystems, Inc.
If the client executes in the context of a transaction, the client’s transaction may, or may not, have been
marked for rollback by the communication subsystem or target bean’s container.

For example, the transaction would be marked for rollback if the underlying transaction service or the
target bean’s container doubted the integrity of the data because the business method may have been
partially completed. Partial completion could happen, for example, when the target bean’s method
returned with a RuntimeException exception, or if the remote server crashed in the middle of exe-
cuting the business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, when the
communication subsystem on the client-side has not been able to send the request to the server.

When a client executing in a transaction context receives an EJBException or a RemoteExcep-
tion from an enterprise bean invocation, the client may use either of the following strategies to deal
with the exception:

• Discontinue the transaction. If the client is the transaction originator, it may simply rollback its
transaction. If the client is not the transaction originator, it can mark the transaction for roll-
back or perform an action that will cause a rollback. For example, if the client is an enterprise
bean, the enterprise bean may throw a RuntimeException which will cause the container
to rollback the transaction.

• Continue the transaction. The client may perform additional operations on the same or other
enterprise beans, and eventually attempt to commit the transaction. If the transaction was
marked for rollback at the time the EJBException or RemoteException was thrown to
the client, the commit will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction status to
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an enter-
prise bean with container-managed transaction demarcation can use the EJBContext.getRoll-
backOnly method to test if the transaction has been marked for rollback; a client that is an enterprise
bean with bean-managed transaction demarcation, and other client types, can use the UserTransac-
tion.getStatus method to obtain the status of the transaction.

Some implementations of EJB servers and containers may provide more detailed exception reporting by
throwing an appropriate subclass of the javax.ejb.EJBException or java.rmi.RemoteEx-
ception to the client. The following subsections describe the several subclasses of the
javax.ejb.EJBException and java.rmi.RemoteException that may be thrown by the
container to give the client more information.

14.4.2.1 javax.ejb.EJBTransactionRolledbackException,
javax.ejb.TransactionRolledbackLocalException, and
javax.transaction.TransactionRolledbackException

The javax.ejb.EJBTransactionRolledbackException and javax.ejb.Transac-
tionRolledbackLocalException are subclasses of the javax.ejb.EJBException. The
javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.
399 November 5, 2009 11:00 am

Exception Handling Enterprise JavaBeans 3.1, Final Release System Administrator’s Responsibilities

Sun Microsystems, Inc.
If a client receives one of these exceptions, the client knows for certain that the transaction has been
marked for rollback. It would be fruitless for the client to continue the transaction because the transac-
tion can never commit.

14.4.2.2 javax.ejb.EJBTransactionRequiredException,
javax.ejb.TransactionRequiredLocalException, and
javax.transaction.TransactionRequiredException

The javax.ejb.EJBTransactionRequiredException and javax.ejb.Transac-
tionRequiredLocalException are subclasses of the javax.ejb.EJBException. The
javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

The javax.ejb.EJBTransactionRequiredException, javax.ejb.TransactionRe-
quiredLocalException, or javax.transaction.TransactionRequiredException
informs the client that the target enterprise bean must be invoked in a client’s transaction, and that the
client invoked the enterprise bean without a transaction context.

This error usually indicates that the application was not properly formed.

14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and
java.rmi.NoSuchObjectException

The javax.ejb.NoSuchEJBException is a subclass of the javax.ejb.EJBException. It
is thrown to the client of a session bean’s business interface if a local business method cannot complete
because the EJB object no longer exists.

The javax.ejb.NoSuchObjectLocalException and the java.rmi.NoSuchObjectEx-
ception apply to the business methods of the EJB 2.1 local and remote client views respectively.

• The javax.ejb.NoSuchObjectLocalException is a subclass of the
javax.ejb.EJBException. It is thrown to the client if a local business method cannot
complete because the EJB object no longer exists.

• The java.rmi.NoSuchObjectException is a subclass of the java.rmi.Remote-
Exception. It is thrown to the client if a remote business method cannot complete because
the EJB object no longer exists.

14.5 System Administrator’s Responsibilities

The System Administrator is responsible for monitoring the log of the non-application exceptions and
errors logged by the container, and for taking actions to correct the problems that caused these excep-
tions and errors.
 11/5/09 400

Support for Distribution Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
Chapter 15 Support for Distributed Interoperability

This chapter describes the interoperability support for accessing an enterprise bean through the EJB 2.1
remote client view from clients distributed over a network, and the distributed interoperability require-
ments for invocations on enterprise beans from remote clients that are Java Platform, Enterprise Edition
(Java EE) components. Distributed Interoperability is not defined for the EJB 3.x remote client view.

15.1 Support for Distribution

The remote home and remote interfaces of an enterprise bean’s remote client view are defined as Java™
RMI [6] interfaces. This allows the container to implement the remote home and remote interfaces as
distributed objects. A client using the remote home and remote interfaces can reside on a different
machine than the enterprise bean (location transparency), and the object references of the remote home
and remote interfaces can be passed over the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise beans to be
legal RMI-IIOP types [10]. This makes it possible for EJB container implementors to use RMI-IIOP as
the object distribution protocol.
401 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Interoperability Overview

Sun Microsystems, Inc.
15.1.1 Client-Side Objects in a Distributed Environment

When the RMI-IIOP protocol or similar distribution protocols are used, the remote client communicates
with the enterprise bean using stubs for the server-side objects. The stubs implement the remote home
and remote interfaces.

Figure 32 Location of EJB Client Stubs.

The communication stubs used on the client side are artifacts generated at the enterprise bean’s deploy-
ment time by the Container Provider’s tools. The stubs used on the client are specific to the wire proto-
col used for the remote invocation.

15.2 Interoperability Overview

Session beans and entity beans that are deployed in one vendor’s server product may need to be
accessed from Java EE client components that are deployed in another vendor’s product through the
remote client view. EJB defines a standard interoperability protocol based on CORBA/IIOP to address
this need.

The interoperability protocols described here must be supported by compatible EJB products. Addi-
tional vendor-specific protocols may also be supported.

Figure 33 shows a heterogeneous environment that includes systems from several vendors to illustrate
the interoperability enabled by EJB.

enterprise Bean

container address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container
 11/5/09 402

Interoperability Overview Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
Figure 33 Heterogeneous EJB Environment

The following sections in this chapter

• describe the goals for EJB invocation interoperability

• provide illustrative scenarios

• describe the interoperability requirements for remote invocations, transactions, naming, and
security.

15.2.1 Interoperability Goals

The goals of the interoperability requirements specified in this chapter are as follows:

• To allow clients in one application deployed in Java EE containers from one server provider to
access services from session and entity beans in another application that is deployed in an EJB
container from a different server provider. For example, web components (JavaServer Pages
and servlets) that are deployed on a Java EE compliant web server provided by one server pro-
vider must be able to invoke the business methods of enterprise beans that are deployed on a
Java EE compliant EJB server from another server provider.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

JSP/
Servlet
client

Application
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOPIIOP

IIOP

IIOP
403 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Interoperability Scenarios

Sun Microsystems, Inc.
• To achieve interoperability without any new requirements on the Java EE application devel-
oper.

• To ensure out-of-the-box interoperability between compliant Java EE products. It must be pos-
sible for an enterprise customer to install multiple Java EE server products from different
server providers (on potentially different operating systems), deploy applications in the Java
EE servers, and have the multiple applications interoperate.

• To leverage the interoperability work done by standards bodies (including the IETF, W3C, and
OMG) where possible, so that customers can work with industry standards and use standard
protocols to access enterprise beans.

This specification does not address interoperability issues between enterprise beans and non-Java-EE
components. The Java EE platform specification [12] and the JAX-RPC and JAX-WS specifications
[25], [32] describe requirements for interoperability with Internet clients (using HTTP and XML) and
interoperability with enterprise information systems (using the Connector architecture [15]).

Since the interoperability protocol described here is based on CORBA/IIOP, CORBA clients written in
Java, C++, or other languages can also invoke methods on enterprise beans.

This chapter subsumes the previous EJB1.1-to-CORBA mapping document [16].

15.3 Interoperability Scenarios

This section presents a number of interoperability scenarios that motivate the interoperability mecha-
nisms described in later sections of this chapter. These scenarios are illustrative rather than prescriptive.
This section does not specify requirements for a Java EE product to support these scenarios in exactly
the manner described here.

Java EE applications are multi-tier, web-enabled applications. Each application consists of one or more
components, which are deployed in containers. The four types of containers are:

• EJB containers, which host enterprise beans.

• Web containers, which host JavaServer Pages (JSPs) and servlet components as well as static
documents, including HTML pages.

• Application client containers, which host standalone applications.

• Applet containers, which host applets which may be downloaded from a web site. At this time,
there is no requirement for an applet to be able to directly invoke the remote methods of enter-
prise beans.

The scenarios below describe interactions between components hosted in these various container types.

15.3.1 Interactions Between Web Containers and EJB Containers for E-Commerce
 11/5/09 404

Interoperability Scenarios Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
Applications

This scenario occurs for business-to-business and business-to-consumer interactions over the Internet.

Scenario 1: A customer wants to buy a book from an Internet bookstore. The bookstore’s web site con-
sists of a Java EE application containing JSPs that form the presentation layer, and another Java EE
application containing enterprise beans that have the business logic and database access code. The
JSPs and enterprise beans are deployed in containers from different vendors.

At deployment time: The enterprise beans are deployed, and their EJBHome objects are published in
the EJB server’s name service. The Deployer links the EJB reference in the JSP’s deployment descriptor
to the URL of the enterprise bean’s EJBHome object, which can be looked up from the name service.
The transaction attribute specified in the enterprise bean’s deployment descriptor is RequiresNew
for all business methods. Because the “checkout” JSP requires secure access to set up payments for
purchases, the bookstore’s administrator configures the “checkout” JSP to require access over HTTPS
with only server authentication. Customer authentication is done using form-based login. The “book
search” JSP is accessed over normal HTTP. Both JSPs talk with enterprise beans that access the book
database. The web and EJB containers use the same customer realm and have a trust relationship with
each other. The network between the web and EJB servers is not guaranteed to be secure from attacks.

At runtime: The customer accesses the book search JSP using a browser. The JSP looks up the enter-
prise bean’s EJBHome object in a name service, and calls findBooks(...) with the search criteria
as parameters. The web container establishes a secure session with the EJB container with mutual
authentication between the containers, and invokes the enterprise bean. The customer then decides to
buy a book, and accesses the “checkout” JSP. The customer enters the necessary information in the
login form, which is used by the web server to authenticate the customer. The JSP invokes the enterprise
bean to update the book and customer databases. The customer’s principal is propagated to the EJB
container and used for authorization checks. The enterprise bean completes the updates and commits
the transaction. The JSP sends back a confirmation page to the customer.

15.3.2 Interactions Between Application Client Containers and EJB Containers Within
an Enterprise’s Intranet

Scenario 2.1: An enterprise has an expense accounting application used by employees from their desk-
tops. The server-side consists of a Java EE application containing enterprise beans that are deployed
on one vendor's Java EE product, which is hosted in a datacenter. The client side consists of another
Java EE application containing an application client deployed using another vendor's Java EE infra-
structure. The network between the application client and the EJB container is insecure and needs to be
protected against spoofing and other attacks.

At deployment time: The enterprise beans are deployed and their EJBHome objects are published in the
enterprise’s name service. The application clients are configured with the names of the EJBHome
objects. The Deployer maps employees to roles that are allowed access to the enterprise beans. The Sys-
tem Administrator configures the security settings of the application client and EJB container to use cli-
ent and server authentication and message protection. The System Administrator also does the
necessary client-side configuration to allow client authentication.
405 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Interoperability Scenarios

Sun Microsystems, Inc.
At runtime: The employee logs on using username and password. The application client container may
interact with the enterprise’s authentication service infrastructure to set up the employee’s credentials.
The client application does a remote invocation to the name server to look up the enterprise bean’s EJB-
Home object, and creates the enterprise beans. The application client container uses a secure transport
protocol to interact with the name server and EJB server, which does mutual authentication and also
guarantees the confidentiality and integrity of messages. The employee then enters the expense informa-
tion and submits it. This causes remote business methods of the enterprise beans to be invoked. The EJB
container performs authorization checks and, if they succeed, executes the business methods.

Scenario 2.2: This is the same as Scenario 2.1, except that there is no client-side authentication infra-
structure set up by the System Administrator which can authenticate at the transport protocol layer. At
runtime the client container needs to send the user’s password to the server during the method invoca-
tion to authenticate the employee.

15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet

Scenario 3: An enterprise has an expense accounting application which needs to communicate with a
payroll application. The applications use enterprise beans and are deployed on Java EE servers from
different vendors. The Java EE servers and naming/authentication services may be in the enterprise's
datacenter with a physically secure private network between them, or they may need to communicate
across the intranet, which may be less secure. The applications need to update accounts and payroll
databases. The employee (client) accesses the expense accounting application as described in Scenario
2.

At deployment time: The Deployer configures both applications with the appropriate database
resources. The accounts application is configured with the name of the EJBHome object of the payroll
application. The payroll bean’s deployment descriptor specifies the RequiresNew transaction
attribute for all methods. The applications use the same principal-to-role mappings (e.g. the roles may
be Employee, PayrollDept, AccountsDept). The Deployer of these two applications has
administratively set up a trust relationship between the two EJB containers, so that the containers do
not need to authenticate principals propagated on calls to enterprise beans from the other container.
The System Administrator also sets up the message protection parameters of the two containers if the
network is not physically secure.

At runtime: An employee makes a request to the accounts application which requires it to access the
payroll application. The accounts application does a lookup of the payroll application’s EJBHome
object in the naming/directory service and creates enterprise beans. It updates the accounts database
and invokes a remote method of the payroll bean. The accounts bean’s container propagates the
employee’s principal on the method call. The payroll bean’s container maps the propagated employee
principal to a role, does authorization checks, and sets up the payroll bean’s transaction context. The
container starts a new transaction, then the payroll bean updates the payroll database, and the con-
tainer commits the transaction. The accounts bean receives a status reply from the payroll bean. If an
error occurs in the payroll bean, the accounts bean executes code to recover from the error and restore
the databases to a consistent state.
 11/5/09 406

Overview of Interoperability Requirements Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
15.3.4 Intranet Application Interactions Between Web Containers and EJB Containers

Scenario 4: This is the same as scenario 2.1, except that instead of using a “fat-client” desktop applica-
tion to access the enterprise’s expense accounting application, employees use a web browser and con-
nect to a web server in the intranet that hosts JSPs. The JSPs gather input from the user (e.g., through
an HTML form), invoke enterprise beans that contain the actual business logic, and format the results
returned by the enterprise beans (using HTML).

At deployment time: The enterprise Deployer configures its expense accounting JSPs to require access
over HTTPS with mutual authentication. The web and EJB containers use the same customer realm and
have a trust relationship with each other.

At run-time: The employee logs in to the client desktop, starts the browser, and accesses the expense
accounting JSP. The browser establishes an HTTPS session with the web server. Client authentication is
performed (for example) using the employee’s credentials which have been established by the operating
system at login time (the browser interacts with the operating system to obtain the employee’s creden-
tials). The JSP looks up the enterprise bean’s EJBHome object in a name service. The web container
establishes a secure session with the EJB container with mutual authentication and integrity/confidenti-
ality protection between the containers, and invokes methods on the enterprise beans.

15.4 Overview of Interoperability Requirements

The interoperability requirements used to support the above scenarios are:

1. Remote method invocation on an enterprise bean’s EJBObject and EJBHome object references
(scenarios 1,2,3,4), described in section 15.5.

2. Name service lookup of the enterprise bean’s EJBHome object (scenarios 1,2,3,4), described in
section 15.7.

3. Integrity and confidentiality protection of messages (scenarios 1,2,3,4), described in section
15.8.

4. Authentication between an application client and EJB container (described in section 15.8):

4.1 Mutual authentication at the transport protocol layer when there is client-side authen-
tication infrastructure such as certificates (scenario 2.1).

4.2 Transfer of the user’s authentication data from application client to EJB container to
allow the EJB container to authenticate the client when there is no client-side authen-
tication infrastructure (scenario 2.2).

5. Mutual authentication between two EJB containers or between a web and EJB container to
establish trust before principals are propagated (scenarios 1,3,4), described in section 15.8.
407 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Remote Invocation Interoperability

Sun Microsystems, Inc.
6. Propagation of the Internet or intranet user’s principal name for invocations on enterprise
beans from web or EJB containers when the client and server containers have a trust relation-
ship (scenarios 1,3,4), described in section 15.8.

EJB, web, and application client containers must support the above requirements separately as well as
in combinations.

15.5 Remote Invocation Interoperability

This section describes the interoperability mechanisms that enable remote invocations on EJBObject
and EJBHome object references when client containers and EJB containers are provided by different
vendors. This is needed to satisfy interoperability requirement (1) in section 15.4.

All EJB, web, and application client containers must support the IIOP 1.2 protocol for remote invoca-
tions on EJBObject and EJBHome references. EJB containers must be capable of servicing IIOP 1.2
based invocations on EJBObject and EJBHome objects. IIOP 1.2 is part of the CORBA 2.3.1 specifica-
tion [17] from the OMG[82]. Containers may additionally support vendor-specific protocols.

CORBA Interoperable Object References (IORs) for EJBObject and EJBHome object references must
include the GIOP version number 1.2. The IIOP infrastructure in all Java EE containers must be able to
accept fragmented GIOP messages, although sending fragmented messages is optional. Bidirectional
GIOP messages may optionally be supported by Java EE clients and servers: if a Java EE server
receives an IIOP message from a client which contains the BiDirIIOPServiceContext structure,
it may or may not use the same connection for sending requests back to the client.

Since Java applications use Unicode characters by default, Java EE containers are required to support
the Unicode UTF16 code set for transmission of character and string data (in the IDL wchar and
wstring datatypes). Java EE containers may optionally support additional code sets. EJBObject and
EJBHome IORs must have the TAG_CODE_SETS tagged component which declares the codesets sup-
ported by the EJB container. IIOP messages which include wchar and wstring datatypes must have
the code sets service context field. The CORBA 2.3.1 requirements for code set support must be fol-
lowed by Java EE containers.

EJB containers are required to translate Java types to their on-the-wire representation in IIOP messages
using the Java Language to IDL mapping specification [10] with the wire formats for IDL types as
described in the GIOP specification in CORBA 2.3. The following subsections describe the mapping
details for Java types.

[82] CORBA APIs and earlier versions of the IIOP protocol are already included in the J2SE 1.2, J2SE 1.3 and J2EE 1.2 platforms
through JavaIDL and RMI-IIOP.
 11/5/09 408

Remote Invocation Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
15.5.1 Mapping Java Remote Interfaces to IDL

The Java Language to IDL Mapping specification [10] describes precisely how the remote home and
remote interfaces of a session bean or entity bean are mapped to IDL. This mapping to IDL is typically
implicit when Java RMI over IIOP is used to invoke enterprise beans. Java EE clients use only the Java
RMI APIs to invoke enterprise beans. The client container may use the CORBA portable Stub APIs for
the client-side stubs. EJB containers may create CORBA Tie objects for each EJBObject or EJBHome
object.

15.5.2 Mapping Value Objects to IDL

The Java interfaces that are passed by value during remote invocations on enterprise beans are
javax.ejb.Handle, javax.ejb.HomeHandle, and javax.ejb.EJBMetaData. The
Enumeration or Collection objects returned by entity bean finder methods are value types.
There may also be application-specific value types that are passed as parameters or return values on
enterprise bean invocations. In addition, several Java exception classes that are thrown by remote meth-
ods also result in concrete IDL value types. All these value types are mapped to IDL abstract value
types or abstract interfaces using the rules in the Java Language to IDL Mapping.

15.5.3 Mapping of System Exceptions

Java system exceptions, including the java.rmi.RemoteException and its subclasses, may be
thrown by the EJB container. If the client’s invocation was made over IIOP, the EJB server is required to
map these exceptions to CORBA system exceptions and send them in the IIOP reply message to the cli-
ent, as specified in the following table

For EJB clients, the ORB’s unmarshaling machinery maps CORBA system exceptions received in the
IIOP reply message to the appropriate Java exception as specified in the Java Language to IDL map-
ping. This results in the original Java exception being received by the client Java EE component.

System exception thrown by EJB
container

CORBA system exception
received by client ORB

javax.transaction.
TransactionRolledbackException

TRANSACTION_ROLLEDBAC
K

javax.transaction.
TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.
InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN
409 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Remote Invocation Interoperability

Sun Microsystems, Inc.
15.5.4 Obtaining Stub and Client View Classes

When a Java EE component (application client, JSP, servlet or enterprise bean) receives a reference to
an EJBObject or EJBHome object through JNDI lookup or as a parameter or return value of an invoca-
tion on an enterprise bean, an instance of an RMI-IIOP stub class (proxy) for the enterprise bean’s
remote home or remote RMI interface needs to be created. When a component receives a value object as
a parameter or return value of an enterprise bean invocation, an instance of the value class needs to be
created. The stub class, value class, and other client view classes must be available to the referencing
container (the container hosting the component that receives the reference or value type).

The client view classes, including application value classes, must be packaged with the referencing
component’s application, as described in Section 20.3.

Stubs for invoking on EJBHome and EJBObject references must be provided by the referencing con-
tainer, for example, by generating stub classes at deployment time for the EJBHome and EJBObject
interfaces of the referenced beans that are packaged with the referencing component’s application. Stub
classes may or may not follow the standard RMI-IIOP portable stub architecture.

Containers may optionally support run-time downloading of stub and value classes needed by the refer-
encing container. The CORBA 2.3.1 specification and the Java Language to IDL Mapping specify how
stub and value type implementations are to be downloaded: using codebase URLs that are either embed-
ded in the EJBObject or EJBHome’s IOR, or sent in the IIOP message service context, or marshalled
with the value type. The URLs for downloading may optionally include an HTTPS URL for secure
downloading.

15.5.5 System Value Classes

System value classes are serializable value classes implementing the javax.ejb.Handle,
javax.ejb.HomeHandle, javax.ejb.EJBMetaData, java.util.Enumeration,
java.util.Collection, and java.util.Iterator interfaces. These value classes are pro-
vided by the EJB container vendor. They must be provided in the form of a JAR file by the container
hosting the referenced bean. For interoperability scenarios, if a referencing component would use such
system value classes at runtime, the Deployer must ensure that these system value classes provided by
the container hosting the referenced bean are available to the referencing component. This may be done,
for example, by including these system value classes in the classpath of the referencing container, or by
deploying the system value classes with the referencing component’s application by providing them to
the deployment tool.

Implementations of these system value classes must be portable (they must use only J2SE and Java EE
APIs) so that they can be instantiated in another vendor’s container. If the system value class implemen-
tation needs to load application-specific classes (such as remote home or remote interfaces) at runtime,
it must use the thread context class loader. The referencing container must make application-specific
classes available to the system value class instance at runtime through the thread context class loader.
 11/5/09 410

Remote Invocation Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
15.5.5.1 HandleDelegate SPI
The javax.ejb.spi.HandleDelegate service provider interface defines methods that enable
portable implementations of Handle and HomeHandle that are instantiated in a different vendor’s
container to serialize and deserialize EJBObject and EJBHome references. The HandleDelegate
interface is not used by enterprise beans or Java EE application components directly.

EJB, web and application client containers must provide implementations of the HandleDelegate
interface. The HandleDelegate object must be accessible in the client Java EE component’s JNDI
namespace at the reserved name “java:comp/HandleDelegate”. The HandleDelegate object is
not exported outside the container that provides it.

Portable implementations of Handle and HomeHandle must look up the HandleDelegate object of
the container in which they are instantiated using JNDI at the name “java:comp/HandleDele-
gate” and use the HandleDelegate object to serialize and deserialize EJBObject and EJBHome refer-
ences as follows:

• Handle and HomeHandle implementation classes must define writeObject and readOb-
ject methods to control their serialization and deserialization. These methods must not wrap
or substitute the stream objects that are passed to the HandleDelegate methods.

• The writeObject method of Handle implementations must call HandleDele-
gate.writeEJBObject with the Handle’s EJBObject reference and the serialization out-
put stream object as parameters. The HandleDelegate implementation (which is provided by
the client container in which the Handle was instantiated, potentially from a different vendor)
then writes the EJBObject to the output stream. If the output stream corresponds to an IIOP
message, the HandleDelegate must use the standard IIOP abstract interface format for writing
the EJBObject reference.

• The readObject method of Handle implementations must call HandleDele-
gate.readEJBObject with the serialization input stream object as parameter, and with the
stream positioned at the location where the EJBObject can be read. The HandleDelegate
implementation then reads the EJBObject from the input stream and returns it to the Handle. If
the input stream corresponds to an IIOP message, the HandleDelegate must use the standard
abstract interface format for reading the EJBObject reference. The HandleDelegate must
ensure that the EJBObject reference is capable of performing invocations immediately after
deserialization. The Handle maintains a reference to the EJBObject as a transient instance vari-
able and returns it when the Java EE component calls Handle.getEJBObject.

• The writeObject and readObject methods of HomeHandle implementation classes
must be implemented similarly, by using HandleDelegate.writeEJBHome and Han-
dleDelegate.readEJBHome respectively.
411 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Transaction Interoperability

Sun Microsystems, Inc.
15.6 Transaction Interoperability

Transaction interoperability between containers provided by different vendors is an optional feature in
this version of the EJB specification. Vendors may choose to not implement transaction interoperability.
However, vendors who choose to implement transaction interoperability must follow the requirements
in sections 15.6.1 and 15.6.2, and vendors who choose not to implement transaction interoperability
must follow the requirements in section 15.6.2.

15.6.1 Transaction Interoperability Requirements

A distributed transaction started by a web or EJB container must be able to propagate in a remote invo-
cation to an enterprise bean in an EJB container provided by a different vendor, and the containers must
participate in the distributed two-phase commit protocol.

15.6.1.1 Transaction Context Wire Format

Transaction context propagation from client to EJB container uses the implicit propagation mechanism
described in the CORBA Object Transaction Service (OTS) v1.2 specification [11].

The transaction context format in IIOP messages is specified in the CosTransactions::Propa-
gationContext structure described in the OTS specification. EJB containers that support transac-
tion interoperability are required to be capable of producing and consuming transaction contexts in IIOP
messages in the format described in the OTS specification. Web containers that support transaction
interoperability are required to include client-side libraries which can produce the OTS transaction con-
text for sending over IIOP.

Note that it is not necessary for containers to include the Java mappings of the OTS APIs. A container
may implement the requirements in the OTS specification in any manner, for example using a non-Java
OTS implementation, or an on-the-wire bridge between an existing transaction manager and the OTS
protocol, or an OTS wrapper around an existing transaction manager.

The CosTransactions::PropagationContext structure must be included in IIOP messages
sent by web or EJB containers when required by the rules described in the OTS 1.2 specification. The
target EJB container must process IIOP invocations based on the transaction policies of EJBObject or
EJBHome references using the rules described in the OTS 1.2 specification [11].

15.6.1.2 Two-Phase Commit Protocol

The object interaction diagram in Figure 34 illustrates the interactions between the client and server
transaction managers for transaction context propagation, resource and synchronization object registra-
tion, and two-phase commit. This diagram is an example of the interactions between the various enti-
ties; it is not intended to be prescriptive.
 11/5/09 412

Transaction Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
Figure 34 Transaction Context Propagation

Containers that perform transactional work within the scope of a transaction must register an OTS
Resource object with the transaction coordinator whose object reference is included in the propagated
transaction context (step 3), and may also register an OTS Synchronization object (step 2). If the server
container does not register an OTS Synchronization object, it must still ensure that the beforeCom-
pletion method of session beans and ejbStore method of entity beans are called with the proper
transaction context. Containers must participate in the two-phase commit and recovery procedures per-
formed by the transaction coordinator / terminator (steps 6,7), as described by the OTS specification.

client
client’s
transaction
manager

server’s
transaction
managercontainer

EJB
container

IIOP request message with transaction context

register resource

EJB
instance

Resource

enlist resource

invoke bean

access resource

IIOP reply message

commit

commit

commit

before_completion

before_completion

prepare

prepare

register synchronization

register synchronization (optional)

ejbStore

flush state

Manager
sending request

received request

sending reply

received reply

1

2

3

4

5

6

7

413 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Transaction Interoperability

Sun Microsystems, Inc.
Compliant Java EE containers must not use nested transactions in interoperability scenarios.

15.6.1.3 Transactional Policies of Enterprise Bean References

The OTS1.2 specification describes the CosTransactions::OTSPolicy and CosTransac-
tions::InvocationPolicy structures that are encoded in IORs as tagged components. EJBOb-
ject and EJBHome references must contain these tagged components[83] with policy values as described
below.

The transaction attributes of enterprise beans can be specified per method, while in OTS the entire
CORBA object has the same OTS transaction policy. The rules below ensure that the transaction con-
text will be propagated if any method of an enterprise bean needs to execute in the client’s transaction
context. However, in some cases there may be extra performance overhead of propagating the client’s
transaction context even if it will not be used by the enterprise bean method.

EJBObject and EJBHome references may have the InvocationPolicy value as either CosTransac-
tions::SHARED or CosTransactions::EITHER[84].

All EJBObject and EJBHome references must have the OTSPolicy value as CosTransac-
tions::ADAPTS. This is necessary to allow clients to invoke methods of the javax.ejb.EJBOb-
ject and javax.ejb.EJBHome with or without a transaction.

The CosTransactions::Synchronization object registered by the EJB container with the
transaction coordinator should have the OTSPolicy value CosTransactions::ADAPTS and Invo-
cationPolicy value CosTransactions::SHARED to allow enterprise beans to do transactional work
during the beforeCompletion notification from the transaction coordinator.

15.6.1.4 Exception Handling Behavior

The exception handling behavior described in the OTS1.2 specification must be followed. In particular,
if an application exception (an exception which is not a CORBA system exception and does not extend
java.rmi.RemoteException) is returned by the server, the request is defined as being success-
ful; hence the client-side OTS library must not roll back the transaction. This allows application excep-
tions to be propagated back to the client without rolling back the transaction, as required by the
exception handling rules in Chapter 14.

15.6.2 Interoperating with Containers that do not Implement Transaction

[83] One way to include the tagged components in IORs is to create the object references using a Portable Object Adapter (POA)
which is initialized with the appropriate transaction policies. Note that POA APIs are not required to be supported by server con-
tainers.

[84] If the InvocationPolicy is not present in the IOR, it is interpreted by the client as if the policy value was CosTransac-
tions::EITHER.
 11/5/09 414

Transaction Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
Interoperability

The requirements in this subsection are designed to ensure that when a Java EE container does not sup-
port transaction interoperability, the failure modes are well defined so that the integrity of an applica-
tion’s data is not compromised: at worst the transaction is rolled back. When a Java EE client
component expects the client’s transaction to propagate to the enterprise bean but the client or EJB con-
tainer cannot satisfy this expectation, a java.rmi.RemoteException or subclass is thrown,
which ensures that the client’s transaction will roll back.

In addition, the requirements below allow a container that does not support transaction propagation to
interoperate with a container that does support transaction propagation in the cases where the enterprise
bean method’s transaction attribute indicates that the method would not be executed in the client’s trans-
action.

15.6.2.1 Client Container Requirements

If the client in another container invokes an enterprise bean’s method when there is no active global
transaction associated with the client’s thread, the client container does not include a transaction context
in the IIOP request message to the EJB server, i.e., there is no CosTransactions::Propaga-
tionContext structure in the IIOP request header.

The client application component expects a global transaction to be propagated to the server only if the
client’s thread has an active global transaction. In this scenario, if the client container does not support
transaction interoperability, it has two options:

1. If the client container does not support transaction propagation or uses a non-OTS protocol, it
must include the OTS CosTransactions::PropagationContext structure in the
IIOP request to the server (step 1 in the object interaction diagram above), with the Cos-
Transactions::Coordinator and CosTransactions::Terminator object ref-
erences as null. The remaining fields in this “null transaction context,” such as the transaction
identifier, are not interpreted and may have any value. The “null transaction context” indicates
that there is a global client transaction active but the client container is not capable of propagat-
ing it to the server. The presence of this “null transaction context” allows the EJB container to
determine whether the Java EE client component expects the client’s global transaction to
propagate to the server.

2. Client containers that use the OTS transaction context format but still do not support transac-
tion interoperability with other vendor’s containers must reject the Coordina-
tor::register_resource call (step 3 in the object interaction diagram above) by
throwing a CORBA system exception if the server’s Resource object reference indicates that it
belongs to another vendor’s container.

15.6.2.2 EJB container requirements

All EJB containers (including those that do not support transaction propagation) must include the Cos-
Transactions::OTSPolicy and optionally the CosTransactions::InvocationPol-
icy tagged component in the IOR for EJBObject and EJBHome references as described in section
15.6.1.3.
415 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Transaction Interoperability

Sun Microsystems, Inc.
15.6.2.2.1 Requirements for EJB Containers Supporting Transaction Interoperability

When an EJB container that supports transaction propagation receives the IIOP request message, it must
behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow the
behavior described in Section 13.6.

• If there is a valid, complete OTS transaction context in the IIOP message, the container must
follow the behavior described in Section 13.6.

• If there is a null transaction context (as defined in section 15.6.2.1 above) in the IIOP message,
the container’s required behavior is described in the table below. The entry “throw RemoteEx-
ception” indicates that the EJB container must throw the java.rmi.RemoteException
to the client after the “received request” interaction with the server’s transaction manager
(after step 1 in the object interaction diagram above).

15.6.2.2.2 Requirements for EJB Containers not Supporting Transaction Interoperability

When an EJB container that does not support transaction interoperability receives the IIOP request mes-
sage, it must behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow the
behavior described in Section 13.6.

• If there is a valid, complete OTS transaction context in the IIOP message, the container’s
required behavior is described in the table below.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 13.6

Supports throw RemoteException

NotSupported follow Section 13.6

Never follow Section 13.6

Bean Managed follow Section 13.6
 11/5/09 416

Naming Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
• If there is a null transaction context (as defined in section 15.6.2.1) in the IIOP message, the
container’s required behavior is described in the table below. Note that the container may not
know whether the received transaction context in the IIOP message is valid or null.

EJB containers that accept the OTS transaction context format but still do not support interoperability
with other vendors’ client containers must follow the column in the table above for “null or valid OTS
transaction context” if the transaction identity or the Coordinator object reference in the propagated cli-
ent transaction context indicate that the client belongs to a different vendor’s container.

15.7 Naming Interoperability

This section describes the requirements for supporting interoperable access to naming services for look-
ing up EJBHome object references (interoperability requirement two in section 15.4).

EJB containers are required to be able to publish EJBHome object references in a CORBA CosNaming
service [18]. The CosNaming service must implement the IDL interfaces in the CosNaming module
defined in [18] and allow clients to invoke the resolve and list operations over IIOP.

The CosNaming service must follow the requirements in the CORBA Interoperable Name Service spec-
ification [19] for providing the host, port, and object key for its root NamingContext object. The
CosNaming service must be able to service IIOP invocations on the root NamingContext at the
advertised host, port, and object key.

Client containers (i.e., EJB, web, or application client containers) are required to include a JNDI Cos-
Naming service provider that uses the mechanisms defined in the Interoperable Name Service specifica-
tion to contact the server’s CosNaming service, and to resolve the EJBHome object using standard
CosNaming APIs. The JNDI CosNaming service provider may or may not use the JNDI SPI architec-
ture. The JNDI CosNaming service provider must access the root NamingContext of the server’s Cos-
Naming service by creating an object reference from the URL
corbaloc:iiop:1.2@<host>:<port>/<objectkey> (where <host>, <port>, and
<objectkey> are the values corresponding to the root NamingContext advertised by the server’s
CosNaming service), or by using an equivalent mechanism.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null or valid OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 13.6

Supports throw RemoteException

NotSupported follow Section 13.6

Never follow Section 13.6

Bean Managed follow Section 13.6
417 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Security Interoperability

Sun Microsystems, Inc.
At deployment time, the Deployer of the client container should obtain the host, port and object key of
the server’s CosNaming service and the CosNaming name of the server EJBHome object (e.g. by
browsing the server’s namespace) for each such EJB annotation or ejb-ref element in the client
component’s deployment descriptor. The ejb-ref-name (which is used by the client code in the
JNDI lookup call) should then be linked to the EJBHome object’s CosNaming name. At run-time, the
client component’s JNDI lookup call uses the CosNaming service provider, which contacts the server’s
CosNaming service, resolves the CosNaming name, and returns the EJBHome object reference to the
client component.

Since the EJBHome object’s name is scoped within the namespace of the CosNaming service that is
accessible at the provided host and port, it is not necessary to federate the namespaces of the client and
server containers.

The advantage of using CosNaming is better integration with the IIOP infrastructure that is already
required for interoperability, as well as interoperability with non-Java-EE CORBA clients and servers.
Since CosNaming stores only CORBA objects it is likely that vendors will use other enterprise direc-
tory services for storing other resources.

Security of CosNaming service access is achieved using the security interoperability protocol described
in Section 15.8. The CosNaming service must support this protocol. Clients which construct the root
NamingContext object reference from a URL should send an IIOP LocateRequest message to the
CosNaming service to obtain the complete IOR (with SSL information) of the root NamingContext, and
then initiate an SSL session with the CosNaming service, as determined by the client policy.

15.8 Security Interoperability

This section describes the interoperable mechanisms that support secure invocations on enterprise beans
in intranets. These mechanisms are based on the CORBA/IIOP protocol.

EJB containers are required to follow the protocol rules prescribed by the CSIv2 specification Conform-
ance Level 0.

15.8.1 Introduction

The goal of the secure invocation mechanisms is to support the interoperability requirements described
earlier in this chapter, as well as be capable of supporting security technologies that are expected to be
widely deployed in enterprises, including Kerberos-based secret key mechanisms and X.509 certifi-
cate-based public key mechanisms.
 11/5/09 418

Security Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
The authentication identity (i.e. principal) associated with a Java EE component is usually that of the
user on whose behalf the component is executing[85]. The principal under which an enterprise bean
invocation is performed is either that of the bean’s caller or the run-as principal which was configured
by the Deployer. When there is a chain of invocations across a web component and enterprise beans, an
intermediate component may use the principal of the caller (the initiating client) or the intermediate
component may use its run-as principal to perform an invocation on the callee, depending on the secu-
rity identity specified for the intermediate component in its deployment descriptor.

The security principal associated with a container depends on the type of container. Application client
containers usually do not have a separate principal associated with them (they operate under the user’s
principal). Web and EJB containers are typically associated with a security principal of their own (e.g.,
the operating system user for the container’s process) which may be configured by the System Adminis-
trator at deployment time. When the client is a web or EJB container, the difference between the client
component’s principal and the client container’s principal is significant for interoperability consider-
ations.

15.8.1.1 Trust Relationships Between Containers, Principal Propagation

When there is a chain of multiple invocations across web components and enterprise beans, intermedi-
ate components may not have access to the authentication data of the initiating client to provide proof of
the client’s identity to the target. In such cases, the target’s authentication requirements can be satisfied
if the target container trusts the intermediate container to vouch for the authenticity of the propagated
principal. The call is made using the intermediate container’s principal and authentication data, while
also carrying the propagated principal of the initiating client. The invocation on the target enterprise
bean is authorized and performed using the propagated principal. This procedure also avoids the over-
head associated with authentication of clients on every remote invocation in a chain.

EJB containers are required to provide the Deployer or Administrator with the tools to configure trust
relationships for interactions with intermediate web or EJB containers[86]. If a trust relationship is set
up, the containers are usually configured to perform mutual authentication, unless the security of the
network can be ensured by some physical means. If the network is physically secure, the target EJB
container may be configured to trust all client containers. After a trust relationship is set up, the target
EJB container does not need to independently authenticate the initiating client principal sent by the
intermediate container on invocations. Thus only the principal name of the initiating client (which may
include a realm) needs to be propagated. After a trust relationship has been established, the target EJB
container must be able to accept invocations carrying only the principal name of the initiating client.

[85] When there are concurrent invocations on a component from multiple clients, a different principal may be associated with the
thread of execution for each invocation.

[86] One way to achieve this is to configure a “trusted container list” for each EJB container which contains the list of intermediate cli-
ent containers that are trusted. If the list is empty, then the target EJB container does not have a trust relationship with any inter-
mediate container.

C S1 S2

application client
or web client

EJB or web
container

EJB container

(initiating client) (intermediate)
(target)
419 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Security Interoperability

Sun Microsystems, Inc.
For the current interoperability needs of Java EE, it is assumed that trust relationships are transitive,
such that if a target container trusts an intermediate container, it implicitly trusts all containers trusted
by the intermediate container.

If no trust relationship has been set up between a target EJB container and an intermediate web or EJB
container, the target container must not accept principals propagated from that intermediate container,
hence the target container needs to have access to and independently verify the initiating client princi-
pal’s authentication data.

Web and EJB containers are required to support caller propagation mode (where the initiating client’s
principal is propagated down the chain of calls on enterprise beans) and run-as mode (where the
web/EJB component’s run-as identity is propagated). This is needed for scenarios 1, 3 and 4 where the
internet or intranet user’s principal needs to be propagated to the target EJB container.

15.8.1.2 Application Client Authentication

Application client containers that have authentication infrastructure (such as certificates, Kerberos) can:

• authenticate the user by interacting with an authentication service (e.g. the Kerberos KDC) in
the enterprise

• inherit an authentication context which was established at system login time from the operating
system process, or

• obtain the user’s certificate from a client-side store.

These may be achieved by plugging in a Java Authentication and Authorization Service (JAAS) login
module for the particular authentication service. After authentication is completed, a credential is asso-
ciated with the client’s thread of execution, which is used for all invocations on enterprise beans made
from that thread.

If there is no authentication infrastructure installed in the client’s environment, or the authentication
infrastructure is not capable of authenticating at the transport protocol layer, the client may send its pri-
vate credentials (e.g. password) over a secure connection to the EJB server, which authenticates the user
by interacting with an authentication service (e.g. a secure user/password database). This is similar to
the basic authentication feature of HTTP.

15.8.2 Securing EJB Invocations

This subsection describes the interoperable protocol requirements for providing authentication, protec-
tion of integrity and confidentiality, and principal propagation for invocations on enterprise beans. The
invocation takes place over an enterprise’s intranet as described in the scenarios in section 15.3. Since
EJB invocations use the IIOP protocol, we need to secure IIOP messages between client and server con-
tainers. The client container may be any of the Java EE containers; the server container is an EJB con-
tainer.
 11/5/09 420

Security Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
The secure interoperability requirements for EJB 2.0 (and later) and other J2EE 1.3 (and later) contain-
ers are based on Conformance Level 0 of the Common Secure Interoperability version 2 (CSIv2) Final
Available specification [23], which was developed by the OMG. EJB, web, and application client con-
tainers must support all requirements of Conformance Level 0 of the CSIv2 specification. The follow-
ing subsections describe how the CSIv2 features are used to realize the scenarios described in section
15.3.

15.8.2.1 Secure Transport Protocol

The Secure Sockets Layer (SSL 3.0) protocol [22] and the related IETF standard Transport Layer Secu-
rity (TLS 1.0) protocol [20] provide authentication and message protection (that is, integrity and/or con-
fidentiality) at the transport layer. The original SSL and TLS specifications supported only X.509
certificates for authenticating principals. Recently, Kerberos-based authentication mechanisms and
cipher suites have been defined for TLS (RFC 2712 [21]). Thus the TLS specification is capable of sup-
porting the two main security technologies that are expected to be widely deployed in enterprises.

EJB, web and application client containers are required to support both SSL 3.0 and TLS 1.0 as security
protocols for IIOP. This satisfies interoperability requirement 3 in section 15.4. Compliant containers
must be capable of using the following public key SSL/TLS ciphersuites based on policies set by the
System Administrator:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA[87]

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Support for Kerberos ciphersuites is not specified.

When using IIOP over SSL, a secure channel between client and server containers is established at the
SSL layer. The SSL handshake layer handles authentication (either mutual or server-only) between con-
tainers, negotiation of cipher suite for bulk data encryption, and optionally provides a compression
method. The SSL record layer performs confidentiality and integrity protection on application data.
Since compliant Java EE products are already required to support SSL (HTTPS for Internet communi-
cation), the use of SSL/TLS provides a relatively easy route to interoperable security at the transport
layer.

[87] This ciphersuite is mandatory for compliant TLS implementations as specified in [20].
421 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Security Interoperability

Sun Microsystems, Inc.
15.8.2.2 Security Information in IORs

Before initiating a secure connection to the EJB container, the client needs to know the hostname and
port number at which the server is listening for SSL connections, and the security protocols supported
or required by the server object. This information is obtained from the EJBObject or EJBHome refer-
ence’s IOR.

The CSIv2 specification [23] describes the TAG_CSI_SEC_MECH_LIST tagged component which is
included in the IORs of secured objects. This component contains a sequence of CSIIOP::Com-
poundSecMech structures (in decreasing order of the server’s preference) that contain the target
object’s security information for transport layer and service context layer mechanisms. This information
includes the server’s SSL/TLS port, its security principal and supported/required security mechanisms.

EJB containers must be capable of inserting the CSIv2 tagged components into the IORs for EJBObject
and EJBHome references, based on the Deployer or System Administrator’s security policy settings.
Compliant EJB containers must follow the Conformance Level 0 rules described in the CSIv2 specifica-
tion for constructing these IORs.

EJB containers must also be capable of creating IORs that allow access to enterprise beans over unpro-
tected IIOP, based on the security policies set by the Deployer or System Administrator.

15.8.2.3 Propagating Principals and Authentication Data in IIOP Messages

In scenarios where client authentication does not occur at the transport layer it is necessary to support
transfer of authentication data between two containers in the IIOP message service context. When an
intermediate client container does not have authentication data for the initiating client, it is necessary to
support propagation of client principals in the IIOP message service context.

It is assumed that all information exchanged between client and server at the transport layer is also
available to the containers: e.g. the certificates used for authentication at the SSL layer may be used by
the server container for authorization.

The following cases are required to be supported:

1. Application client invocations on enterprise beans with mutual authentication between the
application client and EJB container (C and S1) at the SSL layer (scenario 2.1 in section
15.3.2, interoperability requirement 4.1 in section 15.4). For example, this is possible when the
enterprise has a Kerberos-based authentication infrastructure or when client-side certificates
have been installed. In this case the security context of the IIOP message sent from C to S1
should not contain any additional information.

C S1 S2

application client
or web client

EJB or web
container

EJB container

IIOP/SSLHTTP(S)
IIOP/SSL
 11/5/09 422

Security Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
2. Application client invocations on enterprise beans with server-only authentication between the
application client and EJB container (C and S1) at the SSL layer (scenario 2.2 in section
15.3.2, interoperability requirement 4.2 in section 15.4). This usually happens when the client
cannot authenticate in the transport. In this case, the client container must be capable of insert-
ing into the IIOP message a CSIv2 security context with a client authentication token that con-
tains the client C’s authentication data. Once the EJB container S1 has authenticated the client,
it may or may not maintain state about the client, so subsequent invocations from the client on
the same network connection may need to be authenticated again. The client and server con-
tainers must follow the Conformance Level 0 rules in the CSIv2 specification for client authen-
tication. In particular, support for the GSSUP username-password authentication mechanism is
required. Support for other GSSAPI mechanisms (such as Kerberos) to perform client authen-
tication at the IIOP layer is optional.

3. Invocations from Web/EJB clients to enterprise beans with a trust relationship between the cli-
ent container S1 and server container S2 (scenarios 1,3 and 4 in section 15.3.3, interoperability
requirements five and six in section 15.4). S2 does not need to independently authenticate the
initiating client C. In this case the client container S1 must insert into the IIOP message a secu-
rity context with an identity token in the format described in the CSIv2 specification. The prin-
cipal may be propagated as an X.509 certificate chain or as a X.501 distinguished name or as a
principal name encoded in the GSS exported name format, as described in the CSIv2 specifica-
tion. The identity propagated is determined as follows:

• If the client Web/EJB component is configured to use caller identity, and the caller C
authenticated itself to S1, then the identity token contains the initiating client C’s
identity.

• If the client component is configured to use caller identity, and the caller C did not
authenticate itself to S1, then the identity token contains the anonymous type.

• If the client component is configured to use a run-as identity then the identity token
contains the run-as identity.

Java EE containers are required to support the stateless mode of propagating principal and authentica-
tion information defined in CSIv2 (where the server does not store any state for a particular client prin-
cipal across invocations), and may optionally support the stateful mode.

The caller principal String provided by EJBContext.getCallerPrincipal().getName() is
defined as follows:

• For case one, the principal should be derived from the distinguished name obtained from the
first X.509 certificate in the client’s certificate chain that was provided to the server during
SSL mutual authentication.

• For case two, the principal should be derived from the username obtained from the client
authentication token in the CSIv2 security context of the IIOP message. For the GSSUP user-
name-password mechanism, the principal should be derived from the username in the
GSSUP::InitialContextToken structure.

• For case three, the principal depends on the identity token type in the CSIv2 security context:
• If the type is X.509 certificate chain, then the principal should be derived from the

distinguished name from the first certificate in the chain.
423 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Security Interoperability

Sun Microsystems, Inc.
• If the type is distinguished name, then the principal should be derived from the distin-
guished name.

• If the type is principal name propagated as a GSS exported name, then the principal
should be derived from the mechanism-specific principal name.

• If the anonymous principal type was propagated or the identity token was absent, then
EJBContext.getCallerPrincipal().getName() returns a product-spe-
cific unauthenticated principal name.

15.8.2.4 Security Configuration for Containers

Since the interoperability scenarios involve IIOP/SSL usage in intranets, it is assumed that client and
server container administrators cooperatively configure a consistent set of security policies for the
enterprise.

At product installation or application deployment time, client and server container administrators may
optionally configure the container and SSL infrastructure as described below. These preferences may be
specified at any level of granularity (e.g. per host or per container process or per enterprise bean).

• Configure the list of supported SSL cipher suites in preference order.

• For server containers, configure a list of trusted client container principals with whom the
server has a trust relationship.

• Configure authentication preferences and requirements (e.g. if the server prefers authenticated
clients to anonymous clients). In particular, if a trust relationship has been configured between
two servers, then mutual authentication should be required unless there is physical network
security.

• If the client and server are using certificates for authentication, configure a trusted common
certificate authority for both client and server. If using Kerberos, configure the client and
server with the same KDC or cooperating KDCs.

• Configure a restricted list of trusted server principals that a client container is allowed to inter-
act with, to prevent the client’s private credentials such as password from being sent to
untrusted servers.

15.8.2.5 Runtime Behavior

Client containers determine whether to use SSL for an enterprise bean invocation by using the security
policies configured by the client administrator for interactions with the target host or enterprise bean,
and the target_requires information in the CSIv2 tagged component in the target enterprise
bean’s IOR. If either the client configuration requires secure interactions with the enterprise bean, or the
enterprise bean requires a secure transport, the client should initiate an SSL connection to the server.
The client must follow the rules described in the CSIv2 specification Conformance Level 0 for inter-
preting security information in IORs and including security context information in IIOP messages.
 11/5/09 424

Security Interoperability Enterprise JavaBeans 3.1, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.
When an EJB container receives an IIOP message, its behavior depends on deployment time configura-
tion, run-time information exchanged with the client at the SSL layer, and principal/authentication data
contained in the IIOP message service context. EJB containers are required to follow the protocol rules
prescribed by the CSIv2 specification Conformance Level 0.

When the System Administrator changes the security policies associated with an enterprise bean, the
IORs for EJB references should be updated. When the bean has existing clients holding IORs, it is rec-
ommended that the security policy change should be handled by the client and server containers trans-
parently to the client application if the old security policy is compatible with the new one. This may be
done by using interoperable GIOP 1.2 forwarding mechanisms.
425 November 5, 2009 11:00 am

Support for Distributed Interoperability Enterprise JavaBeans 3.1, Final Release Security Interoperability

Sun Microsystems, Inc.
 11/5/09 426

Overview Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
Chapter 16 Enterprise Bean Environment

This chapter specifies how enterprise beans declare dependencies on external resources and other
objects in their environment, and how those items can be injected into enterprise beans or accessed in
the JNDI naming context.

16.1 Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s business
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent from the
operational environment in which the application will be deployed. Most enterprise beans must access
resource managers and external information. The key issue is how enterprise beans can locate external
information without prior knowledge of how the external information is named and organized in the tar-
get operational environment. The JNDI naming context and Java language metadata annotations pro-
vide this capability.

The enterprise bean environment mechanism attempts to address both of the above issues.

This chapter is organized as follows.
427 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
• Section 16.2 defines the general rules for the use of the JNDI naming context and its interac-
tion with Java language annotations that reference entries in the naming context.

• Section 16.3 defines the general responsibilities for each of the EJB roles, such as Bean Pro-
vider, Application Assembler, Deployer, and Container Provider.

• Section 16.4 defines the basic mechanisms and interfaces that specify and access the enterprise
bean’s environment. The section illustrates the use of the enterprise bean’s environment for
generic customization of the enterprise bean’s business logic.

• Section 16.5 defines the means for obtaining the business interface or home interface of
another enterprise bean using an EJB reference. An EJB reference is a special entry in the
enterprise bean’s environment.

• Section 16.6 defines the means for obtaining the web service interface using a web service ref-
erence. A web service reference is a special entry in the enterprise bean’s environment.

• Section 16.7 defines the means for obtaining a resource manager connection factory using a
resource manager connection factory reference. A resource manager connection factory refer-
ence is a special entry in the enterprise bean’s environment.

• Section 16.8 defines the means for obtaining an administered object that is associated with a
resource (e.g., a CCI InteractionSpec) using a resource environment reference. A
resource environment reference is a special entry in the enterprise bean’s environment.

• Section 16.9 defines the means for obtaining a message destination associated with a resource
using a message destination reference. Message destination references allow the flow of mes-
sages within an application to be specified. A message destination reference is a special entry
in the enterprise bean’s environment.

• Section 16.10 describes the means for obtaining an entity manager factory using a persistence
unit reference.

• Section 16.11 describes the means for obtaining an entity manager using a persistence context
reference.

• Section 16.12 describes the use by eligible enterprise beans of references to a UserTrans-
action object in the bean’s environment to start, commit, and rollback transactions.

• Section 16.13 describes the use of references to a CORBA ORB object in the enterprise bean’s
environment.

• Section 16.14 describes the means for obtaining the TimerService.

• Section 16.15 describes the means for obtaining a bean’s EJBContext object.
 11/5/09 428

Enterprise Bean’s Environment as a JNDI Naming ContextEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
16.2 Enterprise Bean’s Environment as a JNDI Naming Context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise bean’s
business logic during deployment or assembly. The enterprise bean’s environment allows the enterprise
bean to be customized without the need to access or change the enterprise bean’s source code.

Annotations and deployment descriptors are the main vehicles for conveying access information to the
application assembler and deployer about beans’ requirements for customization of business logic and
access to external information.

The container implements the enterprise bean’s environment, and provides it as a JNDI naming context.
The enterprise bean’s environment is used as follows:

1. The enterprise bean makes use of entries from the environment. Entries from the environment
may be injected by the container into the bean’s fields or methods, or the methods of the bean
may access the environment using the EJBContext lookup method or the JNDI interfaces.
The Bean Provider declares in Java language metadata annotations or in the deployment
descriptor all the environment entries that the enterprise bean expects to be provided in its
environment at runtime.

2. The container provides an implementation of the JNDI naming context that stores the enter-
prise bean environment. The container also provides the tools that allow the Deployer to create
and manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the container to create and initialize the environment
entries that are declared by means of the enterprise bean’s annotations or deployment descrip-
tor. The Deployer can set and modify the values of the environment entries.

4. The container injects entries from the environment into the enterprise bean’s fields or methods
as specified by the bean’s metadata annotations or the deployment descriptor.

5. The container makes the environment naming context available to the enterprise bean
instances at runtime. The enterprise bean’s instances can use the EJBContext lookup method
or the JNDI interfaces to obtain the values of the environment entries.

The container must make an enterprise bean’s environment available to any interceptor class
and any JAX-WS message handler for the bean as well. The interceptor and web service han-
dler classes for an enterprise bean share that bean’s environment. Within the context of this
chapter, the term “bean” should be construed as including a bean’s interceptor and handler
classes unless otherwise noted.

16.2.1 Sharing of Environment Entries

For enterprise beans packaged in an ejb-jar, each enterprise bean defines its own set of environment
entries. In this case, all instances of an enterprise bean share the same environment entries; the environ-
ment entries are not shared with other enterprise beans.
429 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Enterprise Bean’s Environment as a JNDI

Sun Microsystems, Inc.
In a .war, there is only a single naming environment shared between all the components in the module.
For enterprise beans packaged in a .war, all enterprise beans share this single naming environment. The
enterprise beans share their environment entries with all other enterprise bean components and web
components in the .war.

Enterprise bean instances are not allowed to modify the bean’s environment at runtime.

Compatibility Note: If an enterprise bean written to the EJB 2.1 API specification is deployed multiple
times in the same container, each deployment results in the creation of a distinct home. The Deployer
may set different values for the enterprise bean environment entries for each home.

In general, lookups of objects in the JNDI java: namespace are required to return a new instance of
the requested object every time. Exceptions are allowed for the following:

• The container knows the object is immutable (for example, objects of type
java.lang.String), or knows that the application can’t change the state of the object.

• The object is defined to be a singleton, such that only one instance of the object may exist in
the JVM.

• The name used for the lookup is defined to return an instance of the object that might be
shared. The name java:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other cases, a new instance of the
requested object must be returned on each lookup. Note that, in the case of resource adapter connection
objects, it is the resource adapter’s ManagedConnectionFactory implementation that is responsi-
ble for satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new instance of the requested
object is injected, or whether a shared instance is injected, is determined by the rules described above.

Terminology warning: The enterprise bean’s “environment” should not be confused with the “environ-
ment properties” defined in the JNDI documentation.

16.2.2 Annotations for Environment Entries
A field or method of a bean class may be annotated to request that an entry from the bean’s environment
be injected. Any of the types of resources or other environment entries[88] described in this chapter may
be injected. Injection may also be requested using entries in the deployment descriptor corresponding to
each of these resource types. The field or method may have any access qualifier (public, private,
etc.) but must not be static.

• A field of the bean class may be the target of injection. The field must not be final. By
default, the name of the field is combined with the name of the class in which the annotation is
used and is used directly as the name in the bean’s naming context. For example, a field named
myDatabase in the class MySessionBean in the package com.acme.example would

[88] The term “resource” is used generically in this chapter to refer to these other environment entries as resources as well. Resources
in the non-generic sense are described in section 16.7.
 11/5/09 430

Enterprise Bean’s Environment as a JNDI Naming ContextEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
correspond to the JNDI name java:comp/env/com.acme.example.MySession-
Bean/myDatabase. The annotation also allows the JNDI name to be specified explicitly.

• Environment entries may also be injected into the bean through bean methods that follow the
naming conventions for JavaBeans properties. The annotation is applied to the set method for
the property, which is the method that is called to inject the environment entry. The JavaBeans
property name (not the method name) is used as the default JNDI name. For example, a
method named setMyDatabase in the same MySessionBean class would correspond to
the JNDI name java:comp/env/com.example.MySessionBean/myDatabase.

• When a deployment descriptor entry is used to specify injection, the JNDI name and the
instance variable name or property name are both specified explicitly. Note that the JNDI name
is always relative to the java:comp/env naming context.

Each resource may only be injected into a single field or method of the bean. Requesting injection of the
java:comp/env/com.example.MySessionBean/myDatabase resource into both the
setMyDatabase method and the myDatabase instance variable is an error. Note, however, that
either the field or the method could request injection of a resource of a different (non-default) name. By
explicitly specifying the JNDI name of a resource, a single resource may be injected into multiple fields
or methods of multiple classes.

Annotations may also be applied to the bean class itself. These annotations declare an entry in the
bean’s environment, but do not cause the resource to be injected. Instead, the bean is expected to use the
EJBContext lookup method or the methods of the JNDI API to lookup the entry. When the annotation
is applied to the bean class, the JNDI name and the environment entry type must be explicitly specified.

Annotations may appear on the bean class, or on any superclass. A resource annotation on any class in
the inheritance hierarchy defines a resource needed by the bean. However, injection of such resources
follows the Java language overriding rules for the visibility of fields and methods. A method definition
that overrides a method on a superclass defines the resource, if any, to be injected into that method. An
overriding method may request injection of a different resource than is requested by the superclass, or it
may request no injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a sub-
class may still request injection. This allows, for example, a private field to be the target of injection and
that field to be used in the implementation of the superclass, even though the subclass has no visibility
into that field and doesn’t know that the implementation of the superclass is using an injected resource.
Note that a declaration of a field in a subclass with the same name as a field in a superclass always
causes the field in the superclass to be hidden.
431 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Responsibilities by EJB Role

Sun Microsystems, Inc.
16.2.3 Annotations and Deployment Descriptors
Environment entries may be declared by the use of annotations, without need for any deployment
descriptor entries. Environment entries may also be declared by deployment descriptor entries, without
need for any annotations. The same environment entry may be declared using both an annotation and a
deployment descriptor entry. In this case, the information in the deployment descriptor entry may be
used to override some of the information provided in the annotation. This approach may be used by an
Application Assembler to override information provided by the Bean Provider. Deployment descriptor
entries should not be used to request injection of a resource into a field or method that has not been
designed for injection.

The following rules apply to how a deployment descriptor entry may override a Resource annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor must be assignable to the type of the field or
property or the type specified in the Resource annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

• The res-sharing-scope element, if specified, overrides the shareable element of the
annotation. In general, the Application Assembler or Deployer should never change the value
of this element, as doing so is likely to break the application.

• The res-auth element, if specified, overrides the authenticationType element of the
annotation. In general, the Application Assembler or Deployer should never change the value
of this element, as doing so is likely to break the application.

Restrictions on the overriding of environment entry values depend on the type of environment entry.

The rules for how a deployment descriptor entry may override an EJB annotation are described in Sec-
tion 16.5. The rules for how a deployment descriptor entry may override a PersistenceUnit or
PersistenceContext annotation are described in Sections 16.10 and 16.11. The rules for web ser-
vices references and how a deployment descriptor entry may override a WebServiceRef annotation
are included in the Web Services for Java EE specification [31].

16.3 Responsibilities by EJB Role

This section describes the responsibilities of the various EJB roles with regard to the specification and
handling of environment entries. The sections that follow describe the responsibilities that are specific
to the different types of objects that may be stored in the naming context.
 11/5/09 432

Responsibilities by EJB Role Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
16.3.1 Bean Provider’s Responsibilities
The Bean Provider may use Java language annotations or deployment descriptor entries to request injec-
tion of a resource from the naming context, or to declare entries that are needed in the naming context.
The Bean Provider may also use the EJBContext lookup method or the JNDI APIs to access entries in
the naming context. Deployment descriptor entries may also be used by the Bean Provider to override
information provided by annotations.

When using JNDI interfaces directly, an enterprise bean instance creates a javax.nam-
ing.InitialContext object by using the constructor with no arguments, and looks up
the environment naming via the InitialContext under the name java:comp/env.

The enterprise bean’s environment entries are stored directly in the environment naming context, or in
any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the metadata
annotation or deployment descriptor, or the type of the instance variable or setter method parameter of
the method with which the metadata annotation is associated.

16.3.2 Application Assembler’s Responsibility
The Application Assembler is allowed to modify the values of the environment entries set by the Bean
Provider, and is allowed to set the values of those environment entries for which the Bean Provider has
not specified any initial values. The Application Assembler uses the deployment descriptor to override
settings made by the Bean Provider, whether these were defined by the Bean Provider in the deployment
descriptor or in the source code using annotations.

16.3.3 Deployer’s Responsibility
The Deployer must ensure that the values of all the environment entries declared by an enterprise bean
are created and/or set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the
Deployer with this task.

16.3.4 Container Provider Responsibility
The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enter-
prise bean’s environment entries.

• Implement the java:comp/env environment naming context, and provide it to the enter-
prise bean instances at runtime. The naming context must include all the environment entries
declared by the Bean Provider, with their values supplied in the deployment descriptor or set
433 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Simple Environment Entries

Sun Microsystems, Inc.
by the Deployer. The environment naming context must allow the Deployer to create subcon-
texts if they are needed by an enterprise bean.

• Inject entries from the naming environment, as specified by annotations or by the deployment
descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the javax.naming.OperationNot-
SupportedException from all the methods of the javax.naming.Context interface
that modify the environment naming context and its subcontexts.

16.4 Simple Environment Entries

A simple environment entry is a configuration parameter used to customize an enterprise bean’s busi-
ness logic. The environment entry values may be one of the following Java types: String, Charac-
ter, Integer, Boolean, Double, Byte, Short, Long, and Float.

The following subsections describe the responsibilities of each EJB role.

16.4.1 Bean Provider’s Responsibilities
This section describes the Bean Provider’s view of the bean’s environment, and defines his or her
responsibilities. The first subsection describes annotations for injecting simple environment entries; the
second describes the API for accessing simple environment entries; and the third describes syntax for
declaring the environment entries in a deployment descriptor.

16.4.1.1 Injection of Simple Environment Entries Using Annotations
The Bean Provider uses the Resource annotation to annotate a field or method of the bean class as a
target for the injection of a simple environment entry. The name of the environment entry is as
described in Section 16.2.2; the type is as described in Section 16.4. Note that the container will unbox
the environment entry as required to match it to a primitive type used for the injection field or method.
The authenticationType and shareable elements of the Resource annotation must not be
specified; simple environment entries are not shareable and do not require authentication.
 11/5/09 434

Simple Environment Entries Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following code example illustrates how an enterprise bean uses annotations for the injection of
environment entries.

@Stateless public class EmployeeServiceBean
implements EmployeeService {

...
// The maximum number of tax exemptions, configured by Deployer
@Resource int maxExemptions;

// The minimum number of tax exemptions, configured by Deployer
@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

...
// Use the environment entries to customize business logic.
if (numberOfExemptions > maxExemptions ||

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

}
}

16.4.1.2 Programming Interfaces for Accessing Simple Environment Entries

In addition to the use of injection as described above, an enterprise bean may access environment
entries dynamically. This may be done by means of the EJBContext lookup method or by direct use of
the JNDI interfaces. The environment entries are declared by the Bean Provider by means of annota-
tions on the bean class or in the deployment descriptor.

When the JNDI interfaces are used directly, the bean instance creates a javax.naming.Initial-
Context object by using the constructor with no arguments, and looks up the naming environment via
the InitialContext under the name java:comp/env. The bean’s environmental entries are
stored directly in the environment naming context, or its direct or indirect subcontexts.
435 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Simple Environment Entries

Sun Microsystems, Inc.
The following code example illustrates how an enterprise bean accesses its environment entries when
the JNDI APIs are used directly. In this example, the names under which the entries are accessed are
defined by the deployment descriptor, as shown in the example of section 16.4.1.3.

@Stateless public class EmployeeServiceBean
implements EmployeeService {

...
public void setTaxInfo(int numberOfExemptions, ...)

throws InvalidNumberOfExemptionsException {
...

// Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer maxExemptions =

(Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer minExemptions =

(Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > maxExemptions ||

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The enterprise bean can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");
...

}
}

16.4.1.3 Declaration of Simple Environment Entries in the Deployment Descriptor

The Bean Provider must declare all the simple environment entries accessed from the enterprise bean’s
code. The simple environment entries are declared either using annotations in the bean class code or
using the env-entry elements in the deployment descriptor.

Each env-entry deployment descriptor element describes a single environment entry. The
env-entry element consists of an optional description of the environment entry, the environment
entry name relative to the java:comp/env context, the expected Java type of the environment entry
value (i.e., the type of the object returned from the EJBContext or JNDI lookup method), and an
optional environment entry value.
 11/5/09 436

Simple Environment Entries Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
See Section 16.2.1 for environment entry name scoping rules.

If the Bean Provider provides a value for an environment entry using the env-entry-value ele-
ment, the value can be changed later by the Application Assembler or Deployer. The value must be a
string that is valid for the constructor of the specified type that takes a single String parameter, or for
java.lang.Character, a single character.
437 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Simple Environment Entries

Sun Microsystems, Inc.
The following example is the declaration of environment entries used by the EmployeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/name1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>value1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>

</env-entry>
<env-entry>

<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
...

</session>
</enterprise-beans>
...
 11/5/09 438

Simple Environment Entries Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
Injection of environment entries may also be specified using the deployment descriptor, without need
for Java language annotations. The following is an example of the declaration of environment entries
corresponding to the example of section 16.4.1.1.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>

com.wombat.empl.EmployeeService/maxExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
<injection-target>

<injection-target-class>
com.wombat.empl.EmployeeServiceBean

</injection-target-class>
<injection-target-name>

maxExemptions
</injection-target-name>

</injection-target>
</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>

com.wombat.empl.EmployeeService/minExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>
<injection-target>

<injection-target-class>
com.wombat.empl.EmployeeServiceBean

</injection-target-class>
<injection-target-name>

minExemptions
</injection-target-name>

</injection-target>
</env-entry>
...

</session>
</enterprise-beans>
...

It is often convenient to declare a field as an injection target, but to specify a default value in the code,
as illustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4
439 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Simple Environment Entries

Sun Microsystems, Inc.
To support this case, the container must only inject a value for the environment entry if the application
assembler or deployer has specified a value to override the default value. The env-entry-value
element in the deployment descriptor is optional when an injection target is specified. If the element is
not specified, no value will be injected. In addition, if the element is not specified, the named resource is
not initialized in the naming context, and explicit lookups of the named resource will fail.

16.4.2 Application Assembler’s Responsibility
The Application Assembler is allowed to modify the values of the simple environment entries set by the
Bean Provider, and is allowed to set the values of those environment entries for which the Bean Pro-
vider has not specified any initial values. The Application Assembler may use the deployment descrip-
tor to override settings made by the Bean Provider, whether in the deployment descriptor or using
annotations.

16.4.3 Deployer’s Responsibility
The Deployer must ensure that the values of all the simple environment entries declared by an enter-
prise bean are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the
Deployer with this task.

16.4.4 Container Provider Responsibility
The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enter-
prise bean’s environment entries.

• Implement the java:comp/env environment naming context, and provide it to the enter-
prise bean instances at runtime. The naming context must include all the environment entries
declared by the Bean Provider, with their values supplied in the deployment descriptor or set
by the Deployer. The environment naming context must allow the Deployer to create subcon-
texts if they are needed by an enterprise bean.

• Inject entries from the naming environment into the bean instance, as specified by the annota-
tions on the bean class or by the deployment descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the javax.naming.OperationNot-
SupportedException from all the methods of the javax.naming.Context interface
that modify the environment naming context and its subcontexts.
 11/5/09 440

EJB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
16.5 EJB References

This section describes the programming and deployment descriptor interfaces that allow the Bean Pro-
vider to refer to the business interfaces or no-interface views or homes of other enterprise beans using
“logical” names called EJB references. The EJB references are special entries in the enterprise bean’s
environment. The Deployer binds the EJB references to the enterprise bean business interfaces or
no-interface views or homes in the target operational environment, as appropriate.

The deployment descriptor also allows the Application Assembler to link an EJB reference declared in
one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb-jar file
in the same Java EE application unit. The link is an instruction to the tools used by the Deployer that the
EJB reference should be bound to the business interface or no-interface view or home of the specified
target enterprise bean. This linking can also be specified by the Bean Provider using annotations in the
source code of the bean class.

16.5.1 Bean Provider’s Responsibilities
This section describes the Bean Provider’s view and responsibilities with respect to EJB references. The
first subsection describes annotations for injecting EJB references; the second describes the API for
accessing EJB references; and the third describes syntax for declaring the EJB references in a deploy-
ment descriptor.

16.5.1.1 Injection of EJB References
The Bean Provider uses the EJB annotation to annotate a field or setter property method of the bean
class as a target for the injection of an EJB reference. The reference may be to a session bean’s business
interface or to a session bean’s no-interface view or to the local home interface or remote home inter-
face of a session bean or entity bean.

The following example illustrates how an enterprise bean uses the EJB annotation to reference another
enterprise bean. The enterprise bean reference will have the name
java:comp/env/com.acme.example.ExampleBean/myCart in the referencing bean’s
naming context, where ExampleBean is the name of the class of the referencing bean and
com.acme.example its package. The target of the reference must be resolved by the Deployer,
unless there is only one session bean component within the same application that exposes a client view
type which matches the EJB reference.

package com.acme.example;

@Stateless public class ExampleBean implements Example {
...
@EJB private ShoppingCart myCart;
...

}

441 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release EJB References

Sun Microsystems, Inc.
The following example illustrates use of almost all portable elements of the EJB annotation. In this
case, the enterprise bean reference would have the name java:comp/env/ejb/shopping-cart
in the referencing bean’s naming context. This reference is linked to a bean named cart1.

@EJB(
name=”ejb/shopping-cart”,
beanInterface=ShoppingCart.class,
beanName=”cart1”,
description=”The shopping cart for this application”

)
private ShoppingCart myCart;

As an alternative to beanName, a reference to an EJB can use a session bean JNDI name, by means
of the lookup annotation element. The following example uses a JNDI name in the application
namespace.

@EJB(
lookup=”java:app/cartModule/ShoppingCart”,
description=”The shopping cart for this application”

)
private ShoppingCart myOtherCart;

If the ShoppingCart bean were instead written to the EJB 2.1 client view, the EJB reference would
be to the bean’s home interface. For example:

@EJB(
name=”ejb/shopping-cart”,
beanInterface=ShoppingCartHome.class,
beanName=”cart1”,
description=”The shopping cart for this application”

)
private ShoppingCartHome myCartHome;

If the ShoppingCart bean were instead written to the no-interface client view and was implemented
by bean class ShoppingCartBean.class, the EJB reference would have type ShoppingCart-
Bean.class. For example:

@EJB(
name=”ejb/shopping-cart”,
beanInterface=ShoppingCartBean.class,
beanName=”cart1”,
description=”The shopping cart for this application”

)
private ShoppingCartBean myCart;

16.5.1.2 EJB Reference Programming Interfaces

The Bean Provider may use EJB references to locate the business interfaces or no-interface views or
home interfaces of other enterprise beans as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 16.5.1.3
for information on how EJB references are declared in the deployment descriptor.)
 11/5/09 442

EJB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
• The EJB specification recommends, but does not require, that all references to other enterprise
beans be organized in the ejb subcontext of the bean’s environment (i.e., in the
java:comp/env/ejb JNDI context). Note that enterprise bean references declared by
means of annotations will not, by default, be in any subcontext.

• Look up the business interface or no-interface view or home interface of the referenced enter-
prise bean in the enterprise bean’s environment using the EJBContext lookup method or the
JNDI API.

The following example illustrates how an enterprise bean uses an EJB reference to locate the remote
home interface of another enterprise bean using the JNDI APIs.

@EJB(name=”ejb/EmplRecord”, beanInterface=EmployeeRecordHome.class)
@Stateless public class EmployeeServiceBean

implements EmployeeService {

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

...
}

}

In the example, the Bean Provider of the EmployeeServiceBean enterprise bean assigned the envi-
ronment entry ejb/EmplRecord as the EJB reference name to refer to the remote home of another
enterprise bean.

16.5.1.3 Declaration of EJB References in Deployment Descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider must not
use a env-entry element to declare it. Instead, the Bean Provider must declare all the EJB references
using the ejb-ref and ejb-local-ref elements of the deployment descriptor. This allows the
ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the EJB references used by
the enterprise bean. Deployment descriptor entries may also be used to specify injection of an EJB ref-
erence into a bean.

Each ejb-ref or ejb-local-ref element describes the interface requirements that the referencing
enterprise bean has for the referenced enterprise bean. The ejb-ref element is used for referencing
an enterprise bean that is accessed through its remote business interface or remote home and component
interfaces. The ejb-local-ref element is used for referencing an enterprise bean that is accessed
through its local business interface or no-interface view or local home and component interfaces.
443 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release EJB References

Sun Microsystems, Inc.
The ejb-ref element contains the description, ejb-ref-name, ejb-ref-type, home, and
remote elements.

The ejb-local-ref element contains the description, ejb-ref-name, ejb-ref-type,
local-home, and local elements.

The lookup-name element specifies the JNDI name of the EJB reference’s target session bean.

The ejb-ref-name element specifies the EJB reference name: its value is the environment entry
name used in the enterprise bean code. The ejb-ref-name must be specified. The optional
ejb-ref-type element specifies the expected type of the enterprise bean: its value must be either
Entity or Session. The home and remote or local-home and local elements specify the
expected Java types of the referenced enterprise bean’s interface(s). If the reference is to an EJB 2.1
remote client view interface, the home element is required. Likewise, if the reference is to an EJB 2.1
local client view interface, the local-home element is required. The remote element of the
ejb-ref element refers to either the business interface type or the component interface, depending on
whether the reference is to a bean’s EJB 3.x or EJB 2.1 remote client view. Likewise, the local ele-
ment of the ejb-local-ref element refers to either the business interface type or bean class type or
the component interface type, depending on whether the reference is to a bean’s EJB 3.x local business
interface, no-interface view, or EJB 2.1 local client view.

See Section 16.2.1 for the name scoping rules of EJB references.
 11/5/09 444

EJB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following example illustrates the declaration of EJB references in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<ejb-ref>

<description>
This is a reference to an EJB 2.1 entity bean that
encapsulates access to employee records.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-local-ref>
<description>

This is a reference to the local business interface
of an EJB 3.0 session bean that provides a payroll
service.

</description>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<local>com.aardvark.payroll.Payroll</local>

</ejb-local-ref>

<ejb-local-ref>
<description>

This is a reference to the local business interface
of an EJB 3.0 session bean that provides a pension
plan service.

</description>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<local>com.wombat.empl.PensionPlan</local>

</ejb-local-ref>
...

</session>
...

</enterprise-beans>
...

16.5.2 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment descriptor to link an
EJB reference to a target enterprise bean within the same application.

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref or
ejb-local-ref element of the referencing enterprise bean. The value of the ejb-link
element is the name of the target enterprise bean. (This is the bean name as defined by meta-
data annotation (or default) in the bean class or in the ejb-name element of the target enter-
445 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release EJB References

Sun Microsystems, Inc.
prise bean.) The target enterprise bean can be in any ejb-jar file or .war file in the same Java EE
application as the referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names within an
entire Java EE application, the Application Assembler may use either of the following two
syntaxes in the ejb-link element of the referencing application component. [89]

• The Application Assembler specifies the <module-name> of the ejb-jar file or .war
file containing the referenced enterprise bean and appends the ejb-name of the target
bean separated by /. <module-name> is the base name of the bundle with no file-
name extension, unless specified in the deployment descriptor.

• The Application Assembler specifies the path name of the ejb-jar file or .war file con-
taining the referenced enterprise bean and appends the ejb-name of the target bean
separated from the path name by # . The path name is relative to the referencing
application component jar file. In this manner, multiple beans with the same ejb-name
may be uniquely identified when the Application Assembler cannot change
ejb-names.

• Rather than using ejb-link to resolve the ejb reference, the Application Assembler may use
the lookup-name element to reference the target EJB component by means of one of its JNDI
names. It is an error for both ejb-link and lookup-name to appear inside an ejb-ref ele-
ment.

• The Application Assembler must ensure that the target enterprise bean is type-compatible with
the declared EJB reference. This means that the target enterprise bean must be of the type indi-
cated in the ejb-ref-type element, if present, and that the business interface or bean class
or home and component interfaces of the target enterprise bean must be Java type-compatible
with the type declared in the EJB reference.

[89] The bean provider may also use this syntax in the beanName element of the EJB annotation.
 11/5/09 446

EJB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following illustrates an ejb-link in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>
...

</session>
...

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...

</enterprise-beans>
...

The Application Assembler uses the ejb-link element to indicate that the EJB reference Empl-
Record declared in the EmployeeService enterprise bean has been linked to the Employ-
eeRecord enterprise bean.

The following example illustrates using the ejb-link element to indicate an enterprise bean refer-
ence to the ProductEJB enterprise bean that is in the same Java EE application unit but in a different
ejb-jar file.

<entity>
...
<ejb-name>OrderEJB</ejb-name>
<ejb-class>com.wombat.orders.OrderBean</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.orders.ProductHome</home>
<remote>com.acme.orders.Product</remote>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>
...

</entity>
447 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release EJB References

Sun Microsystems, Inc.
The following example illustrates using the ejb-link element to indicate an enterprise bean refer-
ence to the ShoppingCart enterprise bean that is in the same Java EE application unit but in a differ-
ent ejb-jar file. The reference was originally declared in the bean’s code using an annotation. The
Application Assembler provides only the link to the bean.

...
<ejb-ref>

<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<ejb-link>product/ShoppingCart</ejb-link>

</ejb-ref>

The same effect can be obtained by using the lookup-name element instead, using an appropriate JNDI
name for the target bean.

...
<ejb-ref>

<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<lookup-name>java:app/products/ShoppingCart</lookup-name>

</ejb-ref>

...

16.5.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override an EJB annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor via the remote, local, remote-home, or
local-home element and any bean referenced by the ejb-link element must be assign-
able to the type of the field or property or the type specified by the beanInterface element
of the EJB annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

16.5.3 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the business inter-
faces or no-interface views or homes of enterprise beans that exist in the operational environ-
ment. For session beans, the Deployer may use the EJB annotation mappedName attribute or
the ejb-ref/ejb-local-ref mapped-name element to specify this binding. Section 4.4 describes
the syntax for session bean portable global JNDI names. The Deployer may also use, for exam-
 11/5/09 448

EJB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
ple, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the EJB reference. This means that the target enterprise bean must be of the type
indicated by the use of the EJB annotation, by the ejb-ref-type element (if specified),
and that the business interface and no-interface view and/or home and component interfaces of
the target enterprise bean must be Java type-compatible with the type of the injection target or
the types declared in the EJB reference.

• If an EJB annotation includes the beanName element or the reference declaration includes the
ejb-link element, the Deployer should bind the enterprise bean reference to the enterprise
bean specified as the target.

• If an EJB annotation includes the lookup element or the reference declaration includes the
lookup-name element, the Deployer should bind the enterprise bean reference to the enterprise
bean specified as the target of the lookup. It is an error for an EJB reference declaration to
include both an ejb-link and a lookup-name element.

The following example illustrates the use of the lookup-name element to bind an ejb-ref to a target
enterprsie bean in the operational environment. The reference was originally declared in the bean’s code
using an annotation. The target enterprise bean has ejb-name ShoppingCart and is deployed in the
stand-alone module products.jar.

...
<ejb-ref>

<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<lookup-name>java:global/products/ShoppingCart</lookup-name>

</ejb-ref>

16.5.4 Container Provider’s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the tasks
described in the previous subsection. The deployment tools provided by the EJB Container Provider
must be able to process the information supplied in the ejb-ref and ejb-local-ref elements in
the deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in the ejb-link elements
by binding an EJB reference to the business interface or the home interface of the specified tar-
get bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an EJB
reference by binding it to a specified compatible target bean.
449 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Web Service References

Sun Microsystems, Inc.
16.6 Web Service References

Web service references allow the Bean Provider to refer to external web services. The web service refer-
ences are special entries in the enterprise bean’s environment. The Deployer binds the web service ref-
erences to the web service classes or interfaces in the target operational environment.

The specification of web service references and their usage is defined in the Java API for XML Web
Services (JAX-WS) [32] and Web Services for Java EE specifications [31].

See Section 16.2.1 for the name scoping rules of web service references.

The EJB specification recommends, but does not require, that all references to web services be orga-
nized in the service subcontext of the bean’s environment (i.e., in the java:comp/env/ser-
vice JNDI context).

16.7 Resource Manager Connection Factory References

A resource manager connection factory is an object that is used to create connections to a resource man-
ager. For example, an object that implements the javax.sql.DataSource interface is a resource
manager connection factory for java.sql.Connection objects that implement connections to a
database management system.

This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to resource factories using logical names called resource manager connec-
tion factory references. The resource manager connection factory references are special entries in the
enterprise bean’s environment. The Deployer binds the resource manager connection factory references
to the actual resource manager connection factories that are configured in the container. Because these
resource manager connection factories allow the container to affect resource management, the connec-
tions acquired through the resource manager connection factory references are called managed
resources (e.g., these resource manager connection factories allow the container to implement connec-
tion pooling and automatic enlistment of the connection with a transaction).

16.7.1 Bean Provider’s Responsibilities
This subsection describes the Bean Provider’s view of locating resource factories and defines his or her
responsibilities. The first subsection describes annotations for injecting references to resource manager
connection factories; the second describes the API for accessing resource manager connection refer-
ences; and the third describes syntax for declaring the resource manager connection references in a
deployment descriptor.
 11/5/09 450

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
16.7.1.1 Injection of Resource Manager Connection Factory References
A field or a method of an enterprise bean may be annotated with the Resource annotation. The name
and type of the factory are as described above in Section 16.2.2. The authenticationType and
shareable elements of the Resource annotation may be used to control the type of authentication
desired for the resource and the shareability of connections acquired from the factory, as described in
the following sections.

The following code example illustrates how an enterprise bean uses annotations to declare resource
manager connection factory references.

//The employee database.
@Resource javax.sql.DataSource employeeAppDB;
...
public void changePhoneNumber(...) {

...
// Invoke factory to obtain a resource. The security
// principal for the resource is not given, and
// therefore it will be configured by the Deployer.
java.sql.Connection con = employeeAppDB.getConnection();
...

}

16.7.1.2 Programming Interfaces for Resource Manager Connection Factory References

The Bean Provider must use resource manager connection factory references to obtain connections to
resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connection fac-
tory reference. (See subsection 16.7.1.3 for information on how resource manager connection
factory references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource manager connection
factory references be organized in the subcontexts of the bean’s environment, using a different
subcontext for each resource manager type. For example, all JDBC™ DataSource references
might be declared in the java:comp/env/jdbc subcontext, and all JMS connection facto-
ries in the java:comp/env/jms subcontext. Also, all JavaMail connection factories might
be declared in the java:comp/env/mail subcontext and all URL connection factories in
the java:comp/env/url subcontext. Note that resource manager connection factory refer-
ences declared via annotations will not, by default, appear in any subcontext.

• Lookup the resource manager connection factory object in the enterprise bean’s environment
using the EJBContext lookup method or using the JNDI API.

• Invoke the appropriate method on the resource manager connection factory to obtain a connec-
tion to the resource. The factory method is specific to the resource type. It is possible to obtain
multiple connections by calling the factory object multiple times.
451 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.
The Bean Provider can control the shareability of the connections acquired from the resource manager
connection factory. By default, connections to a resource manager are shareable across other enterprise
beans in the application that use the same resource in the same transaction context. The Bean Provider
can specify that connections obtained from a resource manager connection factory reference are not
shareable by specifying the value of the shareable annotation element to false or the
res-sharing-scope deployment descriptor element to be Unshareable. The sharing of connec-
tions to a resource manager allows the container to optimize the use of connections and enables the con-
tainer’s use of local transaction optimizations.

The Bean Provider has two choices with respect to dealing with associating a principal with the
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information. In
this case, the enterprise bean code invokes a resource manager connection factory method that
has no security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean invokes
the appropriate resource manager connection factory method that takes the sign-on information
as method parameters.

The Bean Provider uses the authenticationType annotation element or the res-auth deploy-
ment descriptor element to indicate which of the two resource manager authentication approaches is
used.

We expect that the first form (i.e., letting the Deployer set up the resource manager sign-on information)
will be the approach used by most enterprise beans.

The following code sample illustrates obtaining a JDBC connection when the EJBContext lookup
method is used.

@Resource(name=”jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class EmployeeServiceBean

implements EmployeeService {
@Resource SessionContext ctx;

public void changePhoneNumber(...) {
...
// use context lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

ctx.lookup("jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

 11/5/09 452

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following code sample illustrates obtaining a JDBC connection when the JNDI APIs are used
directly.

@Resource(name=”jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class EmployeeServiceBean

implements EmployeeService {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

16.7.1.3 Declaration of Resource Manager Connection Factory References in Deployment
Descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s environ-
ment, the Bean Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the resource manager
connection factory references in the deployment descriptor using the resource-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the resource man-
ager connection factory references used by an enterprise bean. Deployment descriptor entries may also
be used to specify injection of a resource manager connection factor reference into a bean.

Each resource-ref element describes a single resource manager connection factory reference. The
resource-ref element consists of the description element; the mandatory res-ref-name
element; and the optional res-type, res-auth and res-sharing-scope elements. The
res-ref-name element contains the name of the environment entry used in the enterprise bean’s
code. The name of the environment entry is relative to the java:comp/env context (e.g., the name
should be jdbc/EmployeeAppDB rather than java:comp/env/jdbc/EmployeeAppDB). The
res-type element contains the Java type of the resource manager connection factory that the enter-
prise bean code expects. The res-type element is optional if an injection target is specified for the
resource; in this case, the res-type defaults to the type of the injection target. The res-auth ele-
ment indicates whether the enterprise bean code performs resource manager sign-on programmatically,
or whether the container signs on to the resource manager using the principal mapping information sup-
plied by the Deployer. The Bean Provider indicates the sign-on responsibility by setting the value of the
res-auth element to Application or Container. If the res-auth element is not specified,
453 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.
Container sign-on is assumed. The res-sharing-scope element indicates whether connections
to the resource manager obtained through the given resource manager connection factory reference are
to be shared or whether connections are unshareable. The value of the res-sharing-scope ele-
ment is Shareable or Unshareable. If the res-sharing-scope element is not specified, con-
nections are assumed to be shareable.

See Section 16.2.1 for the name scoping rules of resource manager connection factory references.

The type declaration allows the Deployer to identify the type of the resource manager connection fac-
tory.

Note that the indicated type is the Java type of the resource factory, not the Java type of the resource.

The following example is the declaration of resource manager connection factory references used by the
EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<resource-ref>

<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...
 11/5/09 454

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following example illustrates the declaration of JMS resource manager connection factory refer-
ences.

...
<enterprise-beans>

<session>
...
<resource-ref>

<description>
A queue connection factory used by the
MySession enterprise bean to send
notifications.

</description>
<res-ref-name>jms/qConnFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...

16.7.1.4 Standard Resource Manager Connection Factory Types

The Bean Provider must use the javax.sql.DataSource resource manager connection factory
type for obtaining JDBC connections, and the javax.jms.ConnectionFactory,
javax.jms.QueueConnectionFactory, or javax.jms.TopicConnectionFactory for
obtaining JMS connections.

The Bean Provider must use the javax.mail.Session resource manager connection factory type
for obtaining JavaMail connections, and the java.net.URL resource manager connection factory
type for obtaining URL connections.

It is recommended that the Bean Provider names JDBC data sources in the java:comp/env/jdbc
subcontext, and JMS connection factories in the java:comp/env/jms subcontext. It is also recom-
mended that the Bean Provider name all JavaMail connection factories in the
java:comp/env/mail subcontext, and all URL connection factories in the
java:comp/env/url subcontext. Note that resource manager connection factory references
declared via annotations will not, by default, appear in any subcontext.

The Connector architecture [15] allows an enterprise bean to use the API described in this section to
obtain resource objects that provide access to additional back-end systems.

16.7.2 Deployer’s Responsibility
The Deployer uses deployment tools to bind the resource manager connection factory references to the
actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory reference
declared in the metadata annotations or deployment descriptor:
455 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.
• Bind the resource manager connection factory reference to a resource manager connection fac-
tory that exists in the operational environment. The Deployer may use, for example, the JNDI
LinkRef mechanism to create a symbolic link to the actual JNDI name of the resource man-
ager connection factory. The resource manager connection factory type must be compatible
with the type declared in the source code or in the res-type element.

• Provide any additional configuration information that the resource manager needs for opening
and managing the resource. The configuration mechanism is resource-manager specific, and is
beyond the scope of this specification.

• If the value of the Resource annotation authenticationType element is Authenti-
cationType.CONTAINER or the deployment descriptor res-auth element is Con-
tainer, the Deployer is responsible for configuring the sign-on information for the resource
manager. This is performed in a manner specific to the EJB container and resource manager; it
is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at the
enterprise beans application level to the security domain and principal realm of the resource manager,
the Deployer or System Administrator must define the mapping. The mapping is performed in a manner
specific to the EJB container and resource manager; it is beyond the scope of the current EJB specifica-
tion.

16.7.3 Container Provider Responsibility
The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the pre-
vious subsection.

• Provide the implementation of the resource manager connection factory classes for the
resource managers that are configured with the EJB container.

• If the Bean Provider sets the authenticationType element of the Resource annotation
to AuthenticationType.APPLICATION or the res-auth deployment descriptor
entry for a resource manager connection factory reference to Application, the container
must allow the bean to perform explicit programmatic sign-on using the resource manager’s
API.

• If the Bean Provider sets the shareable element of the Resource annotation to false or
sets the res-sharing-scope deployment descriptor entry for a resource manager connec-
tion factory reference to Unshareable, the container must not attempt to share the connec-
tions obtained from the resource manager connection factory reference[90]. If the Bean
Provider sets the res-sharing-scope of a resource manager connection factory reference
to Shareable or does not specify res-sharing-scope, the container must share the
connections obtained from the resource manager connection factory according to the require-
ments defined in [12].

[90] Connections obtained from the same resource manager connection factory through a different resource manager connection fac-
tory reference may be shareable.
 11/5/09 456

Resource Environment References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
• The container must provide tools that allow the Deployer to set up resource manager sign-on
information for the resource manager references whose annotation element authentica-
tionType is set to AuthenticationType.CONTAINER or whose res-auth deploy-
ment descriptor element element is set to Container. The minimum requirement is that the
Deployer must be able to specify the user/password information for each resource manager
connection factory reference declared by the enterprise bean, and the container must be able to
use the user/password combination for user authentication when obtaining a connection to the
resource by invoking the resource manager connection factory.

Although not required by the EJB specification, we expect that containers will support some form of a
single sign-on mechanism that spans the application server and the resource managers. The container
will allow the Deployer to set up the resource managers such that the EJB caller principal can be prop-
agated (directly or through principal mapping) to a resource manager, if required by the application.

While not required by the EJB specification, most EJB container providers also provide the following
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manager
for the EJB server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwise man-
age the use of resources by the container. The pooling must be transparent to the enterprise
beans.

16.7.4 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

16.8 Resource Environment References

This section describes the programming and deployment descriptor interfaces that allow the Bean Pro-
vider to refer to administered objects that are associated with resources (e.g., a Connector CCI Inter-
actionSpec instance) by using “logical” names called resource environment references. Resource
environment references are special entries in the enterprise bean’s environment. The Deployer binds the
resource environment references to administered objects in the target operational environment.

16.8.1 Bean Provider’s Responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to resource envi-
ronment references.
457 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Resource Environment References

Sun Microsystems, Inc.
16.8.1.1 Injection of Resource Environment References
A field or a method of a bean may be annotated with the Resource annotation to request injection of a
resource environment reference. The name and type of the resource environment reference are as
described in Section 16.2.2. The authenticationType and shareable elements of the
Resource annotation must not be specified; resource environment entries are not shareable and do not
require authentication. The use of the Resource annotation to declare a resource environment refer-
ence differs from the use of the Resource annotation to declare simple environment references only
in that the type of a resource environment reference is not one of the Java language types used for sim-
ple environment references.

16.8.1.2 Resource Environment Reference Programming Interfaces

The Bean Provider must use resource environment references to locate administered objects that are
associated with resources, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 16.8.1.3
for information on how resource environment references are declared in the deployment
descriptor.)

• The EJB specification recommends, but does not require, that all resource environment refer-
ences be organized in the appropriate subcontext of the bean’s environment for the resource
type. Note that the resource environment references declared via annotations will not, by
default, appear in any subcontext.

• Look up the administered object in the enterprise bean’s environment using the EJBContext
lookup method or the JNDI API.

16.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use a env-entry element to declare it. Instead, the Bean Provider must declare all
references to administered objects associated with resources using either annotations in the bean’s
source code or the resource-env-ref elements of the deployment descriptor. This allows the
ejb-jar consumer to discover all the resource environment references used by the enterprise bean.
Deployment descriptor entries may also be used to specify injection of a resource environment refer-
ence into a bean.

Each resource-env-ref element describes the requirements that the referencing enterprise bean
has for the referenced administered object. The resource-env-ref element contains optional
description and resource-env-ref-type elements, and the mandatory
resource-env-ref-name element. The resource-env-ref-type element is optional if an
injection target is specified for the resource environment reference; in this case the
resource-env-ref-type defaults to the type of the injection target.

The resource-env-ref-name element specifies the resource environment reference name: its
value is the environment entry name used in the enterprise bean code. The name of the environment
entry is relative to the java:comp/env context. The resource-env-ref-type element speci-
fies the expected type of the referenced object.
 11/5/09 458

Message Destination References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
See Section 16.2.1 for the name scoping rules of resource environment references.

16.8.2 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bound to
administered objects that exist in the operational environment. The Deployer may use, for
example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of
the target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for
the resource environment reference. This means that the target object must be of the type indi-
cated in the Resource annotation or the resource-env-ref-type element.

16.8.3 Container Provider’s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the tasks
described in the previous subsection. The deployment tools provided by the EJB Container Provider
must be able to process the information supplied in the class file annotations and
resource-env-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource environment
references, and allow him or her to resolve a resource environment reference by binding it to a specified
compatible target object in the environment.

16.9 Message Destination References

This section describes the programming and deployment descriptor interfaces that allow the Bean Pro-
vider to refer to message destination objects by using “logical” names called message destination refer-
ences. Message destination references are special entries in the enterprise bean’s environment. The
Deployer binds the message destination references to administered message destinations in the target
operational environment.

16.9.1 Bean Provider’s Responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to message desti-
nation references.

16.9.1.1 Injection of Message Destination References
A field or a method of a bean may be annotated with the Resource annotation to request injection of a
message destination reference. The name and type of the resource environment reference are as
described in Section 16.2.2. The authenticationType and shareable elements of the
Resource annotation must not be specified.
459 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Message Destination References

Sun Microsystems, Inc.
Note that when using the Resource annotation to declare a message destination reference it is not
possible to link the reference to other references to the same message destination, or to specify whether
the destination is used to produce or consume messages. The deployment descriptor entries described in
Section 16.9.1.3 provide a way to associate multiple message destination references with a single mes-
sage destination and to specify whether each message destination reference is used to produce, con-
sume, or both produce and consume messsages, so that the entire message flow of an application may
be specified. The Application Assembler may use these message destination links to link together mes-
sage destination references that have been declared using the Resource annotation. A message desti-
nation reference declared via the Resource annotation is assumed to be used to both produce and
consume messages; this default may be overridden using a deployment descriptor entry.

The following example illustrates how an enterprise bean uses the Resource annotation to request
injection of a message destination reference.

@Resource javax.jms.Queue stockQueue;

16.9.1.2 Message Destination Reference Programming Interfaces

The Bean Provider uses message destination references to locate message destinations, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 16.9.1.3
for information on how message destination references are declared in the deployment descrip-
tor.)

• The EJB specification recommends, but does not require, that all message destination refer-
ences be organized in the appropriate subcontext of the bean’s environment for the messaging
resource type (e.g. in the java:comp/env/jms JNDI context for JMS Destinations). Note
that message destination references declared via annotations will not, by default, appear in any
subcontext.

• Look up the destination in the enterprise bean’s environment using the EJBContext lookup
method or the JNDI APIs.

The following example illustrates how an enterprise bean uses a message destination reference to locate
a JMS Destination.

@Resource(name=”jms/StockQueue”, type=javax.jms.Queue)
@Stateless public class StockServiceBean implements StockService {

@Resource SessionContext ctx;

public void processStockInfo(...) {
...
// Look up the JMS StockQueue in the environment.
Object result = ctx.lookup("jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

}
}

 11/5/09 460

Message Destination References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
In the example, the Bean Provider of the StockServiceBean enterprise bean has assigned the envi-
ronment entry jms/StockQueue as the message destination reference name to refer to a JMS queue.

If the JNDI APIs were used directly, the example would be as follows.

@Resource(name=”jms/StockQueue”, type=javax.jms.Queue)
@Stateless public class StockServiceBean implements StockService {

public void processStockInfo(...) {
...
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.
Object result = initCtx.lookup(

"java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;
...

}
}

16.9.1.3 Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use a env-entry element to declare it. Instead, the Bean Provider should declare
all references to message destinations using either the Resource annotation in the bean’s code or the
the message-destination-ref elements of the deployment descriptor. This allows the ejb-jar
consumer to discover all the message destination references used by the enterprise bean. Deployment
descriptor entries may also be used to specify injection of a message destination reference into a bean.

Each message-destination-ref element describes the requirements that the referencing enter-
prise bean has for the referenced destination. The message-destination-ref element contains
optional description, message-destination-type, and message-destina-
tion-usage elements, and the mandatory message-destination-ref-name element.

The message-destination-ref-name element specifies the message destination reference
name: its value is the environment entry name used in the enterprise bean code. The name of the mes-
sage destination reference is relative to the java:comp/env context (e.g., the name should be
jms/StockQueue rather than java:comp/env/jms/StockQueue). The message-desti-
nation-type element specifies the expected type of the referenced destination. For example, in the
case of a JMS Destination, its value might be javax.jms.Queue. The message-destina-
tion-type element is optional if an injection target is specified for the message destination reference;
in this case the message-destination-type defaults to the type of the injection target. The
message-destination-usage element specifies whether messages are consumed from the mes-
sage destination, produced for the destination, or both. If the message-destination-usage ele-
ment is not specified, messages are assumed to be both consumed and produced.

See Section 16.2.1 for the name scoping rules of message destination references.
461 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Message Destination References

Sun Microsystems, Inc.
The following example illustrates the declaration of message destination references in the deployment
descriptor.

...
<message-destination-ref>

<description>
This is a reference to a JMS queue used in processing Stock info
</description>
<message-destination-ref-name>

jms/StockInfo
</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces<
/message-destination-usage>

</message-destination-ref>
...

16.9.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common logical destinations
specified in the deployment descriptor, the Application Assembler can specify the flow of messages
within an application. The Application Assembler uses the message-destination element, the
message-destination-link element of the message-destination-ref element, and the
message-destination-link element of the message-driven element to link message desti-
nation references to a common logical destination.

The Application Assembler specifies the link between message consumers and producers as follows:

• The Application Assembler uses the message-destination element to specify a logical
message destination within the application. The message-destination element defines a
message-destination-name, which is used for the purpose of linking.

• The Application Assembler uses the message-destination-link element of the mes-
sage-destination-ref element of an enterprise bean that produces messages to link it
to the target destination. The value of the message-destination-link element is the
name of the target destination, as defined in the message-destination-name element
of the message-destination element. The message-destination element can be
in any module in the same Java EE application as the referencing component. The Application
Assembler uses the message-destination-usage element of the message-desti-
nation-ref element to indicate that the referencing enterprise bean produces messages to
the referenced destination.

• If the consumer of messages from the common destination is a message-driven bean, the
Application Assembler uses the message-destination-link element of the mes-
sage-driven element to reference the logical destination. If the Application Assembler
links a message-driven bean to its source destination, he or she should use the mes-
sage-destination-type element of the message-driven element to specify the
expected destination type.
 11/5/09 462

Message Destination References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
• If an enterprise bean is otherwise a message consumer, the Application Assembler uses the
message-destination-link element of the message-destination-ref element
of the enterprise bean that consumes messages to link to the common destination. In the latter
case, the Application Assembler uses the message-destination-usage element of the
message-destination-ref element to indicate that the enterprise bean consumes mes-
sages from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an entire Java
EE application, the Application Assembler may use the following syntax in the mes-
sage-destination-link element of the referencing application component. The Appli-
cation Assembler specifies the path name of the ejb-jar file containing the referenced message
destination and appends the message-destination-name of the target destination sepa-
rated from the path name by # . The path name is relative to the referencing application com-
ponent jar file. In this manner, multiple destinations with the same
message-destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure that the consum-
ers and producers for the destination require a message destination of the same or compatible
type, as determined by the messaging system.
463 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Message Destination References

Sun Microsystems, Inc.
The following example illustrates the use of message destination linking in the deployment descriptor.

...
<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<message-destination-ref>

<message-destination-ref-name>
jms/EmployeeReimbursements

</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces
</message-destination-usage>
<message-destination-link>

ExpenseProcessingQueue
</message-destination-link>

</message-destination-ref>
</session>
...

<message-driven>
<ejb-name>ExpenseProcessing</ejb-name>
<ejb-class>com.wombat.empl.ExpenseProcessingBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
...
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-link>

ExpenseProcessingQueue
</message-destination-link>
...

</message-driven>
...

</enterprise-beans>
...
<assembly-descriptor>

...
<message-destination>

<message-destination-name>
ExpenseProcessingQueue

</message-destination-name>
</message-destination>
...

</assembly-descriptor>

The Application Assembler uses the message-destination-link element to indicate that the
message destination reference EmployeeReimbursement declared in the EmployeeService
enterprise bean is linked to the ExpenseProcessing message-driven bean by means of the commen
destination ExpenseProcessingQueue.
 11/5/09 464

Message Destination References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following example illustrates using the message-destination-link element to indicate an
enterprise bean reference to the ExpenseProcessingQueue that is in the same Java EE applica-
tion unit but in a different ejb-jar file.

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<message-destination-ref>

<message-destination-ref-name>
jms/EmployeeReimbursements

</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces
</message-destination-usage>
<message-destination-link>

finance.jar#ExpenseProcessingQueue
</message-destination-link>

</message-destination-ref>
</session>

16.9.3 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references are bound to
destination objects that exist in the operational environment. The Deployer may use, for exam-
ple, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for
the message destination reference.

• The Deployer must observe the message destination links specified by the Application Assem-
bler.

16.9.4 Container Provider’s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the tasks
described in the previous subsection. The deployment tools provided by the EJB Container Provider
must be able to process the information supplied in the message-destination-ref and mes-
sage-destination-link elements in the deployment descriptor.

The tools must be able to inform the Deployer of the message flow between consumers and producers
sharing common message destinations. The tools must also be able to inform the Deployer of any unre-
solved message destination references, and allow him or her to resolve a message destination reference
by binding it to a specified compatible target object in the environment.
465 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Persistence Unit References

Sun Microsystems, Inc.
16.10 Persistence Unit References

This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to the entity manager factory for a persistence unit using a logical name
called a persistence unit reference. Persistence unit references are special entries in the enterprise bean’s
environment. The Deployer binds the persistence unit references to entity manager factories that are
configured in accordance with the persistence.xml specification for the persistence unit, as
described in the document “Java Persistence API” of this specification [2].

16.10.1 Bean Provider’s Responsibilities
This subsection describes the Bean Provider’s view of locating the entity manager factory for a persis-
tence unit and defines his or her responsibilities. The first subsection describes annotations for injecting
references to an entity manager factory for a persistence unit; the second describes the API for accessing
an entity manager factory using a persistence unit reference; and the third describes syntax for declaring
persistence unit references in a deployment descriptor.

16.10.1.1 Injection of Persistence Unit References
A field or a method of an enterprise bean may be annotated with the PersistenceUnit annotation.
The name element specifies the name under which the entity manager factory for the referenced persis-
tence unit may be located in the JNDI naming context. The optional unitName element specifies the
name of the persistence unit as declared in the persistence.xml file that defines the persistence
unit.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
unit references.

@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

16.10.1.2 Programming Interfaces for Persistence Unit References

The Bean Provider must use persistence unit references to obtain references to entity manager factories
as follows.

• Assign an entry in the enterprise bean’s environment to the persistence unit reference. (See
subsection 16.10.1.3 for information on how persistence unit references are declared in the
deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence unit references be
organized in the java:comp/env/persistence subcontexts of the bean’s environment.

• Lookup the entity manager factory for the persistence unit in the enterprise bean’s environment
using the EJBContext lookup method or using the JNDI API.
 11/5/09 466

Persistence Unit References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following code sample illustrates obtaining an entity manager factory when the EJBContext
lookup method is used.

@PersistenceUnit(name=”persistence/InventoryAppDB”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

@Resource SessionContext ctx;

public void updateInventory(...) {
...
// use context lookup to obtain entity manager factory
EntityManagerFactory emf = (EntityManagerFactory)

ctx.lookup("persistence/InventoryAppDB");

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();
...

}
}

The following code sample illustrates obtaining an entity manager factory when the JNDI APIs are used
directly.

@PersistenceUnit(name=”persistence/InventoryAppDB”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

EJBContext ejbContext;
...
public void updateInventory(...) {

...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain entity manager factory
EntityManagerFactory emf = (EntityManagerFactory)

initCtx.lookup("java:comp/env/persistence/InventoryAp-
pDB");

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();
...

}
}

16.10.1.3 Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the enterprise bean’s environment, the Bean Pro-
vider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence unit ref-
erences in the deployment descriptor using the persistence-unit-ref elements. This allows the
ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence unit references
used by an enterprise bean. Deployment descriptor entries may also be used to specify injection of a
persistence unit reference into a bean.
467 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Persistence Unit References

Sun Microsystems, Inc.
Each persistence-unit-ref element describes a single entity manager factory reference for the
persistence unit. The persistence-unit-ref element consists of the optional description
and persistence-unit-name elements, and the mandatory persistence-unit-ref-name
element.

The persistence-unit-ref-name element contains the name of the environment entry used in
the enterprise bean’s code. The name of the environment entry is relative to the java:comp/env con-
text (e.g., the name should be persistence/InventoryAppDB rather than
java:comp/env/persistence/InventoryAppDB). The optional persis-
tence-unit-name element is the name of the persistence unit, as specified in the persis-
tence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by the InventoryMan-
ager enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-unit-ref>

<description>
Persistence unit for the inventory management
application.

</description>
<persistence-unit-ref-name>

persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>

InventoryManagement
</persistence-unit-name>

</persistence-unit-ref>
...

</session>
</enterprise-beans>
...

16.10.2 Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment
descriptor to specify a reference to a persistence unit. The Application Assembler (or Bean Provider)
may use the following syntax in the persistence-unit-name element of the referencing applica-
tion component to avoid the need to rename persistence units to have unique names within a Java EE
application. The Application Assembler specifies the path name of the root of the referenced persistence
unit and appends the name of the persistence unit separated from the path name by # . The path name is
relative to the referencing application component jar file. In this manner, multiple persistence units with
the same persistence unit name may be uniquely identified when persistence unit names cannot be
changed.
 11/5/09 468

Persistence Unit References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
For example,

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-unit-ref>

<description>
Persistence unit for the inventory management
application.

</description>
<persistence-unit-ref-name>

persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>

../lib/inventory.jar#InventoryManagement
</persistence-unit-name>

</persistence-unit-ref>
...

</session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit
name InventoryManagement declared in the InventoryManagerBean to the persistence unit
named InventoryManagement defined in inventory.jar.

16.10.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceUnit
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The
Application Assembler or Deployer should exercise caution in changing this value, if speci-
fied, as doing so is likely to break the application.

• The injection target, if specified, must name exactly the annotated field or property method.

16.10.3 Deployer’s Responsibility
The Deployer uses deployment tools to bind a persistence unit reference to the actual entity manager
factory configured for the persistence in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the meta-
data annotations or deployment descriptor:
469 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Persistence Context References

Sun Microsystems, Inc.
• Bind the persistence unit reference to an entity manager factory configured for the persistence
unit that exists in the operational environment. The Deployer may use, for example, the JNDI
LinkRef mechanism to create a symbolic link to the actual JNDI name of the entity manager
factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit refer-
ence to the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
managing the persistence unit, as described in [2].

16.10.4 Container Provider Responsibility
The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the pre-
vious subsection.

• Provide the implementation of the entity manager factory classes for the persistence units that
are configured with the EJB container. The implementation of the entity manager factory
classes may be provided by the container directly or by the container in conjunction with a
third-party persistence provider, as described in [2].

16.10.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

16.11 Persistence Context References

This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to a container-managed entity manager of a specified persistence context
type using a logical name called a persistence context reference. Persistence context references are spe-
cial entries in the enterprise bean’s environment. The Deployer binds the persistence context references
to container-managed entity managers for persistence contexts of the specified type and configured in
accordance with their persistence unit, as described in the document “Java Persistence API” of this
specification [2].
 11/5/09 470

Persistence Context References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
16.11.1 Bean Provider’s Responsibilities
This subsection describes the Bean Provider’s view of locating container-managed entity managers and
defines his or her responsibilities. The first subsection describes annotations for injecting references to
container-managed entity managers; the second describes the API for accessing references to con-
tainer-managed entity managers; and the third describes syntax for declaring these references in a
deployment descriptor.

16.11.1.1 Injection of Persistence Context References
A field or a method of an enterprise bean may be annotated with the PersistenceContext annota-
tion. The name element specifies the name under which a container-managed entity manager for the
referenced persistence unit may be located in the JNDI naming context. The optional unitName ele-
ment specifies the name of the persistence unit as declared in the persistence.xml file that defines
the persistence unit. The optional type element specifies whether a transaction-scoped or extended
persistence context is to be used. If the type is not specified, a transaction-scoped persistence context
will be used. References to container-managed entity managers with extended persistence contexts can
only be injected into stateful session beans. The optional properties element specifies configuration
properties to be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
context references.

@PersistenceContext(type=EXTENDED)
EntityManager em;

16.11.1.2 Programming Interfaces for Persistence Context References

The Bean Provider must use persistence context references to obtain references to a container-managed
entity manager configured for a persistence unit as follows:

• Assign an entry in the enterprise bean’s environment to the persistence context reference. (See
subsection 16.11.1.3 for information on how persistence context references are declared in the
deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence context refer-
ences be organized in the java:comp/env/persistence subcontexts of the bean’s envi-
ronment.

• Lookup the container-managed entity manager for the persistence unit in the enterprise bean’s
environment using the EJBContext lookup method or using the JNDI API.
471 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Persistence Context References

Sun Microsystems, Inc.
The following code sample illustrates obtaining an entity manager for a persistence context when the
EJBContext lookup method is used.

@PersistenceContext(name=”persistence/InventoryAppMgr”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

@Resource SessionContext ctx;

public void updateInventory(...) {
...
// use context lookup to obtain container-managed entity

manager
EntityManager em =(EntityManager)

ctx.lookup("persistence/InventoryAppMgr");
...

}
}

The following code sample illustrates obtaining an entity manager when the JNDI APIs are used
directly.

@PersistenceContext(name=”persistence/InventoryAppMgr”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

EJBContext ejbContext;

public void updateInventory(...) {
...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain container-managed entity
manager

EntityManager em = (EntityManager)
initCtx.lookup("java:comp/env/persistence/InventoryApp-

Mgr");
...

}
}

16.11.1.3 Declaration of Persistence Context References in Deployment Descriptor

Although a persistence context reference is an entry in the enterprise bean’s environment, the Bean Pro-
vider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence context
references in the deployment descriptor using the persistence-context-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence
context references used by an enterprise bean. Deployment descriptor entries may also be used to spec-
ify injection of a persistence context reference into a bean.
 11/5/09 472

Persistence Context References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
Each persistence-context-ref element describes a single container-managed entity manager
reference. The persistence-context-ref element consists of the optional description,
persistence-unit-name, persistence-context-type and persistence-prop-
erty elements, and the mandatory persistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment entry
used in the enterprise bean’s code. The name of the environment entry is relative to the
java:comp/env context (e.g., the name should be persistence/InventoryAppMgr rather
than java:comp/env/persistence/InventoryAppMgr). The persis-
tence-unit-name element is the name of the persistence unit, as specified in the persis-
tence.xml file for the persistence unit. The persistence-context-type element specifies
whether a transaction-scoped or extended persistence context is to be used. Its value is either Trans-
action or Extended. If the persistence context type is not specified, a transaction-scoped persis-
tence context will be used. The optional persistence-property elements specify configuration
properties that are passed to the persistence provider when the entity manager is created.

The following example is the declaration of a persistence context reference used by the Inventory-
Manager enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-context-ref>

<description>
Persistence context for the inventory management
application.

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

InventoryManagement
</persistence-unit-name>

</persistence-context-ref>
...

</session>
</enterprise-beans>
...
473 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Persistence Context References

Sun Microsystems, Inc.
16.11.2 Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment
descriptor to specify a reference to a persistence unit using the syntax described in section 16.10.2. In
this manner, multiple persistence units with the same persistence unit name may be uniquely identified
when persistence unit names cannot be changed.

For example,

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-context-ref>

<description>
Persistence context for the inventory management
application.

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

../lib/inventory.jar#InventoryManagement
</persistence-unit-name>

</persistence-context-ref>
...

</session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit
name InventoryManagement declared in the InventoryManagerBean to the persistence unit
named InventoryManagement defined in inventory.jar.

16.11.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceCon-
text annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The
Application Assembler or Deployer should exercise caution in changing this value, if speci-
fied, as doing so is likely to break the application.

• The persistence-context-type, if specified, overrides the type element of the anno-
tation. In general, the Application Assembler or Deployer should never change the value of
this element, as doing so is likely to break the application.
 11/5/09 474

Persistence Context References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
• Any persistence-property elements are added to those specified by the Persis-
tenceContext annotation. If the name of a specified property is the same as one specified
by the PersistenceContext annotation, the value specified in the annotation is overrid-
den.

• The injection target, if specified, must name exactly the annotated field or property method.

16.11.3 Deployer’s Responsibility
The Deployer uses deployment tools to bind a persistence context reference to the container-managed
entity manager for the persistence context of the specified type and configured for the persistence unit
in the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence context reference to a container-managed entity manager for a persistence
context of the specified type and configured for the persistence unit as specified in the per-
sistence.xml file for the persistence unit that exists in the operational environment. The
Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to
the actual JNDI name of the entity manager.

• If the persistence unit name is specified, the Deployer should bind the persistence context ref-
erence to an entity manager for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for cre-
ating such an entity manager and for managing the persistence unit, as described in [2].

16.11.4 Container Provider Responsibility
The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the pre-
vious subsection.

• Provide the implementation of the entity manager classes for the persistence units that are con-
figured with the EJB container. This implementation may be provided by the container direc-
tory or by the container in conjunction with a third-party persistence provider, as described in
[2].

16.11.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.
475 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release UserTransaction Interface

Sun Microsystems, Inc.
16.12 UserTransaction Interface

The container must make the UserTransaction interface available to the enterprise beans that are
allowed to use this interface (only session and message-driven beans with bean-managed transaction
demarcation are allowed to use this interface) either through injection using the Resource annotation
or in JNDI under the name java:comp/UserTransaction, in addition to through the EJBContext
interface. The authenticationType and shareable elements of the Resource annotation
must not be specified.

The container must not make the UserTransaction interface available to the enterprise beans that
are not allowed to use this interface. The container should throw javax.naming.NameNotFoun-
dException if an instance of an enterprise bean that is not allowed to use the UserTransaction
interface attempts to look up the interface in JNDI using the JNDI APIs.

The following example illustrates how an enterprise bean acquires and uses a UserTransaction
object via injection.

@Resource UserTransaction tx;
...
public void updateData(...) {

...
// Start a transaction.
tx.begin();
...
// Perform transactional operations on data.
...
// Commit the transaction.
tx.commit();
...

}

The following code example

public MySessionBean implements SessionBean {
...
public someMethod()
{

...
Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(

“java:comp/UserTransaction”);
utx.begin();
...
utx.commit();

}
...

}

 11/5/09 476

ORB References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
is functionally equivalent to

public MySessionBean implements SessionBean {
...
SessionContext ctx;
...
public someMethod()
{

UserTransaction utx = ctx.getUserTransaction();
utx.begin();
...
utx.commit();

}
...

}

A UserTransaction object reference may also be declared in a deployment descriptor in the same
way as a resource environment reference. Such a deployment descriptor entry may be used to specify
injection of a UserTransaction object.

16.12.1 Bean Provider’s Responsibility
The Bean Provider is responsible for requesting injection of a UserTransaction object using a
Resource annotation or for using the defined name to lookup the UserTransaction object.

16.12.2 Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate UserTransaction object as
required by this specification.

16.13 ORB References

Enterprise beans that need to make use of the CORBA ORB to perform certain operations can find an
appropriate object implementing the ORB interface by requesting injection of an ORB object or by look-
ing up the JNDI name java:comp/ORB. Any such reference to an ORB object is only valid within the
bean instance that performed the lookup.

The following example illustrates how an application component acquires and uses an ORB object via
injection.

@Resource ORB orb;

public void method(...) {
...
// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references(“RootPOA”);
...

}

477 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release TimerService References

Sun Microsystems, Inc.
The following example illustrates how an enterprise bean acquires and uses an ORB object using a
JNDI lookup.

public void method(...) {
...
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the ORB object.
ORB orb = (ORB)initCtx.lookup(“java:comp/ORB”);

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references(“RootPOA”);
...

}

An ORB reference may also be declared in a deployment descriptor in the same way as a resource man-
ager connection factory reference. Such a deployment descriptor entry may be used to specify injection
of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always be a shared instance.
By default, the ORB instance injected into an enterprise bean or declared via a deployment descriptor
entry may also be a shared instance. However, the application may set the shareable element of the
Resource annotation to false, or may set the res-sharing-scope element in the deployment
descriptor to Unshareable, to request a non-shared ORB instance.

16.13.1 Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of the ORB object using the Resource anno-
tation, or using the defined name to look up the ORB object. If the shareable element of the
Resource annotation is set to false, the ORB object injected will not be the shared instance used by
other components in the application but instead will be a private ORB instance used only by the given
component.

16.13.2 Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate ORB object as required by this spec-
ification.

16.14 TimerService References

The container must make the TimerService interface available either through injection using the
Resource annotation or in JNDI under the name java:comp/TimerService, in addition to
through the EJBContext interface. The authenticationType and shareable elements of the
Resource annotation must not be specified.
 11/5/09 478

EJBContext References Enterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
A TimerService object reference may also be declared in a deployment descriptor in the same way
as a resource environment reference. Such a deployment descriptor entry may be used to specify injec-
tion of a TimerService object.

16.14.1 Bean Provider’s Responsibility
The Bean Provider is responsible for requesting injection of a TimerService object using a
Resource annotation, or using the defined name to lookup the TimerService object.

16.14.2 Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate TimerService object as required
by this specification.

16.15 EJBContext References

The container must make a component’s EJBContext interface available either through injection
using the Resource annotation or in JNDI under the name java:comp/EJBContext. The
authenticationType and shareable elements of the Resource annotation must not be spec-
ified.

An EJBContext object reference may also be declared in a deployment descriptor in the same way as a
resource environment reference. Such a deployment descriptor entry may be used to specify injection of
an EJBContext object.

16.15.1 Bean Provider’s Responsibility
The Bean Provider is responsible for requesting injection of an EJBContext object using a
Resource annotation or using the defined name to lookup the EJBContext object.

EJBContext objects accessed through the naming environment are only valid within the bean instance
that performed the lookup.

16.15.2 Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate EJBContext object to the refer-
encing component. The object returned must be of the appropriate specific type for the bean requesting
injection or performing the lookup—that is, the container provider must return an instance of the Ses-
sionContext interface to referencing session beans and an instance of the MessageDrivenContext inter-
face to message-driven beans.
479 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Deprecated EJBContext.getEnvironment

Sun Microsystems, Inc.
16.16 Deprecated EJBContext.getEnvironment Method

The environment naming context introduced in EJB 1.1 replaced the EJB 1.0 concept of environment
properties.

An EJB 1.1 or later compliant container is not required to implement support for the EJB 1.0 style envi-
ronment properties. If the container does not implement the functionality, it should throw a RuntimeEx-
ception (or subclass thereof) from the EJBContext.getEnvironment method.

If an EJB 1.1 or later compliant container chooses to provide support for the EJB 1.0 style environment
properties (so that it can support enterprise beans written to the EJB 1.0 specification), it should imple-
ment the support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they should
place the definitions of the environment properties into the ejb10-properties subcontext of the
environment naming context. The env-entry elements should be defined as follows: the
env-entry-name element contains the name of the environment property, the env-entry-type
must be java.lang.String, and the optional env-entry-value contains the environment
property value.

For example, an EJB 1.0 enterprise bean with two environment properties foo and bar, should declare
the following env-entry elements in its EJB 1.1 format deployment descriptor.

...
<env-entry>

env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>
<env-entry>

<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bar value</env-entry-value>

</env-entry>
...

The container should provide the entries declared in the ejb10-properties subcontext to the
instances as a java.util.Properties object that the instances obtain by invoking the EJBCon-
text.getEnvironment method.
 11/5/09 480

Deprecated EJBContext.getEnvironment MethodEnterprise JavaBeans 3.1, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following example.

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
ctx = sc;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = env.getProperty("foo");
String barValue = env.getProperty("bar");

}
...

}

481 November 5, 2009 11:00 am

Enterprise Bean Environment Enterprise JavaBeans 3.1, Final Release Deprecated EJBContext.getEnvironment

Sun Microsystems, Inc.
 11/5/09 482

Overview Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
Chapter 17 Security Management

This chapter defines the EJB architecture’s support for security management.

17.1 Overview

We set the following goals for the security management in the EJB architecture:

• Lessen the burden of the application developer (i.e. the Bean Provider) for securing the appli-
cation by allowing greater coverage from more qualified EJB roles. The EJB Container Pro-
vider provides the implementation of the security infrastructure; the Deployer and System
Administrator define the security policies.

• Allow the security policies to be set by the Application Assembler or Deployer.

• Allow the enterprise bean applications to be portable across multiple EJB servers that use dif-
ferent security mechanisms.
483 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Overview

Sun Microsystems, Inc.
The EJB architecture encourages the Bean Provider to implement the enterprise bean class without
hard-coding the security policies and mechanisms into the business methods. In most cases, the enter-
prise bean’s business methods should not contain any security-related logic. This allows the Deployer to
configure the security policies for the application in a way that is most appropriate for the operational
environment of the enterprise.

To make the Deployer’s task easier, the Bean Provider or the Application Assembler (which could be
the same party as the Bean Provider) may define security roles for an application composed of one or
more enterprise beans. A security role is a semantic grouping of permissions that a given type of users
of the application must have in order to successfully use the application. The Bean Provider can define
declaratively using metadata annotations or the deployment descriptor the method permissions for each
security role. The Applications Assembler can define, augment, or override the method permissions
using the deployment descriptor. A method permission is a permission to invoke a specified group of
methods of an enterprise bean’s business interface, no-interface view, home interface, component inter-
face, and/or web service endpoint. The security roles defined present a simplified security view of the
enterprise beans application to the Deployer—the Deployer’s view of the application’s security require-
ments is the small set of security roles rather than a large number of individual methods.

The security principal under which a method invocation is performed is typically that of the compo-
nent’s caller. By specifying a run-as identity, however, it is possible to specify that a different principal
be substituted for the execution of the methods of the bean’s business interface, no-interface view, home
interface, component interface, and/or web service endpoint and any methods of other enterprise beans
that the bean may call.

This determines whether the caller principal is propagated from the caller to the callee—that is, whether
the called enterprise bean will see the same returned value of the EJBContext.getCallerPrin-
cipal as the calling enterprise bean—or whether a security principal that has been assigned to the
specified security role will be used for the execution of the bean’s methods and will be visible as the
caller principal in the bean’s callee.

The Bean Provider can use metadata annotations or the deployment descriptor to specify whether the
caller’s security identity or a run-as security identity should be used for the execution of the bean’s
methods.

• By default, the caller principal will be propagated as the caller identity. The Bean Provider can
use the RunAs annotation to specify that a security principal that has been assigned to a speci-
fied security role be used instead. See Section 17.3.4.

• If the deployment descriptor is used to specify the security principal, the Bean Provider or the
Application Assembler can use the security-identity deployment descriptor element
to specify the security identity. If the security-identity deployment descriptor element
is not specified and if a run-as identity has not been specified by the use of the RunAs annota-
tion or if use-caller-identity is specified as the value of the security-identity
element, the caller principal is propagated from the caller to the callee. If the run-as element
is specified, a security principal that has been assigned to the specified security role will be
used. The Application Assembler is permitted to override a security identity value set or
defaulted by the Bean Provider.
 11/5/09 484

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
The Deployer is responsible for assigning principals, or groups of principals, which are defined in the
target operational environment, to the security roles defined by the Bean Provider or Application
Assembler. The Deployer is also responsible for assigning principals for the run-as identities specified.
The Deployer is further responsible for configuring other aspects of the security management of the
enterprise beans, such as principal mapping for inter-enterprise bean calls, and principal mapping for
resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with the
client call has been assigned by the Deployer to have at least one security role that is allowed to invoke
the business method or if the Bean Provider or Application Assembler has specified that security autho-
rization is not to be checked for the method (i.e., that all roles, including any unauthenticated roles, are
permitted). See Section 17.3.2.

The Container Provider is responsible for enforcing the security policies at runtime, providing the tools
for managing security at runtime, and providing the tools used by the Deployer to manage security dur-
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a simple
programmatic interface that the Bean Provider may use to access the security context from the business
methods.

The following sections define the responsibilities of the individual EJB roles with respect to security
management.

17.2 Bean Provider’s Responsibilities

This section defines the Bean Provider’s perspective of the EJB architecture support for security, and
defines his or her responsibilities. In addition, the Bean Provider may define the security roles for the
application, as defined in Section 17.3.

17.2.1 Invocation of Other Enterprise Beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s business
interface or no-interface view or home or component interface. The EJB architecture provides no pro-
grammatic interfaces for the invoking enterprise bean to control the principal passed to the invoked
enterprise bean.

The management of caller principals passed on inter-enterprise bean invocations (i.e. principal delega-
tion) is set up by the Deployer and System Administrator in a container-specific way. The Bean Pro-
vider and Application Assembler should describe all the requirements for the caller’s principal
management of inter-enterprise bean invocations as part of the description.

17.2.2 Resource Access
Section 16.7 defines the protocol for accessing resource managers, including the requirements for secu-
rity management.
485 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
17.2.3 Access of Underlying OS Resources
The EJB architecture does not define the operating system principal under which enterprise bean meth-
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the underly-
ing OS resources, such as files. (See Subsection 17.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers such as
relational databases rather than in resources at the operating system levels. Therefore, this rule should
not affect the portability of most enterprise beans.

17.2.4 Programming Style Recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security policies in the
enterprise beans’ business methods. Rather, the Bean Provider should rely on the security mechanisms
provided by the EJB container.

The Bean Provider can use metadata annotations and/or the deployment descriptor to convey secu-
rity-related information to the Deployer. The information helps the Deployer to set up the appropriate
security policy for the enterprise bean application.

17.2.5 Programmatic Access to Caller’s Security Context

Note: In general, security management should be enforced by the container in a manner that is trans-
parent to the enterprise beans’ business methods. The security API described in this section should be
used only in the less frequent situations in which the enterprise bean business methods need to access
the security context information.

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods that
were defined in EJB 1.0) that allow the Bean Provider to access security information about the enter-
prise bean’s caller.

public interface javax.ejb.EJBContext {
...

//
// The following two methods allow the EJB class
// to access security information.
//
java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

//
// The following two EJB 1.0 methods are deprecated.
//
java.security.Identity getCallerIdentity();
boolean isCallerInRole(java.security.Identity role);

...

}

 11/5/09 486

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
The Bean Provider can invoke the getCallerPrincipal and isCallerInRole methods only
in the enterprise bean’s business methods as specified in Table 1 on page 94, Table 2 on page 103,
Table 4 on page 149, Table 5 on page 231, and Table 11 on page 303. If they are otherwise invoked
when no security context exists, they should throw the java.lang.IllegalStateException
runtime exception.

The getCallerIdentity() and isCallerInRole(Identity role) methods were depre-
cated in EJB 1.1. The Bean Provider must use the getCallerPrincipal() and isCallerIn-
Role(String roleName) methods for new enterprise beans.

An EJB 1.1 or later compliant container may choose to implement the two deprecated methods as fol-
lows.

• A container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass of RuntimeException) from the getCallerI-
dentity method.

• A container that wants to provide support for the getCallerIdentity method should
return an instance of a subclass of the java.security.Identity abstract class from the
method. The getName method invoked on the returned object must return the same value that
getCallerPrincipal().getName() would return.

• A container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass of RuntimeException) from the isCallerIn-
Role(Identity identity) method.

• A container that wants to implement the isCallerInRole(Identity identity)
method should implement it as follows:

public isCallerInRole(Identity identity) {
return isCallerInRole(identity.getName());

}

17.2.5.1 Use of getCallerPrincipal

The purpose of the getCallerPrincipal method is to allow the enterprise bean methods to obtain
the current caller principal’s name. The methods might, for example, use the name as a key to informa-
tion in a database.

An enterprise bean can invoke the getCallerPrincipal method to obtain a java.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obtain the
distinguished name of the caller principal using the getName method of the java.secu-
rity.Principal interface. If the security identity has not been established, getCallerPrinci-
pal returns the container’s representation of the unauthenticated identity.

Note that getCallerPrincipal returns the principal that represents the caller of the
enterprise bean, not the principal that corresponds to the run-as security identity for the bean,
if any.
487 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The meaning of the current caller, the Java class that implements the java.security.Principal
interface, and the realm of the principals returned by the getCallerPrincipal method depend on
the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains. The
security infrastructure may perform one or more mapping of principals on the path from an EJB caller
to the EJB object. For example, an employee accessing his or her company over the Internet may be
identified by a userid and password (basic authentication), and the security infrastructure may authen-
ticate the principal and then map the principal to a Kerberos principal that is used on the enterprise’s
intranet before delivering the method invocation to the EJB object. If the security infrastructure per-
forms principal mapping, the getCallerPrincipal method returns the principal that is the result
of the mapping, not the original caller principal. (In the previous example, getCallerPrincipal
would return the Kerberos principal.) The management of the security infrastructure, such as principal
mapping, is performed by the System Administrator role; it is beyond the scope of the EJB specification.

The following code sample illustrates the use of the getCallerPrincipal() method.

@Stateless public class EmployeeServiceBean
implements EmployeeService{

@Resource SessionContext ctx;
@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {
...

// obtain the caller principal.
callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.
callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord
EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number
myEmployeeRecord.setPhoneNumber(...);

...
}

}

In the previous example, the enterprise bean obtains the principal name of the current caller and uses it
as the primary key to locate an EmployeeRecord entity. This example assumes that application has
been deployed such that the current caller principal contains the primary key used for the identification
of employees (e.g., employee number).
 11/5/09 488

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
17.2.5.2 Use of isCallerInRole

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Pro-
vider to code the security checks that cannot be easily defined declaratively in the deployment descrip-
tor using method permissions. Such a check might impose a role-based limit on a request, or it might
depend on information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the current caller has
been assigned to a given security role. Security roles are defined by the Bean Provider or the Applica-
tion Assembler (see Subsection 17.3.1), and are assigned to principals or principal groups that exist in
the operational environment by the Deployer.

Note that isCallerInRole(String roleName) tests the principal that represents the
caller of the enterprise bean, not the principal that corresponds to the run-as security identity
for the bean, if any.

The following code sample illustrates the use of the isCallerInRole(String roleName)
method.

@Stateless public class PayrollBean implements Payroll {
@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Code

The Bean Provider is responsible for using the DeclareRoles annotation or the secu-
rity-role-ref elements of the deployment descriptor to declare all the security role names used in
the enterprise bean code. The DeclareRoles annotation is specified on a bean class, where it serves
to declare roles that may be tested by calling isCallerInRole from within the methods of the anno-
tated class. Declaring the security roles allows the Bean Provider, Application Assembler, or Deployer
to link these security role names used in the code to the security roles defined for an assembled applica-
tion. In the absence of this linking step, any security role name as used in the code will be assumed to
correspond to a security role of the same name.
489 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The Bean Provider declares the security roles referenced in the code using the DeclareRoles meta-
data annotation. When declaring the name of a role used as a parameter to the isCallerIn-
Role(String roleName) method, the declared name must be the same as the parameter value.
The Bean Provider may optionally provide a description of the named security roles in the descrip-
tion element of the DeclareRoles annotation.

In the following example, the DeclareRoles annotation is used to indicate that the enterprise bean
AardvarkPayroll makes the security check using isCallerInRole("payroll") in its busi-
ness method.

@DeclareRoles(“payroll”)
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

If the DeclareRoles annotation is not used, the Bean Provider must use the secu-
rity-role-ref elements of the deployment descriptor to declare the security roles referenced in the
code. The security-role-ref elements are defined as follows:

• Declare the name of the security role using the role-name element. The name must be the
security role name that is used as a parameter to the isCallerInRole(String role-
Name) method.

• Optionally provide a description of the security role in the description element.
 11/5/09 490

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
The following example illustrates how an enterprise bean’s references to security roles are declared in
the deployment descriptor.

...
<enterprise-beans>

...
<session>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.

</description>
<role-name>payroll</role-name>

</security-role-ref>
...

</session>
...

</enterprise-beans>
...

The deployment descriptor above indicates that the enterprise bean AardvarkPayroll makes the
security check using isCallerInRole("payroll") in its business method.

A security role reference, including the name defined by the reference, is scoped to the component
whose bean class contains the DeclareRoles metadata annotation or whose deployment descriptor
element contains the security-role-ref deployment descriptor element.

The Bean Provider (or Application Assembler) may also use the security-role-ref elements for
those references that were declared in annotations and which the Bean Provider wishes to have linked to
a security-role whose name differs from the reference value. If a security role reference is not
linked to a security role in this way, the container must map the reference name to the security role of
the same name. See section 17.3.3 for a description of how security role references are linked to security
roles.

17.3 Responsibilities of the Bean Provider and/or Application
Assembler

The Bean Provider and Application Assembler (which could be the same party as the Bean Provider)
may define a security view of the enterprise beans contained in the ejb-jar file. Providing the security
view is optional for the Bean Provider and Application Assembler.
491 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.
The main reason for providing the security view of the enterprise beans is to simplify the Deployer’s job.
In the absence of a security view of an application, the Deployer needs detailed knowledge of the appli-
cation in order to deploy the application securely. For example, the Deployer would have to know what
each business method does to determine which users can call it. The security view defined by the Bean
Provider or Application Assembler presents a more consolidated view to the Deployer, allowing the
Deployer to be less familiar with the application.

The security view consists of a set of security roles. A security role is a semantic grouping of permis-
sions that a given type of users of an application must have in order to successfully use the application.

The Bean Provider or Application Assembler defines method permissions for each security role. A
method permission is a permission to invoke a specified group of methods of the enterprise beans’ busi-
ness interface, home interface, component interface, and/or web service endpoint.

It is important to keep in mind that the security roles are used to define the logical security view of an
application. They should not be confused with the user groups, users, principals, and other concepts
that exist in the target enterprise’s operational environment.

In special cases, a qualified Deployer may change the definition of the security roles for an application,
or completely ignore them and secure the application using a different mechanism that is specific to the
operational environment.

17.3.1 Security Roles
The Bean Provider or Application Assembler can define one or more security roles in the bean’s meta-
data annotations or deployment descriptor. The Bean Provider or Application Assembler then assigns
groups of methods of the enterprise beans’ business, home, and component interfaces, no-interface view
, and/or web service endpoints to the security roles to define the security view of the application.

Because the Bean Provider and Application Assembler do not, in general, know the security environ-
ment of the operational environment, the security roles are meant to be logical roles (or actors), each
representing a type of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environment to
the security roles defined by the Bean Provider and Application Assembler.

Defining the security roles in the metadata annotations and/or deployment descriptor is optional[91].
Their omission means that the Bean Provider and Application Assembler chose not to pass any security
deployment related instructions to the Deployer.

If Java language metadata annotations are used, the Bean Provider uses the DeclareRoles and
RolesAllowed annotations to define the security roles. The set of security roles used by the applica-
tion is taken to be the aggregation of the security roles defined by the security role names used in the
DeclareRoles and RolesAllowed annotations. The Bean Provider may augment the set of secu-
rity roles defined for the application by annotations in this way by means of the security-role
deployment descriptor element.

[91] If the Bean Provider and Application Assembler do not define security roles, the Deployer will have to define security roles at
deployment time.
 11/5/09 492

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
If the deployment descriptor is used, the The Bean Provider and/or Application Assembler uses the
security-role deployment descriptor element as follows:

• Define each security role using a security-role element.

• Use the role-name element to define the name of the security role.

• Optionally, use the description element to provide a description of a security role.

The following example illustrates security roles definition in a deployment descriptor.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>
...

</assembly-descriptor>
493 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.
17.3.2 Method Permissions

If the Bean Provider and/or Application Assembler have defined security roles for the enterprise beans
in the ejb-jar file, they can also specify the methods of the business, home, and component interfaces,
no-interface view, and/or web service endpoints that each security role is allowed to invoke.

Metadata annotations and/or the deployment descriptor can be used for this purpose.

Method permissions are defined as a binary relation from the set of security roles to the set of methods
of the business interfaces, home interfaces, component interfaces, no-interface view, and/or web service
endpoints of session and entity beans, including all their superinterfaces (including the methods of the
EJBHome and EJBObject interfaces and/or EJBLocalHome and EJBLocalObject interfaces).
The method permissions relation includes the pair (R, M) if and only if the security role R is allowed to
invoke the method M.

17.3.2.1 Specification of Method Permissions with Metadata Annotations
The following is the description of the rules for the specification of method permissions using Java lan-
guage metadata annotations.

The method permissions for the methods of a bean class may be specified on the class, the business
methods of the class, or both.

The RolesAllowed, PermitAll, and DenyAll annotations are used to specify method permis-
sions. The value of the RolesAllowed annotation is a list of security role names to be mapped to the
security roles that are permitted to execute the specified method(s). The PermitAll annotation speci-
fies that all security roles are permitted to execute the specified method(s). The DenyAll annotation
specifies that no security roles are permitted to execute the specified method(s).

Specifying the RolesAllowed or PermitAll or DenyAll annotation on the bean class means that
it applies to all applicable business methods of the class.

Method permissions may be specified on a method of the bean class to override the method permissions
value specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A method permissions value specified on a superclass S applies to the business methods
defined by S.

• A method permissions value may be specified on a business method M defined by class S to
override for method M the method permissions value explicitly or implicitly specified on the
class S.

• If a method M of class S overrides a business method defined by a superclass of S, the method
permissions value of M is determined by the above rules as applied to class S.
 11/5/09 494

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
Example:

@RolesAllowed(“admin”)
public class SomeClass {

public void aMethod () {...}
public void bMethod () {...}
...

}

@Stateless public class MyBean extends SomeClass implements A {

@RolesAllowed(“HR”)
public void aMethod () {...}

public void cMethod () {...}
 ...
}

Assuming aMethod, bMethod, cMethod are methods of business interface A, the method permis-
sions values of methods aMethod and bMethod are RolesAllowed(“HR”) and RolesAl-
lowed(“admin”) respectively. The method permissions for method cMethod have not been
specified (see Sections 17.3.2.2 and 17.3.2.3) .

17.3.2.2 Specification of Method Permissions in the Deployment Descriptor

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to spec-
ify the method permissions (or as a means to supplement or override metadata annotations for method
permission values). The application assembler is permitted to override the method permission values
using the bean’s deployment descriptor.

Any values explicitly specified in the deployment descriptor override any values specified in annota-
tions. If a value for a method has not be specified in the deployment descriptor, and a value has been
specified for that method by means of the use of annotations, the value specified in annotations will
apply. The granularity of overriding is on the per-method basis.

The Bean Provider or Application Assembler defines the method permissions relation in the deploy-
ment descriptor using the method-permission elements as follows.

• Each method-permission element includes a list of one or more security roles and a list
of one or more methods. All the listed security roles are allowed to invoke all the listed meth-
ods. Each security role in the list is identified by the role-name element, and each method
(or a set of methods, as described below) is identified by the method element. An optional
description can be associated with a method-permission element using the descrip-
tion element.

• The method permissions relation is defined as the union of all the method permissions defined
in the individual method-permission elements.

• A security role or a method may appear in multiple method-permission elements.
495 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.
The Bean Provider or Application Assembler can indicate that all roles are permitted to execute one or
more specified methods (i.e., the methods should not be “checked” for authorization prior to invocation
by the container). The unchecked element is used instead of a role name in the method-permis-
sion element to indicate that all roles are permitted.

If the method permission relation specifies both the unchecked element for a given method and one
or more security roles, all roles are permitted for the specified methods.

The exclude-list element can be used to indicate the set of methods that should not be called. The
Deployer should configure the enterprise bean’s security such that no access is permitted to any method
contained in the exclude-list.

If a given method is specified both in the exclude-list element and in the method permission rela-
tion, the Deployer should configure the enterprise bean’s security such that no access is permitted to the
method.

The method element uses the ejb-name, method-name, and method-params elements to
denote one or more methods of an enterprise bean’s business , home, and component interface, no-inter-
face view, and/or web service endpoint. There are three legal styles for composing the method ele-
ment:

Style 1:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used for referring to all of the methods of the business, home, and component
interfaces, no-interface view, and web service endpoint of a specified enterprise bean.

Style 2:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

This style is used for referring to a specified method of the business, home, or component
interface, no-interface view, or web service endpoint of the specified enterprise bean. If there
are multiple methods with the same overloaded name, this style refers to all of the overloaded
methods.

Style 3:
<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAMETER_1</method-param>
...
<method-param>PARAMETER_N</method-param>

</method-params>
 11/5/09 496

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
</method>

This style is used to refer to a specified method within a set of methods with an overloaded
name. The method must be defined in the specified enterprise bean’s business, home, or com-
ponent interface, no-interface view, or web service endpoint. If there are multiple methods
with the same overloaded name, however, this style refers to all of the overloaded methods.

The optional method-intf element can be used to differentiate between methods with the same
name and signature that are multiply defined across the business, component, or home interfaces,
no-interface view, and/or web service endpoint. If the same method is a method of a local business inter-
face, local component interface, or no-interface view, the same method permission values apply to the
method for all of them. Likewise, if the same method is a method of both the remote business interface
and remote component interface, the same method permission values apply to the method for both inter-
faces.
497 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.
The following example illustrates how security roles are assigned method permissions in the deploy-
ment descriptor:

...
<method-permission>

<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
...
 11/5/09 498

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
17.3.2.3 Unspecified Method Permissions

It is possible that some methods are not assigned to any security roles nor annotated as DenyAll or
contained in the exclude-list element. In this case, the Deployer should assign method permis-
sions for all of the unspecified methods, either by assigning them to security roles, or by marking them
as unchecked. If the Deployer does not assigned method permissions to the unspecified methods, those
methods must be treated by the container as unchecked.

17.3.3 Linking Security Role References to Security Roles

The security role references used in the components of the application are linked to the security roles
defined for the application. In the absence of any explicit linking, a security role reference will be linked
to a security role having the same name.

The Application Assembler may explicitly link all the security role references declared in the Declar-
eRoles annotation or security-role-ref elements for a component to the security roles defined
by the use of annotations (see section 17.3.1) and/or in the security-role elements.

The Application Assembler links each security role reference to a security role using the role-link
element. The value of the role-link element must be the name of one of the security roles defined in
a security-role element or by means of the DeclareRoles annotations or RolesAllowed
annotations (as described in section 17.3.1), but need not be specified when the role-name used in
the code is the same as the name of the security-role (to be linked).

The following deployment descriptor example shows how to link the security role reference named
payroll to the security role named payroll-department.

...
<enterprise-beans>

...
<session>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.
The role has been linked to the
payroll-department role.

</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
...

</session>
...

</enterprise-beans>
...
499 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.
17.3.4 Specification of Security Identities in the Deployment Descriptor
The Bean Provider or Application Assembler typically specifies whether the caller’s security identity
should be used for the execution of the methods of an enterprise bean or whether a specific run-as iden-
tity should be used.

By default the caller’s security identity is used. The Bean Provider can use the RunAs metadata annota-
tion to specify a run-as identity for the execution of the bean’s methods. If the deployment descriptor is
used, the Bean Provider or the Application Assembler can use the security-identity deploy-
ment descriptor element for this purpose or to override a security identity specified in metadata. The
value of the security-identity element is either use-caller-identity or run-as.

Defining the security identities in the deployment descriptor is optional for the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to pass
any instructions related to security identities to the Deployer in the deployment descriptor.

If a run-as security identity is not specified by the Deployer, the container should use the caller’s secu-
rity identity for the execution of the bean’s methods.

17.3.4.1 Run-as
The Bean Provider can use the RunAs metadata annotation or the Bean Provider or Application Assem-
bler can use the run-as deployment descriptor element to define a run-as identity for an enterprise
bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a whole, that is,
to all methods of the enterprise bean’s business, home, and component interfaces, no-interface view,
and/or web service endpoint; to the message listener methods of a message-driven bean; and to the tim-
eout callback methods of an enterprise bean; and all internal methods of the bean that they might in turn
call.

Establishing a run-as identity for an enterprise bean does not affect the identities of its callers, which
are the identities tested for permission to access the methods of the enterprise bean. The run-as identity
establishes the identity the enterprise bean will use when it makes calls.

Because the Bean Provider and Application Assembler do not, in general, know the security environ-
ment of the operational environment, the run-as identity is designated by a logical role-name, which
corresponds to one of the security roles defined by the Bean Provider or Application Assembler in the
metadata annotations or deployment descriptor.

The Deployer then assigns a security principal defined in the operational environment to be used as the
principal for the run-as identity. The security principal assigned by the Deployer should be a principal
that has been assigned to the security role specified by RunAs annotation or by the role-name ele-
ment of the run-as deployment descriptor element.

The Bean Provider and/or Application Assembler is responsible for the following in the specification of
run-as identities:

• Use the RunAs metadata annotation or role-name element of the run-as deployment
descriptor element to define the name of the security role.

• Optionally, use the description element to provide a description of the principal that is
expected to be bound to the run-as identity in terms of its security role.
 11/5/09 500

Deployer’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
The following example illustrates the definition of a run-as identity using metadata annotations.

@RunAs(“admin”)
@Stateless public class EmployeeServiceBean

implements EmployeeService{
...

}

Using the deployment descriptor, this can be specified as follows.

...
<enterprise-beans>

...
<session>

<ejb-name>EmployeeService</ejb-name>
...
<security-identity>

<run-as>
<role-name>admin</role-name>

</run-as>
</security-identity>
...

</session>
...

</enterprise-beans>
...

17.4 Deployer’s Responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. This section defines the Deployer’s responsibility with
respect to EJB security management.

The Deployer uses deployment tools provided by the EJB Container Provider to read the security view
of the application supplied by the Bean Provider and/or Application Assembler in the metadata annota-
tions and/or deployment descriptor. The Deployer’s job is to map the security view that was specified
by the Bean Provider and/or Application Assembler to the mechanisms and policies used by the security
domain in the target operational environment. The output of the Deployer’s work includes an applica-
tion security policy descriptor that is specific to the operational environment. The format of this descrip-
tor and the information stored in the descriptor are specific to the EJB container.

The following subsections describe the security related tasks performed by the Deployer.

17.4.1 Security Domain and Principal Realm Assignment
The Deployer is responsible for assigning the security domain and principal realm to an enterprise bean
application.

Multiple principal realms within the same security domain may exist, for example, to separate the
realms of employees, trading partners, and customers. Multiple security domains may exist, for exam-
ple, in application hosting scenarios.
501 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release Deployer’s Responsibilities

Sun Microsystems, Inc.
17.4.2 Assignment of Security Roles
The Deployer assigns principals and/or groups of principals (such as individual users or user groups)
used for managing security in the operational environment to the security roles defined by means of the
DeclareRoles and RolesAllowed metadata annotations and/or security-role elements of
the deployment descriptor.

The Deployer does not assign principals and/or principal groups to the security role references—the
principals and/or principals groups assigned to a security role apply also to all the linked security role
references. For example, the Deployer of the AardvarkPayroll enterprise bean in subsection 17.3.3
would assign principals and/or principal groups to the security-role payroll-department, and the
assigned principals and/or principal groups would be implicitly assigned also to the linked security role
payroll.

The EJB architecture does not specify how an enterprise should implement its security architecture.
Therefore, the process of assigning the logical security roles defined in the application’s deployment
descriptor to the operational environment’s security concepts is specific to that operational environ-
ment. Typically, the deployment process consists of assigning to each security role one or more user
groups (or individual users) defined in the operational environment. This assignment is done on a
per-application basis. (That is, if multiple independent ejb-jar files use the same security role name,
each may be assigned differently.) If the deployer does not assign the logical security roles defined by
the application to groups in the operational environment, it must be assumed that a logical role maps to
a principal or principal group of the same name.

17.4.3 Principal Delegation
The Deployer is responsible for configuring the principal delegation for inter-component calls. The
Deployer must follow any instructions supplied by the Bean Provider and/or Application Assembler
(for example, provided in the RunAs metadata annotations, the run-as elements of the deployment
descriptor, in the description elements of the annotations or deployment descriptor, or in a deploy-
ment manual).

If the security identity is defaulted, or it is explicitly specified that the caller identity be used (e.g.,
use-caller-identity deployment descriptor element is specified), the caller principal is propa-
gated from one component to another (i.e., the caller principal of the first enterprise bean in a call-chain
is passed to the enterprise beans down the chain).

If the Bean Provider or Application Assembler specifies that a run-as identity be used on behalf of a
particular enterprise bean, the Deployer must configure the enterprise beans such that the run-as princi-
pal is used as the caller principal on any calls that the enterprise bean makes to other beans, and that the
run-as principal is propagated along the call-chain of those other beans (in the absence of the specifica-
tion of any further run-as elements).

17.4.4 Security Management of Resource Access

The Deployer’s responsibilities with respect to securing resource managers access are defined in sub-
section 16.7.2.
 11/5/09 502

EJB Client Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
17.4.5 General Notes on Deployment Descriptor Processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provider and
Application Assembler merely as “hints” and may change the information whenever necessary to adapt
the security policy to the operational environment.

Since providing the security information is optional for the Bean Provider and Application Assembler,
the Deployer is responsible for performing any tasks that have not been done by the Bean Provider or
Application Assembler. (For example, if the definition of security roles and method permissions is
missing in the metadata annotations and in deployment descriptor, the Deployer must define the security
roles and method permissions for the application.) It is not required that the Deployer store the output of
this activity in the standard ejb-jar file format.

17.5 EJB Client Responsibilities

This section defines the rules that the EJB client program must follow to ensure that the security context
passed on the client calls, and possibly imported by the enterprise bean, do not conflict with the EJB
server’s capabilities for association between a security context and transactions.

These rules are:

• A transactional client cannot change its principal association within a transaction. This rule
ensures that all calls from the client within a transaction are performed with the same security
context.

• A session bean’s client must not change its principal association for the duration of the com-
munication with the session object. This rule ensures that the server can associate a security
identity with the session instance at instance creation time, and never have to change the secu-
rity association during the session instance lifetime.

• If transactional requests within a single transaction arrive from multiple clients (this could hap-
pen if there are intermediary objects or programs in the transaction call-chain), all requests
within the same transaction must be associated with the same security context.

17.6 EJB Container Provider’s Responsibilities

This section describes the responsibilities of the EJB Container and Server Provider.

17.6.1 Deployment Tools
The EJB Container Provider is responsible for providing the deployment tools that the Deployer can use
to perform the tasks defined in Section 17.4.
503 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release EJB Container Provider’s Responsibilities

Sun Microsystems, Inc.
The deployment tools read the information from the beans’ metadata annotations and/or deployment
descriptor and present the information to the Deployer. The tools guide the Deployer through the
deployment process, and present him or her with choices for mapping the security information in the
metadata annotations and deployment descriptor to the security management mechanisms and policies
used in the target operational environment.

The deployment tools’ output is stored in an EJB container-specific manner, and is available at runtime
to the EJB container.

17.6.2 Security Domain(s)
The EJB container provides a security domain and one or more principal realms to the enterprise beans.
The EJB architecture does not specify how an EJB server should implement a security domain, and does
not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB server. For example, the
EJB server may store X509 certificates or it might use an external security provider such as Kerberos.

The EJB specification does not define the scope of the security domain. For example, the scope may be
defined by the boundaries of the application, EJB server, operating system, network, or enterprise.

The EJB server can, but is not required to, provide support for multiple security domains, and/or multi-
ple principal realms.

The case of multiple domains on the same EJB server can happen when a large server is used for appli-
cation hosting. Each hosted application can have its own security domain to ensure security and man-
agement isolation between applications owned by multiple organizations.

17.6.3 Security Mechanisms
The EJB Container Provider must provide the security mechanisms necessary to enforce the security
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that must be
implemented and supported by the EJB server.

The typical security functions provided by the EJB server include:

• Authentication of principals.

• Access authorization for EJB calls and resource manager access.

• Secure communication with remote clients (privacy, integrity, etc.).

17.6.4 Passing Principals on EJB Calls
The EJB Container Provider is responsible for providing the deployment tools that allow the Deployer
to configure the principal delegation for calls from one enterprise bean to another. The EJB container is
responsible for performing the principal delegation as specified by the Deployer.
 11/5/09 504

EJB Container Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
The EJB container must be capable of allowing the Deployer to specify that, for all calls from a single
application within a single Java EE product, the caller principal is propagated on calls from one enter-
prise bean to another (i.e., the multiple beans in the call chain will see the same return value from get-
CallerPrincipal).

This requirement is necessary for applications that need a consistent return value of getCaller-
Principal across a chain of calls between enterprise beans.

The EJB container must be capable of allowing the Deployer to specify that a run-as principal be used
for the execution of the business, home, and component interfaces, no-interface view, and/or web ser-
vice endpoint methods of a session or entity bean, or for the message listener methods of a mes-
sage-driven bean.

17.6.5 Security Methods in javax.ejb.EJBContext
The EJB container must provide access to the caller’s security context information from the enterprise
beans’ instances via the getCallerPrincipal() and isCallerInRole(String role-
Name) methods. The EJB container must provide the caller’s security context information during the
execution of a business method invoked via the enterprise bean’s business, home, component, no-inter-
face view, or messsage listener interface, web service endpoint, and/or TimedObject interface, as
defined in Table 1 on page 94, Table 2 on page 103, Table 4 on page 149, Table 5 on page 231, and
Table 11 on page 303. The container must ensure that all enterprise bean method invocations received
through these interfaces are associated with some principal. If the security identity of the caller has not
been established, the container returns the container’s representation of the unauthenticated identity.
The container must never return a null from the getCallerPrincipal method.

17.6.6 Secure Access to Resource Managers
The EJB Container Provider is responsible for providing secure access to resource managers as
described in Subsection 16.7.3.

17.6.7 Principal Mapping
If the application requires that its clients are deployed in a different security domain, or if multiple
applications deployed across multiple security domains need to interoperate, the EJB Container Pro-
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are used by
the System Administrator to configure the security for the application’s environment.

17.6.8 System Principal
The EJB specification does not define the “system” principal under which the JVM running an enter-
prise bean’s method executes.

Leaving the principal undefined makes it easier for the EJB container vendors to provide runtime sup-
port for EJB on top of their existing server infrastructures. For example, while one EJB container
implementation can execute all instances of all enterprise beans in a single JVM, another implementa-
tion can use a separate JVM per ejb-jar per client. Some EJB containers may make the system principal
the same as the application-level principal. Others may use different principals, potentially from differ-
ent principal realms and even security domains.
505 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release EJB Container Provider’s Responsibilities

Sun Microsystems, Inc.
17.6.9 Runtime Security Enforcement
The EJB container is responsible for enforcing the security policies defined by the Deployer. The imple-
mentation of the enforcement mechanism is EJB container implementation-specific. The EJB container
may, but does not have to, use the Java programming language security as the enforcement mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB container can load the
multiple instances into the same JVM and isolate them via using multiple class loaders, or it can load
each instance into its own JVM and rely on the address space protection provided by the operating sys-
tem.

The general security enforcement requirements for the EJB container follow:

• The EJB container must provide enforcement of the client access control per the policy defined
by the Deployer. A caller is allowed to invoke a method if, and only if, the method is specified
as PermitAll or the caller is assigned at least one of the security roles that includes the
method in its method permissions definition. (That is, it is not meant that the caller must be
assigned all the roles associated with the method.) If the container denies a client access to a
business method, the container should throw the javax.ejb.EJBAccessException[92].
If the EJB 2.1 client view is used, the container must throw the java.rmi.RemoteExcep-
tion (or its subclass, the java.rmi.AccessException) to the client if the client is a
remote client, or the javax.ejb.EJBException (or its subclass, the
javax.ejb.AccessLocalException) if the client is a local client.

• The EJB container must isolate an enterprise bean instance from other instances and other
application components running on the server. The EJB container must ensure that other enter-
prise bean instances and other application components are allowed to access an enterprise bean
only via the enterprise bean’s business interface, component interface, home interface,
no-interface view, and/or web service endpoint.

• The EJB container must isolate an enterprise bean instance at runtime such that the instance
does not gain unauthorized access to privileged system information. Such information includes
the internal implementation classes of the container, the various runtime state and context
maintained by the container, object references of other enterprise bean instances, or resource
managers used by other enterprise bean instances. The EJB container must ensure that the
interactions between the enterprise beans and the container are only through the EJB archi-
tected views.

• The EJB container must ensure the security of the persistent state of the enterprise beans.

• The EJB container must manage the mapping of principals on calls to other enterprise beans or
on access to resource managers according to the security policy defined by the Deployer.

[92] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.AccessExcep-
tion is thrown to the client instead.
 11/5/09 506

System Administrator’s Responsibilities Enterprise JavaBeans 3.1, Final Release Security Management

Sun Microsystems, Inc.
• The container must allow the same enterprise bean to be deployed independently multiple
times, each time with a different security policy[93]. The container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.

17.6.10 Audit Trail
The EJB container may provide a security audit trail mechanism. A security audit trail mechanism typi-
cally logs all java.security.Exceptions. It also logs all denials of access to EJB servers, EJB
container, EJB component interfaces, EJB home interfaces, EJB no-interface views, and EJB web ser-
vice endpoints.

17.7 System Administrator’s Responsibilities

This section defines the security-related responsibilities of the System Administrator. Note that some
responsibilities may be carried out by the Deployer instead, or may require cooperation of the Deployer
and the System Administrator.

17.7.1 Security Domain Administration
The System Administrator is responsible for the administration of principals. Security domain adminis-
tration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a user to a
user group, removing a user from a user group, and removing or freezing a user account.

17.7.2 Principal Mapping
If the client is in a different security domain than the target enterprise bean, the System Administrator is
responsible for mapping the principals used by the client to the principals defined for the enterprise
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

17.7.3 Audit Trail Review
If the EJB container provides an audit trail facility, the System Administrator is responsible for its man-
agement.

[93] For example, the enterprise bean may be installed each time using a different bean name (as specified by means of the deployment
descriptor).
507 November 5, 2009 11:00 am

Security Management Enterprise JavaBeans 3.1, Final Release System Administrator’s Responsibilities

Sun Microsystems, Inc.
 11/5/09 508

Overview Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
Chapter 18 Timer Service

This chapter defines the EJB container-managed timer service. The EJB timer service is a con-
tainer-provided service that allows the Bean Provider to register enterprise beans for timer callbacks to
occur according to a calendar-based schedule, at a specified time, after a specified elapsed time, or at
specified intervals.

18.1 Overview

Enterprise applications that model workflow-type business processes are dependent on notifications that
certain temporal events have occurred in order to manage the semantic state transitions that are intrinsic
to the business processes that they model.

The EJB Timer Service is a container-managed service that allows callbacks to be scheduled for
time-based events. The container provides a reliable and transactional notification service for timed
events. Timer notifications may be scheduled to occur according to a calendar-based schedule, at a spe-
cific time, after a specific elapsed duration, or at specific recurring intervals.

The Timer Service is implemented by the EJB container. An enterprise bean accesses this service by
means of dependency injection, through the EJBContext interface, or through lookup in the JNDI
namespace.
509 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
The EJB Timer Service is a coarse-grained timer notification service that is designed for use in the mod-
eling of application-level processes. It is not intended for the modeling of real-time events.

While timer durations are expressed in millisecond units, this is because the millisecond is the
unit of time granularity used by the APIs of the Java SE platform. It is expected that most timed
events will correspond to hours, days, or longer periods of time.

The following sections describe the Timer Service with respect to the various individual EJB roles.

18.2 Bean Provider’s View of the Timer Service

The EJB Timer Service is a container-provided service that allows enterprise beans to be registered for
timer callback methods to occur according to a calendar-based schedule, at a specified time, after a
specified elapsed time, or after specified intervals. The timer service provides methods for the program-
matic creation and cancellation of timers, as well as for locating the timers that are associated with a
bean. Timers can also be created automatically by the container at deployment time based on metadata
in the bean class or in the deployment descriptor.

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that uses the timer
service must provide one or more timeout callback methods. For programmatically created timers, this
method may be a method that is annotated with the Timeout annotation, or the bean may implement
the javax.ejb.TimedObject interface. The javax.ejb.TimedObject interface has a single
method, the timer callback method ejbTimeout.

For automatically created timers, the timeout method may be a method that is annotated with the
Schedule annotation. Timers can be created for stateless session beans, singleton session beans, mes-
sage-driven beans, and 2.1 entity beans[94]. Timers cannot be created for stateful session beans[95].

A timer that is created for a 2.1 entity bean is associated with the entity bean’s identity. The timeout
callback method invocation for a timer that is created for a stateless session bean or a message-driven
bean may be called on any bean instance in the pooled state.

When the time specified at timer creation elapses, the container invokes the associated timeout callback
method of the bean. A timer may be cancelled by a bean before its expiration. If a timer is cancelled, its
associated timeout callback method is not called[96]. A timer is cancelled by calling its cancel
method.

Invocations of the methods to create and cancel timers and of a timeout callback method are typically
made within a transaction.

[94] The calendar-based timer and non-persistent timer functionality is not supported for 2.1 Entity beans.
[95] This functionality may be added in a future release of this specification.
[96] In the event of race conditions, extraneous calls to the timeout callback method may occur.
 11/5/09 510

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
The timer service is intended for the modelling of long-lived business processes. Timers survive con-
tainer crashes, server shutdown, and the activation/passivation and load/store cycles of the enterprise
beans that are registered with them. These persistent guarantees can optionally be disabled on a
per-timer basis.

18.2.1 Calendar-Based Time Expressions

The Timer Service allows a timer callback schedule to be expressed using a calendar-based syntax that
is modeled after the UNIX cron facility. Calendar-based expressions can be used for programmatic
timer creation or for automatic timer creation (via metadata or the deployment descriptor). Each of these
approaches for expressing the calendar-based schedule shares common syntax and defaults.

Calendar based timers are not supported for EJB 2.x entity beans.

There are seven attributes in a calendar-based time expression :

• second : one or more seconds within a minute

Allowable values : [0,59]

• minute : one or more minutes within an hour

Allowable values : [0,59]

• hour : one or more hours within a day

Allowable values : [0,23]

• dayOfMonth : one or more days within a month

Allowable values :

[1,31] or

[-7, -1] or

“Last” or

{“1st”, “2nd”, “3rd”, “4th”, “5th”, “Last”} {“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”,
“Sat”}

“Last” means the last day of the month

-x (where x is in the range [-7, -1]) means x day(s) before the last day of the month

“1st”,”2nd”, etc. applied to a day of the week identifies a single occurrence of that day within
the month.

• month : one or more months within a year
511 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
Allowable values :

[1,12]

or

{“Jan”, “Feb”, “Mar”, ‘’Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, Dec”}

• dayOfWeek : one or more days within a week

Allowable values :

[0,7] or

{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”}

“0” and “7” both refer to Sunday

• year : a particular calendar year

Allowable values : a four-digit calendar year

18.2.1.1 Attribute Syntax

Each attribute supports values expressed in one of the following forms :

18.2.1.1.1 Single Value

Constrains the attribute to only one of its possible values.

Example: second = “10”

Example: month= ”Sep”

18.2.1.1.2 Wild Card

“*” represents all possible values for a given attribute.

Example: second = “*”

Example: dayOfWeek = “*”
 11/5/09 512

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
18.2.1.1.3 List

Constrains the attribute to two or more allowable values or ranges, with a comma used as a separator
character. Each item in the list must be an individual attribute value or a range. List items can not them-
selves be lists, wild-cards, or increments. Duplicate values are allowed, but are ignored.

Example: second = “10,20,30”

Example: dayOfWeek = “Mon,Wed,Fri”

Example: minute = “0-10,30,40”

18.2.1.1.4 Range

Constrains the attribute to an inclusive range of values, with a dash separating both ends of the range.
Each side of the range must be an individual attribute value. Members of a range can not themselves be
lists, wild-cards, ranges, or increments. In range ”x-y”, if x is larger than y, the range is equivalent to
“x-max, min-y”, where max is the largest value of the corresponding attribute and min is the
smallest. The range “x-x”, where both range values are the same, evaluates to the single value x. The
dayOfWeek range “0-7” is equivalent to “*”.

Example: second=”1-10”

Example: dayOfWeek = “Fri-Mon”

Example: dayOfMonth = “27-3” (Equivalent to “27-Last , 1-3”)

18.2.1.1.5 Increments

The forward slash constrains an attribute based on a starting point and an interval, and is used to specify
“Every N { seconds | minutes | hours } within the { minute | hour | day }” (respectively). For expression
x/y, the attribute is constrained to every yth value within the set of allowable values beginning at
time x. The x value is inclusive. The wildcard character (*) can be used in the x position, and is equiv-
alent to 0. Increments are only supported within the second, minute, and hour attributes. For
second and minute,x and y must each be in the range of [0,59]. For hour, x and y must each
be in the range of [0,23].

Example: minute = “*/5” (Every five minutes within the hour)

This is equivalent to: minute = “0,5,10,15,20,25,30,35,40,45,50,55”

Example: second = “30/10” (Every 10 seconds within the minute, start-
ing at second 30)

This is equivalent to: second = “30,40,50”

Note that the set of matching increment values stops once the maximum value for that attribute is
exceeded. It does not “roll over” past the boundary.

Example : (minute = “*/14”, hour=”1,2”) (Every 14 minutes within the
hour, for the hours of 1 and 2 a.m.)
513 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
This is equivalent to: (minute = “0,14,28,42,56”, hour = “1,2”)

18.2.1.1.6 Time Zone Support

Schedule-based timer times are evaluated in the context of the default time zone associated with the
container in which the application is executing. A schedule-based timer may optionally override this
default and associate itself with a specific time zone. If the schedule-based timer is associated with a
specific time zone, all its times are evaluated in the context of that time zone, regardless of the default
time zone in which the container is executing.

Time zones are specified as an ID String[97]. The set of required time zone IDs is defined by the Zone
Name(TZ) column of the public domain zoneinfo database [36].

18.2.1.2 Expression Rules

The second, minute, and hour attributes have a default value of “0”.

The dayOfMonth, month, dayOfWeek, and year attributes have a default value of “*”.

If dayOfMonth has a non-wildcard value and dayOfWeek has a non-wildcard value, then either the
dayOfMonth field or the dayOfWeek field must match the current day (even though the other of the
two fields need not match the current day).

Whitespace is ignored, except for string constants and numeric values.

All string constants (“Sun”, “Jan”, “1st” etc.) are case insensitive.

Duplicate values within List attributes are ignored.

Increments are only supported within the second, minute, and hour attributes.

18.2.1.3 Examples

18.2.1.3.1 “Every Monday at Midnight”

@Schedule(dayOfWeek=”Mon”)

Note that this is equivalent to the following fully-qualified expression :

@Schedule(second=”0”, minute=”0”, hour=”0”, dayOfMonth=”*”,
month=”*”, dayOfWeek=”Mon”, year=”*”)

[97] Note that annotation java.lang.String attributes use the empty string ““ as a default, so the expression @Schedule(time-
zone=””, ...) will result in a null value from the corresponding ScheduleExpression.getTimezone() method.
 11/5/09 514

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
18.2.1.3.2 “Every Weekday morning at 3:15”

@Schedule(minute=”15”, hour=”3”, dayOfWeek=”Mon-Fri”)

18.2.1.3.3 “Every morning at 3:15 U.S. Eastern Time”

@Schedule(minute=”15”, hour=”3”, timezone=”America/New_York”)

18.2.1.3.4 “Every minute of every hour of every day”

@Schedule(minute=”*”, hour=”*”)

18.2.1.3.5 “Every Monday, Wednesday, and Friday at 30 seconds past noon”

@Schedule(second=”30”, hour=”12”, dayOfWeek=”Mon,Wed,Fri”)

18.2.1.3.6 “Every five minutes within the hour”

@Schedule(minute=”*/5”, hour=”*”)

Note that this is equivalent to the following expression :

@Schedule(minute=”0,5,10,15,20,25,30,35,40,45,50,55”, hour=”*”)

18.2.1.3.7 “The last Thursday in November at 2 p.m.”

@Schedule(hour=”14”, dayOfMonth=”Last Thu”, month=”Nov”}

18.2.1.3.8 “The second to last day (one day before the last day) of each month at 1 a.m.”

@Schedule(hour=”1”, dayOfMonth=”-1”)
515 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
18.2.1.3.9 “Every other hour within the day starting at noon on the 2nd Tuesday of every month.”

@Schedule(hour=”12/2”, dayOfMonth=”2nd Tue”)

18.2.2 Automatic Timer Creation
The Timer Service supports the automatic creation of a timer based on metadata in the bean class or
deployment descriptor. This allows the bean developer to schedule a timer without relying on a bean
invocation to programmatically invoke one of the Timer Service timer creation methods. Automatically
created timers are created by the container as a result of application deployment.

The Schedule annotation can be used to automatically create a timer with a particular timeout sched-
ule. This annotation is applied to a method of a bean class (or super-class) that should receive the timer
callbacks associated with that schedule.

Example :

// Generate account statements at 1 a.m. on the 1st of every month
@Schedule(hour=”1”, dayOfMonth=”1”)
public void generateMonthlyAccountStatements() { ... }

Multiple automatic timers can be applied to a single timeout callback method using the Schedules
annotation.

Example :

@Schedules(
{ @Schedule(hour=”12”, dayOfWeek=”Mon-Thu”),

@Schedule(hour=”11”, dayOfWeek=”Fri”)
})
public void sendLunchNotification() { ... }

A @Schedule annotation can optionally specify an info string. This string is retrieved by calling
Timer.getInfo() on the associated Timer object. If no info string is specified, the get-
Info() method for a timer created via @Schedule returns null. [98]

Example :

// Generate account statements at 1 a.m. on the 1st of every month
@Schedule(hour=”1”, dayOfMonth=”1”, info=”AccountStatementTimer”)

public void generateMonthlyAccountStatements(Timer t) {
String timerInfo = t.getInfo();
...

}

[98] Note that annotation java.lang.String attributes use the empty string ““ as a default, so the expression @Sched-
ule(info=””, ...) will also result in a null value from the timer’s getInfo() method.
 11/5/09 516

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
By default, each Schedule annotation corresponds to a single persistent timer, regardless of the num-
ber of JVMs across which the container is distributed.

18.2.3 Non-persistent Timers

A non-persistent timer is a timer whose lifetime is tied to the JVM in which it is created. A non-persis-
tent timer is considered cancelled in the event of application shutdown, container crash, or a fail-
ure/shutdown of the JVM on which the timer was started.

Non-persistent timers are not supported for EJB 2.x Entity Beans.

Non-persistent timers can be created programmatically or automatically (using @Schedule or the
deployment descriptor). For automatic non-persistent timers, the container creates a new non-persistent
timer during application initialization for each JVM across which the container is distributed.

Automatic non-persistent timers can be specified by setting the persistent attribute of the
@Schedule annotation to false.

Example :

@Singleton
public class CacheBean {

Cache cache;

// Setup an automatic timer to refresh
// the Singleton instance cache every 10 minutes
@Schedule(minute=”*/10”, hour=”*”, persistent=false)
public void refresh() {

// ...
}

}

517 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
18.2.4 The Timer Service Interface
The Timer Service is accessed via dependency injection, through the getTimerService method of
the EJBContext interface, or through lookup in the JNDI namespace. The TimerService inter-
face has the following methods:

public interface javax.ejb.TimerService {

public Timer createTimer(long duration,
java.io.Serializable info);

public Timer createTimer(java.util.Date expiration,
java.io.Serializable info);

public Timer createSingleActionTimer(long duration,
TimerConfig timerConfig);

public Timer createSingleActionTimer(java.util.Date expiration,
TimerConfig timerConfig);

public Timer createTimer(long initialDuration,
long intervalDuration, java.io.Serializable info);

public Timer createTimer(java.util.Date initialExpiration,
long intervalDuration, java.io.Serializable info);

public Timer createIntervalTimer(long initialDuration,
long intervalDuration, TimerConfig timerConfig);

public Timer createIntervalTimer(java.util.Date initialExpira-
tion,

long intervalDuration, TimerConfig timerConfig);

public Timer createCalendarTimer(ScheduleExpression schedule);

public Timer createCalendarTimer(ScheduleExpression schedule,
 TimerConfig timerConfig);

public Collection<Timer> getTimers();

}

The timer creation methods allow a timer to be programmatically created as a single-event timer, as an
interval timer, or as a calendar schedule based timer.

For single-event timers and interval timers, the timer expiration (initial expiration in the case of an inter-
val timer) may be expressed either in terms of a duration or as an absolute time. The timer duration is
expressed in terms of milliseconds. The timer service begins counting down the timer duration upon
timer creation.
 11/5/09 518

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
For calendar schedule based timers, the schedule is expressed by a ScheduleExpression helper
object passed as a parameter to a createCalendarTimer method. ScheduleExpression rep-
resents a calendar based timer expression conforming to the requirements in Section 18.2.1. A Sched-
uleExpression has additional methods that further constrain the schedule based on an optional start
date and/or end date.

The bean may pass some client-specific information at timer creation to help it recognize the signifi-
cance of the timer’s expiration. This information is stored by the timer service and available through
the timer. The information object must be serializable. [99]

By default, all timers created using the timer creation methods are persistent. A non-persistent timer can
be created by calling setPersistent(false) on a TimerConfig object passed to a timer cre-
ation method. TimerConfig also supports the setting of an info object.

The timer creation methods return a Timer object that allows the bean to cancel the timer or to obtain
information about the timer prior to its cancellation and/or expiration.

The getTimers method returns the active timers associated with the bean. For an EJB 2.1 entity bean,
the result of getTimers is a collection of those timers that are associated with the bean’s identity.

18.2.4.1 Example

This code programmatically creates a timer that expires every Saturday at 1 a.m.

ScheduleExpression schedule =
new ScheduleExpression().dayOfWeek(“Sat”).hour(1);

Timer timer = timerService.createCalendarTimer(schedule);

18.2.5 Timeout Callbacks
The enterprise bean class of a bean that is to be registered with the timer service for timer callbacks
must provide one or more timeout callback methods.

There are two kinds of timeout callback methods :

• timeout callback methods for timers that are programmatically created via a TimerService
timer creation method.

• timeout callback methods for timers that are automatically created via the Schedule annota-
tion or the deployment descriptor

[99] There is currently no way to set the information object after timer creation. An API to do this may be added in a future release of
this specification.
519 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
18.2.5.1 Timeout Callbacks for Programmatic Timers

All timers created via one of the TimerService timer creation methods for a particular component use a
single timeout callback method. This method may be a method annotated with the Timeout annotation
(or a method specified as a timeout method in the deployment descriptor) or the bean may implement
the javax.ejb.TimedObject interface. This interface has a single method, ejbTimeout. If the
bean implements the TimedObject interface, the Timeout annotation or timeout-method
deployment descriptor element can only be used to specify the ejbTimeout method. A bean can have
at most one timeout method for handling programmatic timers.[100]

public interface javax.ejb.TimedObject {
public void ejbTimeout(Timer timer);

}

18.2.5.2 Timeout Callbacks for Automatically Created Timers

Each automatically created timer is associated with a single timeout callback method. Each timeout
method is declared using either the Schedule / Schedules annotation or the deployment descriptor.
A timed object can have any number of automatically created timers.

18.2.5.3 Timeout Callback Method Requirements

A timeout callback method must have one of the two signatures below, where <METHOD> designates
the method name[101].

void <METHOD>()

void <METHOD>(Timer timer)[102]

A timeout callback method can have public, private, protected, or package level access. A timeout call-
back method must not be declared as final or static.

Timeout callback methods must not throw application exceptions.

[100]This method may be specified on the bean class or on a superclass. If the Timeout annotation is used or the bean implements the
TimedObject interface, the timeout-method deployment descriptor element, if specified, can only be used to refer to the
same method.

[101]If the bean implements the TimedObject interface, the Timeout annotation may optionally be applied to the ejbTimeout
method.

[102]An earlier version of the specification required that timeout callbacks accept the Timer parameter but did not require that this
parameter be listed when declared via .xml. To preserve backward compatibility, a <timeout-method> that does not include a
<method-param> element for the javax.ejb.Timer parameter may be used to match either a timeout method signtaure with or with-
out a Timer parameter. If a timer methods are overloaded, a <timeout-method> with an empty <method-params> element may be
used to explicitly refer to a the no-arg timout method.
 11/5/09 520

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
When the timer expires (i.e., after one of its scheduled times arrives or after the absolute time specified
has passed), the container calls the associated timeout method of the bean that was registered for the
timer. The timeout method contains the business logic that the Bean Provider supplies to handle the tim-
eout event. The container calls the timeout method with the timer that has expired. The Bean Provider
can use the getInfo method to retrieve the information that was supplied when the timer was created.
This information may be useful in enabling the timed object to recognize the significance of the timer
expiration.

The container interleaves calls to a timeout callback method with the calls to the business
methods and the life cycle callback methods of the bean. The time at which a timeout callback
method is called may therefore not correspond exactly to the time specified at timer creation. If
multiple timers have been created for a bean and will expire at approximately the same times,
the Bean Provider must be prepared to handle timeout callbacks that are out of sequence. The
Bean Provider must be prepared to handle extraneous calls to a timeout callback method in the
event that a timer expiration is outstanding when a call to the cancellation method has been
made.

In general, a timeout callback method can perform the same operations as business methods from the
component interface or methods from the message listener interface. See Tables 2, 4, 5, and 11 for the
specification of the operations that may be performed by a timeout callback method.

Since a timeout callback method is an internal method of the bean class, it has no client security context.
When getCallerPrincipal is called from within a timeout callback method, it returns the con-
tainer’s representation of the unauthenticated identity.

If the timed object needs to make use of the identity of the timer to recognize the significance of the
timer expiration, it may use the equals method to compare it with any other timer references it might
have outstanding.

If the timer is a single-action timer, the container removes the timer after the timeout callback method
has been successfully invoked (e.g., when the transaction that has been started for the invocation of the
timeout callback method commits). If the bean invokes a method on the timer after the termination of
the timeout callback method, a NoSuchObjectLocalException must be thrown.

If the timer is a calendar-based timer, the container removes the timer after the timeout callback method
has been successfully invoked (e.g., when the transaction that has been started for the invocation of the
timeout callback method commits) and there are no future timeouts corresponding to the timer’s calen-
dar expression. If the bean invokes a method on the timer after it has been removed, a NoSuchOb-
jectLocalException must be thrown. If the bean invokes the getNextTimeout or
getTimeRemaining method on the timer associated with a timeout callback while within the time-
out callback, and there are no future timeouts for this calendar-based timer, a NoMoreTimeoutsEx-
ception must be thrown.

18.2.6 The Timer and TimerHandle Interfaces
The javax.ejb.Timer interface allows the Bean Provider to cancel a timer and to obtain informa-
tion about the timer.
521 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.
The javax.ejb.TimerHandle interface allows the Bean Provider to obtain a serializable timer
handle that may be persisted. Timer handles are only available for persistent timers. Since timers are
local objects, a TimerHandle must not be passed through a bean’s remote business interface, remote
interface or web service interface.

The methods of these interfaces are as follows:

public interface javax.ejb.Timer {

public void cancel();

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public javax.ejb.ScheduleExpression getSchedule();

public javax.ejb.TimerHandle getHandle();

public java.io.Serializable getInfo();

public boolean isPersistent();

public boolean isCalendarTimer();
}

public interface javax.ejb.TimerHandle extends java.io.Serializable {

public javax.ejb.Timer getTimer();

}

18.2.7 Timer Identity

The Bean Provider cannot rely on the == operator to compare timers for “object equality”. The Bean
Provider must use the Timer.equals(Object obj) method.

18.2.8 Transactions
An enterprise bean typically creates a timer within the scope of a transaction. If the transaction is then
rolled back, the timer creation is rolled back.

An enterprise bean typically cancels a timer within a transaction. If the transaction is rolled back, the
container rescinds the timer cancellation.

A timeout callback method on a bean with container-managed transactions has transaction attribute
REQUIRED or REQUIRES_NEW (Required or RequiresNew if the deployment descriptor is
used to specify the transaction attribute). If the container-managed transaction is rolled back, the con-
tainer retries the timeout.
 11/5/09 522

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
Note that the container must start a new transaction if the REQUIRED (Required) transac-
tion attribute is used. This transaction attribute value is allowed so that specification of a
transaction attribute for the timeout callback method can be defaulted.

The transaction semantics described in this section apply to both persistent and non-persistent timers.

18.3 Bean Provider’s Responsibilities

This section defines the Bean Provider’s responsibilities.

18.3.1 Enterprise Bean Class

An enterprise bean that is to be registered with the Timer Service must have a timeout callback method.
The enterprise bean class may have superclasses and/or superinterfaces. If the bean class has super-
classes, the timeout method may be defined in the bean class, or in any of its superclasses.

18.3.2 TimerHandle
Since the TimerHandle interface extends java.io.Serializable, a client may serialize the
handle. The serialized handle may be used later to obtain a reference to the timer identified by the han-
dle. A TimerHandle is intended to be storable in persistent storage.

A TimerHandle must not be passed as an argument or result of an enterprise bean’s remote business
interface, remote interface, or web service method.

18.4 Container’s Responsibilities

This section describes the responsibilities of the Container Provider to support the EJB Timer Service.

18.4.1 TimerService, Timer, and TimerHandle Interfaces

The container must provide the implementation of the TimerService, Timer, and TimerHandle
interfaces.

Timer instances must not be serializable.

The container must implement a timer handle to be usable over the lifetime of the timer.

The container must provide suitable implementations of the Timer equals(Object obj) and
hashCode() methods.
523 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Container’s Responsibilities

Sun Microsystems, Inc.
18.4.2 Automatic Timers
The container must create a timer for each automatic timer specified via a Schedule annotation,
Schedules annotation, or in the deployment descriptor.

18.4.3 Timer Expiration and Timeout Callback Method

The container must call the timeout callback method after the timed duration or the absolute time speci-
fication in the timer creation method has passed. The container must also call a timeout callback method
if a time matching the timer’s schedule expression has been reached. The timer service must begin to
count down the timer duration upon timer creation. The container must call the timeout callback method
with the expired Timer, unless it’s a no-arg timeout callback method for an automatically created timer.

If container-managed transaction demarcation is used and the REQUIRED or REQUIRES_NEW trans-
action attribute is specified or defaulted (Required or RequiresNew if the deployment descriptor is
used), the container must begin a new transaction prior to invoking the timeout callback method. If the
transaction fails or is rolled back, the container must retry the timeout at least once.

If a timer for an EJB 2.1 entity bean expires, and the bean has been passivated, the container must call
the ejbActivate and ejbLoad methods on the entity bean class before calling the timeout callback
method, as described in Sections 8.5.3 and 10.1.4.2.

If the timer is a single-event timer, the container must cause the timer to no longer exist. If a
javax.ejb.Timer interface method is subsequently invoked on the timer after the completion of
the timeout callback method, the container must throw the javax.ejb.NoSuchObjectLocalEx-
ception.

If the Bean Provider invokes the setRollbackOnly method from within the timeout callback
method, the container must rollback the transaction in which the timeout callback method is invoked.
This has the effect of rescinding the timer expiration. The container must retry the timeout after the
transaction rollback.

Timers are persistent objects (unless explicitly created as non-persistent timers). In the event of a con-
tainer crash or container shutdown, any single-event persistent timers that have expired during the inter-
vening time before container restart must cause the corresponding timeout callback method to be
invoked upon restart. Any interval persistent timers or schedule based persistent timers that have
expired during the intervening time must cause the corresponding timeout callback method to be
invoked at least once upon restart.

18.4.4 Timer Cancellation

When a timer’s cancel method has been called, the container must cause the timer to no longer exist.
If a javax.ejb.Timer method is subsequently invoked on the timer, the container must throw the
javax.ejb.NoSuchObjectLocalException.

When the cancel method of an automatically created non-persistent timer has been called, the con-
tainer only causes the timer in the currently running JVM to no longer exist. The container does not nul-
lify the rule that creates a new non-persistent timer upon application startup.
 11/5/09 524

Container’s Responsibilities Enterprise JavaBeans 3.1, Final Release Timer Service

Sun Microsystems, Inc.
If the transaction in which the timer cancellation occurs is rolled back, the container must restore the
duration of the timer to the duration it would have had if it had not been cancelled. If the timer would
have expired by the time that the transaction failed, the failure of the transaction should result in the
expired timer providing an expiration notification after the transaction rolls back.

18.4.5 Entity Bean Removal

If an entity bean is removed, the container must remove the timers for that bean.
525 November 5, 2009 11:00 am

Timer Service Enterprise JavaBeans 3.1, Final Release Container’s Responsibilities

Sun Microsystems, Inc.
 11/5/09 526

Overview Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
Chapter 19 Deployment Descriptor

This chapter defines the EJB deployment descriptor. Section 19.1 provides an overview of the deploy-
ment descriptor. Sections 19.2 through 19.4 describe the information in the deployment descriptor from
the perspective of the EJB roles responsible for providing the information. Section 19.5 defines the
deployment descriptor’s XML Schema elements that are specific to the EJB architecture. The XML
Schema elements that are common to the Java EE Platform specifications are provided in [12].

19.1 Overview

The deployment descriptor is part of the contract between the ejb-jar/.war file producer and consumer.
This contract covers both the passing of enterprise beans from the Bean Provider to the Application
Assembler, and from the Application Assembler to the Deployer.

An ejb-jar/.war file produced by the Bean Provider contains one or more enterprise beans and typically
does not contain application assembly instructions. An ejb-jar/.war file produced by an Application
Assembler contains one or more enterprise beans, plus application assembly information describing
how the enterprise beans are combined into a single application deployment unit.

The Java EE specification defines how enterprise beans and other application components contained in
multiple ejb-jar files can be assembled into an application.
527 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
The role of the deployment descriptor is to capture declarative information that is not included directly
in the enterprise beans’ code and that is intended for the consumer of the ejb-jar/.war file.

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structural information. Structural information describes the structure of an
enterprise bean and declares an enterprise bean’s external dependencies. Providing structural
information for the ejb-jar/.war file producer. Structural information may be provided using
metadata annotations in the beans’ code or in the deployment descriptor. The structural infor-
mation cannot, in general, be changed because doing so could break the enterprise bean’s func-
tion.

• Application assembly information. Application assembly information describes how the enter-
prise bean (or beans) in the ejb-jar/.war file is composed into a larger application deployment
unit. Providing assembly information—whether in metadata annotations or in the deployment
descriptor—is optional for the ejb-jar file producer. Assembly level information can be
changed without breaking the enterprise bean’s function, although doing so may alter the
behavior of an assembled application.

19.2 Bean Provider’s Responsibilities

The Bean Provider is responsible for providing in the deployment descriptor the following structural
information for each enterprise bean if this information has not be provided in metadata annotations or
is to be defaulted.

The Bean Provider uses the enterprise-beans element to list all the enterprise beans in the
ejb-jar/.war file.

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name. A logical name is assigned to each enterprise bean in the
ejb-jar/.war file. The Bean Provider can specify the enterprise bean’s name in the ejb-name
element. If the enterprise bean’s name is not explicitly specified in metadata annotations or in
the deployment descriptor, it defaults to the unqualified name of the bean class.

• Enterprise bean’s class. If the bean class has not been annotated with the Stateless,
Stateful, Singleton, or Message-driven annotation, the Bean Provider must use
the ejb-class element of the session or message-driven deployment descriptor ele-
ment to specify the fully-qualified name of the Java class that implements the enterprise bean’s
business methods. The Bean Provider specifies the enterprise bean’s class name in the
ejb-class element. The Bean Provider must use this element for an EJB 2.1 and earlier
entity bean.

• Enterprise bean’s local business interface. If the bean class has a local business interface and
neither implements the business interface nor specifies it as a local business interface using
metadata annotations on the bean class, the Bean Provider must specify the fully-qualified
name of the enterprise bean’s local business interface in the business-local element.
 11/5/09 528

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
• Enterprise bean’s remote business interface. If the bean class has a remote business inter-
face and neither implements nor specifies it as a remote business interface using metadata
annotations on the bean class, the Bean Provider must specify the fully-qualified name of the
enterprise bean’s remote business interface in the business-remote element.

• Enterprise bean’s remote home interface. If the bean class has a remote home interface, and
the remote home interface has not been specified using metadata annotations, the Bean Pro-
vider must specify the fully-qualified name of the enterprise bean’s remote home interface in
the home element.

• Enterprise bean’s remote interface. If the bean class has a remote interface, and the remote
home interface has not been specified using metadata annotations, the Bean Provider must
specify the fully-qualified name of the enterprise bean’s remote interface in the remote ele-
ment.

• Enterprise bean’s local home interface. If the bean class has a local home interface, and the
local home interface has not been specified using metadata annotations, the Bean Provider
must specify the fully-qualified name of the enterprise bean’s local home interfacein the
local-home element.

• Enterprise bean’s local interface. If the bean class has a local interface, and the local home
interface has not been specified using metadata annotations, the Bean Provider must specify
the fully-qualified name of the enterprise bean’s local interface in the local element.

• Enterprise bean’s no-interface view. If the bean class exposes a no-interface view and the
bean exposes at least one other client view (Local, Remote, 2.x Local Home, 2.x Remote
Home, Web Service), the bean class does not have an empty implements clause nor specifies
there is a no-interface view using metadata annotations on the bean class, or metadata-com-
plete has been set to true, the Bean Provider must specify the local-bean element.

• Enterprise bean’s web service endpoint interface. If the bean class has a web service end-
point interface, and the interface has not been specified using metadata annotations on the bean
class, the Bean Provider must specify the fully-qualified name of the enterprise bean’s web ser-
vice endpoint interface, in the service-endpoint element. This element may only be
used for stateless session beans.

• Enterprise bean’s type. The enterprise bean types are: session, entity, and message-driven.
The Bean Provider must use the appropriate session, entity, or message-driven ele-
ment to declare the enterprise bean’s structural information if annotations have not been used
for this purpose. If the bean’s type has been specified by means of the Stateless, State-
ful, Singleton, or MessageDriven annotation, its type cannot be overridden by means
of the deployment descriptor. The bean’s type (and its session type), if specified must be the
same as that specified in annotations.

• Re-entrancy indication. The Bean Provider must specify whether an EJB 2.1 entity bean is
re-entrant or not. Session beans and message-driven beans are never re-entrant.

• Session bean’s state management type. If the enterprise bean is a session bean and the bean
class has not been annotated with the Stateful or Stateless or Singleton anno-
529 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
tation, the Bean Provider must use the session-type element to declare whether the ses-
sion bean is stateful or stateless or singleton.

• Session or message-driven bean’s transaction demarcation type. If the enterprise bean is a
session bean or message-driven bean, the Bean Provider may use the transaction-type
element to declare whether transaction demarcation is performed by the enterprise bean or by
the container. If the neither the TransactionType annotation is used nor the transac-
tion-type deployment descriptor element, the bean will have container managed transac-
tion demarcation.

• Session bean’s concurrency management type. If the enterprise bean is a Singleton session
bean, the Bean Provider may use the concurrency-management-type element to
declare whether concurrency management is handled by the container or is performed by the
bean developer. If neither the ConcurrencyManagement annotation is used nor the con-
currency-management-type deployment descriptor element, the Singleton bean will
have container-managed concurrency.

• Entity bean’s persistence management. If the enterprise bean is an EJB 2.1 entity bean, the
Bean Provider must use the persistence-type element to declare whether persistence
management is performed by the enterprise bean or by the container.

• Entity bean’s primary key class. If the enterprise bean is an EJB 2.1 entity bean, the Bean
Provider specifies the fully-qualified name of the entity bean’s primary key class in the
prim-key-class element. The Bean Provider must specify the primary key class for an
entity with bean-managed persistence.

• Entity bean’s abstract schema name. If the enterprise bean is an entity bean with con-
tainer-managed persistence and cmp-version 2.x, the Bean Provider must specify the
abstract schema name of the entity bean using the abstract-schema-name element.

• Container-managed fields. If the enterprise bean is an entity bean with container-managed
persistence, the Bean Provider must specify the container-managed fields using the
cmp-field elements.

• Container-managed relationships. If the enterprise bean is an entity bean with con-
tainer-managed persistence and cmp-version 2.x, the Bean Provider must specify the con-
tainer-managed relationships of the entity bean using the relationships element.

• Finder and select queries. If the enterprise bean is an entity bean with container-managed
persistence and cmp-version 2.x, the Bean Provider must use the query element to spec-
ify any EJB QL finder or select query for the entity bean other than a query for the findByP-
rimaryKey method.

• Environment entries. The Bean Provider must declare any enterprise bean’s environment
entries that have not been defined by means of metadata annotations, as specified in Subsec-
tion 16.3.1.

• Resource manager connection factory references. The Bean Provider must declare any
enterprise bean’s resource manager connection factory references that have not been defined
by means of metadata annotations, as specified in Subsection 16.7.1.
 11/5/09 530

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
• Resource environment references. The Bean Provider must declare any enterprise bean’s ref-
erences to administered objects that are associated with resources and that have not been
defined by means of metadata annotations, as specified in Subsection 16.8.1.

• EJB references. The Bean Provider must declare any enterprise bean’s references to the
remote home or remote business view of other enterprise beans that have not been defined by
means of metadata annotations, as specified in Subsection 16.5.1.

• EJB local references. The Bean Provider must declare any enterprise bean’s references to the
local home or local business or no-interface view of other enterprise beans that have not been
defined by means of metadata annotations, as specified in Subsection 16.5.1.

• Web service references. The Bean Provider must declare any enterprise bean’s references to
web service interfaces that have not been defined by means of metadata annotations, as speci-
fied in Subsection 16.6.

• Persistence unit references. The Bean Provider must declare any enterprise bean’s references
to an entity manager factory for a persistence unit that have not been defined by means of
metadata annotations, as specified in Subsection 16.10.

• Persistence context references. The Bean Provider must declare any enterprise bean’s refer-
ences to an entity manager for a persistence context that have not been defined by means of
metadata annotations, as specified in Subsection 16.11.

• Message destination references. The Bean Provider must declare any enterprise bean’s refer-
ences to message destinations that have not been defined by means of metadata annotations, as
specified in Subsection 16.9.1.

• Security role references. The Bean Provider must declare any enterprise bean’s references to
security roles that have not been defined by means of metadata annotations, as specified in
Subsection 17.2.5.3.

• Message-driven bean’s configuration properties. The Bean Provider may provide input to
the Deployer as to how a message-driven bean should be configured upon activation in its
operational environment. Activation configuration properties for a JMS message-driven bean
include information about a bean’s intended destination type, its message selector, and its
acknowledgement mode. Other bean types may make use of different properties. See [15].

• Message-driven bean’s destination. The Bean Provider may provide advice to the Applica-
tion Assembler as to the destination type to which a message-driven bean should be assigned
when linking message destinations

• Interceptors. The Bean Provider must declare any interceptor classes and methods that have
not been declared by means of metadata annotations.

• Schedule-based timers. The Bean Provider must declare any automatic schedule-based timers
that have not been declared by means of metadata annotations.

• Asynchronous methods. The Bean Provider must declare any asynchronous business methods
that have not been designated as asynchronous by means of metadata annotions.
531 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Application Assembler’s Responsibility

Sun Microsystems, Inc.
• Singleton initialization ordering dependencies. The Bean Provider may provide advice to the
Application Assembler as to the singleton initialization ordering dependencies.

The deployment descriptor produced by the Bean Provider must conform to the XML Schema defini-
tion in Section 19.5 or to the XML Schema or DTD definition from a previous version of this specifica-
tion. The content of the deployment descriptor must conform to the semantics rules specified in the
XML Schema or DTD comments and elsewhere in this specification.

19.3 Application Assembler’s Responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Application
Assembler’s input is one or more ejb-jar/.war files provided by one or more Bean Providers, and the
output is also one or more ejb-jar/.war files. The Application Assembler can combine multiple input
ejb-jar/.war files into a single output ejb-jar/.war file, or split an input ejb-jar/.war file into multiple out-
put ejb-jar/.war files. Each output ejb-jar/.war file is either a deployment unit intended for the Deployer,
or a partially assembled application that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a case,
the person or organization performs the responsibilities described both in this and the previous sec-
tions.

The Application Assembler may modify the following information that was specified by the Bean Pro-
vider:

• Values of environment entries. The Application Assembler may change existing and/or
define new values of environment properties.

• Description fields. The Application Assembler may change existing or create new
description elements.

• Relationship names for EJB 2.x entity beans. If multiple ejb-jar files use the same names for
relationships and are merged into a single ejb-jar file, it is the responsibility of the Application
Assembler to modify the relationship names defined in the ejb-relation-name elements.

• Message-driven bean message selector. The Application Assembler may further restrict, but
not replace, the value of the messageSelector activation-config-property ele-
ment of a JMS message-driven bean—whether this was defined in metadata annotations or the
deployment descriptor.

• Timer schedule attributes. The Application Assembler may override timer attributes, except
the method to which a timer’s timeouts have been assigned.

In general, the Application Assembler should never modify any of the following.

• Enterprise bean’s abstract schema name. The Application Assembler should not change the
enterprise bean’s name defined in the abstract-schema-name element since EJB QL
queries may depend on the content of this element.
 11/5/09 532

Application Assembler’s Responsibility Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
• Relationship role source element. The Application Assembler should not change the value of
an ejb-name element in the relationship-role-source element.

If any of these elements must be modified by the Application Assembler in order to resolve name
clashes during the merging two ejb-jar/.war files into one, the Application Assembler must also modify
all ejb-ql query strings that depend on the value of the modified element(s).

The Application Assembler must not, in general, modify any other information listed in Section 19.2
that was provided in the input ejb-jar/.war file.

The Application Assembler may, but is not required to, specify any of the following application assem-
bly information:

• Binding of enterprise bean references. The Application Assembler may link an enterprise
bean reference to another enterprise bean in the ejb-jar/.war file or in an ejb-jar file in the same
Java EE application unit. The Application Assembler creates the link by adding the
ejb-link element to the referencing bean. The Application Assembler uses the ejb-name
of the referenced bean for the link. If there are multiple enterprise beans with the same
ejb-name, the Application Assembler uses the path name specifying the location of the
ejb-jar file that contains the referenced component. The path name is relative to the referencing
ejb-jar/.war file. The Application Assembler appends the ejb-name of the referenced bean to
the path name separated by #. This allows multiple beans with the same name to be uniquely
identified.

• Linking of message destination references. The Application Assembler may link message
consumers and producers through common message destinations specified in the ejb-jar file or
in the same Java EE application unit. The Application Assembler creates the link by adding the
message-destination-link element to the referencing bean.

• Security roles. The Application Assembler may define one or more security roles. The secu-
rity roles define the recommended security roles for the clients of the enterprise beans. The
Application Assembler defines the security roles using the security-role elements.

• Method permissions. The Application Assembler may define method permissions. Method
permission is a binary relation between the security roles and the methods of the business inter-
faces, home interfaces, component interfaces, and/or web service endpoints of the enterprise
beans. The Application Assembler defines method permissions using the method-permis-
sion elements. The Application Assembler may augment or ovrride method permissions
defined by the Bean Provider—whether in metadata annotations or in the deployment descrip-
tor.

• Singleton initialization ordering. The Application Assembler may define or override the
depends-on initialization ordering metadata for a Singleton.

• Stateful timeout. The Application Assembler may define or override the stateful timeout.

• Singleton Startup. The Application Assembler may override the eager startup designation of a
Singleton.
533 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Container Provider’s Responsibilities

Sun Microsystems, Inc.
• Access Timeouts. The Application Assembler may override the access timeout values for
methods governed by container-managed concurrency semantics of Stateful and Singleton ses-
sion beans.

• Linking of security role references. If the Application Assembler defines security roles in the
deployment descriptor, the Application Assembler may link the security role references
declared by the Bean Provider to the security roles. The Application Assembler defines these
links using the role-link element.

• Security identity. The Application Assembler may specify whether the caller’s security iden-
tity should be used for the execution of the methods of an enterprise bean or whether a specific
run-as security identity should be used. The Application Assembler may ovrride a security
identity defined by the Bean Provider—whether in metadata annotations or in the deployment
descriptor

• Transaction attributes. The Application Assembler may define the value of the transaction
attributes for the methods of the business interface, home interface, component interface,
no-interface view, web service endpoint, and TimedObject interface of the enterprise beans
that require container-managed transaction demarcation. All entity beans and the session and
message-driven beans declared by the Bean Provider as transaction-type Container require
container-managed transaction demarcation. The Application Assembler uses the con-
tainer-transaction elements to declare the transaction attributes.

• Interceptors. The Application Assembler may override, augment, and/or reorder the intercep-
tor methods defined by the Bean Provider—whether in metadata annotations or in the deploy-
ment descriptor.

If an input ejb-jar/.war file contains application assembly information, the Application Assembler is
allowed to change the application assembly information supplied in the input file. (This could happen
when the input file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider must conform to the XML Schema defini-
tion in Section 19.5 or the XML Schema or DTD definition from a previous version of this specifica-
tion. The content of the deployment descriptor must conform to the semantics rules specified in the
XML Schema or DTD comments and elsewhere in this specification.

19.4 Container Provider’s Responsibilities

The Container Provider provides tools that read and import the information contained in the XML
deployment descriptor.

All EJB 3.1 implementations must support EJB 3.0, EJB 2.1, EJB 2.0, and EJB 1.1 as well as EJB 3.1
deployment descriptors. The definitions of the EJB 3.0, EJB 2.1, EJB 2.0, and EJB 1.1 deployment
descriptors can be found in the Enterprise JavaBeans 3.0 specification [3].
 11/5/09 534

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
19.5 Deployment Descriptor XML Schema

This section provides the XML Schema for the EJB 3.1 deployment descriptor. The comments in the
XML Schema specify additional requirements for the syntax and semantics that cannot be easily
expressed by the XML Schema mechanism.

The content of the XML elements is in general case sensitive (i.e., unless stated otherwise). This means,
for example, that

<transaction-type>Container</transaction-type>

must be used, rather than:

<transaction-type>container</transaction-type>.
535 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
All valid ejb-jar deployment descriptors must conform to the XML Schema definition below or to the
DTD definition from a previous version of this specification.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://java.sun.com/xml/ns/javaee"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="3.1">
 <xsd:annotation>
 <xsd:documentation>

 Id

 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright 2003-2009 Sun Microsystems, Inc. All rights reserved.

 The contents of this file are subject to the terms of either the
 GNU General Public License Version 2 only ("GPL") or the Common
 Development and Distribution License("CDDL") (collectively, the
 "License"). You may not use this file except in compliance with
 the License. You can obtain a copy of the License at
 https://glassfish.dev.java.net/public/CDDL+GPL.html or
 glassfish/bootstrap/legal/LICENSE.txt. See the License for the
 specific language governing permissions and limitations under the
 License.

 When distributing the software, include this License Header
 Notice in each file and include the License file at
 glassfish/bootstrap/legal/LICENSE.txt. Sun designates this
 particular file as subject to the "Classpath" exception as
 provided by Sun in the GPL Version 2 section of the License file
 that accompanied this code. If applicable, add the following
 below the License Header, with the fields enclosed by brackets []
 replaced by your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Contributor(s):

 If you wish your version of this file to be governed by only the
 CDDL or only the GPL Version 2, indicate your decision by adding
 "[Contributor] elects to include this software in this
 distribution under the [CDDL or GPL Version 2] license." If you
 don't indicate a single choice of license, a recipient has the
 option to distribute your version of this file under either the
 CDDL, the GPL Version 2 or to extend the choice of license to its
 licensees as provided above. However, if you add GPL Version 2
 code and therefore, elected the GPL Version 2 license, then the
 option applies only if the new code is made subject to such
 option by the copyright holder.

 </xsd:documentation>
 </xsd:annotation>
 11/5/09 536

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 This is the XML Schema for the EJB 3.1 deployment descriptor.

 All EJB deployment descriptors must indicate
 the schema by using the Java EE namespace:

 http://java.sun.com/xml/ns/javaee

 and by indicating the version of the schema by
 using the version element as shown below:

 <ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">
 ...
 </ejb-jar>

 The instance documents may indicate the published version of
 the schema using the xsi:schemaLocation attribute for the
 Java EE namespace with the following location:

 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 The following conventions apply to all Java EE
 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="javaee_6.xsd"/>

<!-- ** -->

 <xsd:element name="ejb-jar"
 type="javaee:ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 This is the root of the ejb-jar deployment descriptor.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:key name="ejb-name-key">
 <xsd:annotation>
 <xsd:documentation>
537 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 The ejb-name element contains the name of an enterprise
 bean. The name must be unique within the ejb-jar or
 .war file.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:enterprise-beans/*"/>
 <xsd:field xpath="javaee:ejb-name"/>
 </xsd:key>
 <xsd:keyref name="ejb-name-references"
 refer="javaee:ejb-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 relationship-role-source must be to a specific ejb-name
 defined within the scope of enterprise-beans element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath=".//javaee:ejb-relationship-role/javaee:relation-
ship-role-source"/>
 <xsd:field xpath="javaee:ejb-name"/>
 </xsd:keyref>
 <xsd:key name="role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 A role-name-key is specified to allow the references
 from the security-role-refs.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:assembly-descriptor/javaee:security-role"/>
 <xsd:field xpath="javaee:role-name"/>
 </xsd:key>
 <xsd:keyref name="role-name-references"
 refer="javaee:role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 security-role-ref to a specified role-name.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:enterprise-beans/*/javaee:secu-
rity-role-ref"/>
 <xsd:field xpath="javaee:role-link"/>
 </xsd:keyref>
 </xsd:element>

<!-- ** -->

 <xsd:complexType name="access-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The access-timeoutType represents the maximum amount of
 time (in a given time unit) that the container should wait for
 a concurrency lock before throwing a timeout exception to the
 client.

 A timeout value of 0 means concurrent access is not permitted.
 11/5/09 538

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.

 A timeout value of -1 means wait indefinitely to acquire a lock.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="timeout"
 type="javaee:xsdIntegerType"/>
 <xsd:element name="unit"
 type="javaee:time-unit-typeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="async-methodType">
 <xsd:annotation>
 <xsd:documentation>

 The async-methodType element specifies that a session
 bean method has asynchronous invocation semantics.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-name"
 type="javaee:string"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="activation-configType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-configType defines information about the
 expected configuration properties of the message-driven bean
 in its operational environment. This may include information
 about message acknowledgement, message selector, expected
 destination type, etc.

 The configuration information is expressed in terms of
 name/value configuration properties.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="activation-config-property"
 type="javaee:activation-config-propertyType"
539 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="activation-config-propertyType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-propertyType contains a name/value
 configuration property pair for a message-driven bean.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="activation-config-property-name"
 type="javaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-property-name element contains
 the name for an activation configuration property of
 a message-driven bean.

 For JMS message-driven beans, the following property
 names are recognized: acknowledgeMode,
 messageSelector, destinationType, subscriptionDurability

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="activation-config-property-value"
 type="javaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-property-value element
 contains the value for an activation configuration
 property of a message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="around-invokeType">
 <xsd:annotation>
 <xsd:documentation>

 The around-invoke type specifies a method on a
 class to be called during the around invoke portion of an
 ejb invocation. Note that each class may have only one
 around invoke method and that the method may not be
 11/5/09 540

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 overloaded.

 If the class element is missing then
 the class defining the callback is assumed to be the
 interceptor class or component class in scope at the
 location in the descriptor in which the around invoke
 definition appears.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="class"
 type="javaee:fully-qualified-classType"
 minOccurs="0"/>
 <xsd:element name="method-name"
 type="javaee:java-identifierType"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="around-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The around-timeout type specifies a method on a
 class to be called during the around-timeout portion of
 a timer timeout callback. Note that each class may have
 only one around-timeout method and that the method may not
 be overloaded.

 If the class element is missing then
 the class defining the callback is assumed to be the
 interceptor class or component class in scope at the
 location in the descriptor in which the around-timeout
 definition appears.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="class"
 type="javaee:fully-qualified-classType"
 minOccurs="0"/>
 <xsd:element name="method-name"
 type="javaee:java-identifierType"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="assembly-descriptorType">
 <xsd:annotation>
 <xsd:documentation>

 The assembly-descriptorType defines
 application-assembly information.

 The application-assembly information consists of the
 following parts: the definition of security roles, the
 definition of method permissions, the definition of
 transaction attributes for enterprise beans with
 container-managed transaction demarcation, the definition
 of interceptor bindings, a list of
 methods to be excluded from being invoked, and a list of
541 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 exception types that should be treated as application exceptions.

 All the parts are optional in the sense that they are
 omitted if the lists represented by them are empty.

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar or .war file producer.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="security-role"
 type="javaee:security-roleType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method-permission"
 type="javaee:method-permissionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="container-transaction"
 type="javaee:container-transactionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-binding"
 type="javaee:interceptor-bindingType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="message-destination"
 type="javaee:message-destinationType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="exclude-list"
 type="javaee:exclude-listType"
 minOccurs="0"/>
 <xsd:element name="application-exception"
 type="javaee:application-exceptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-fieldType describes a container-managed field. The
 cmp-fieldType contains an optional description of the field,
 and the name of the field.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="field-name"
 type="javaee:java-identifierType">
 <xsd:annotation>
 <xsd:documentation>
 11/5/09 542

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 The field-name element specifies the name of a
 container managed field.

 The name of the cmp-field of an entity bean with
 cmp-version 2.x must begin with a lowercase
 letter. This field is accessed by methods whose
 names consists of the name of the field specified by
 field-name in which the first letter is uppercased,
 prefixed by "get" or "set".

 The name of the cmp-field of an entity bean with
 cmp-version 1.x must denote a public field of the
 enterprise bean class or one of its superclasses.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-versionType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-versionType specifies the version of an entity bean
 with container-managed persistence. It is used by
 cmp-version elements.

 The value must be one of the two following:

 1.x
 2.x

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="1.x"/>
 <xsd:enumeration value="2.x"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-fieldType describes the bean provider's view of
 a relationship. It consists of an optional description, and
 the name and the class type of a field in the source of a
 role of a relationship. The cmr-field-name element
 corresponds to the name used for the get and set accessor
 methods for the relationship. The cmr-field-type element is
 used only for collection-valued cmr-fields. It specifies the
 type of the collection that is used.

 </xsd:documentation>
 </xsd:annotation>
543 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="cmr-field-name"
 type="javaee:string">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-name element specifies the name of a
 logical relationship field in the entity bean
 class. The name of the cmr-field must begin with a
 lowercase letter. This field is accessed by methods
 whose names consist of the name of the field
 specified by cmr-field-name in which the first
 letter is uppercased, prefixed by "get" or "set".

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmr-field-type"
 type="javaee:cmr-field-typeType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-field-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-type element specifies the class of a
 collection-valued logical relationship field in the entity
 bean class. The value of an element using cmr-field-typeType
 must be either: java.util.Collection or java.util.Set.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="java.util.Collection"/>
 <xsd:enumeration value="java.util.Set"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrency-management-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrency-management-typeType specifies the way concurrency
 is managed for a singleton or stateful session bean.

 The concurrency management type must be one of the following:

 Bean
 Container

 11/5/09 544

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 Bean managed concurrency can only be specified for a singleton bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrent-lock-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrent-lock-typeType specifies how the container must
 manage concurrent access to a method of a Singleton bean
 with container-managed concurrency.

 The container managed concurrency lock type must be one
 of the following :

 Read
 Write

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Read"/>
 <xsd:enumeration value="Write"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrent-methodType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrent-methodType specifies information about a method
 of a bean with container managed concurrency.

 The optional lock element specifies the kind of concurrency
 lock asssociated with the method.

 The optional access-timeout element specifies the amount of
 time (in a given time unit) the container should wait for a
 concurrency lock before throwing an exception to the client.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method"
 type="javaee:named-methodType"/>
 <xsd:element name="lock"
 type="javaee:concurrent-lock-typeType"
 minOccurs="0"/>
 <xsd:element name="access-timeout"
 type="javaee:access-timeoutType"
545 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="container-transactionType">
 <xsd:annotation>
 <xsd:documentation>

 The container-transactionType specifies how the container
 must manage transaction scopes for the enterprise bean's
 method invocations. It defines an optional description, a
 list of method elements, and a transaction attribute. The
 transaction attribute is to be applied to all the specified
 methods.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 <xsd:element name="trans-attribute"
 type="javaee:trans-attributeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="depends-onType">
 <xsd:annotation>
 <xsd:documentation>

 The depends-onType is used to express initialization
 ordering dependencies between Singleton components.
 The depends-onType specifies the names of one or more
 Singleton beans in the same application as the referring
 Singleton, each of which must be initialized before
 the referring bean.

 Each dependent bean is expressed using ejb-link syntax.
 The order in which dependent beans are initialized at
 runtime is not guaranteed to match the order in which
 they are listed.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="ejb-name"
 type="javaee:ejb-linkType"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 11/5/09 546

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-classType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The ejb-classType contains the fully-qualified name of the
 enterprise bean's class. It is used by ejb-class elements.

 Example:

 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:fully-qualified-classType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-jarType defines the root element of the EJB
 deployment descriptor. It contains

 - an optional description of the ejb-jar file
 - an optional display name
 - an optional icon that contains a small and a large
 icon file name
 - an optional module name. Only applicable to
 stand-alone ejb-jars or ejb-jars packaged in an ear.
 Ignored if specified for an ejb-jar.xml within a .war.
 In that case, standard .war module-name rules apply.
 - structural information about all included
 enterprise beans that is not specified through
 annotations
 - structural information about interceptor classes
 - a descriptor for container managed relationships,
 if any.
 - an optional application-assembly descriptor
 - an optional name of an ejb-client-jar file for the
 ejb-jar.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="module-name"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="enterprise-beans"
 type="javaee:enterprise-beansType"
 minOccurs="0"/>
 <xsd:element name="interceptors"
 type="javaee:interceptorsType"
 minOccurs="0"/>
 <xsd:element name="relationships"
547 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 type="javaee:relationshipsType"
 minOccurs="0">
 <xsd:unique name="relationship-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name contains the name of a
 relation. The name must be unique within
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-relation"/>
 <xsd:field xpath="javaee:ejb-relation-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="assembly-descriptor"
 type="javaee:assembly-descriptorType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar or .war file
 producer.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-client-jar"
 type="javaee:pathType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The optional ejb-client-jar element specifies a JAR
 file that contains the class files necessary for a
 client program to access the
 enterprise beans in the ejb-jar file.

 Example:

 <ejb-client-jar>employee_service_client.jar
 </ejb-client-jar>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="version"
 type="javaee:dewey-versionType"
 fixed="3.1"
 use="required">
 <xsd:annotation>
 <xsd:documentation>

 The version specifies the version of the
 EJB specification that the instance document must
 comply with. This information enables deployment tools
 to validate a particular EJB Deployment
 Descriptor with respect to a specific version of the EJB
 schema.

 </xsd:documentation>
 </xsd:annotation>
 11/5/09 548

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:attribute>
 <xsd:attribute name="metadata-complete"
 type="xsd:boolean">
 <xsd:annotation>
 <xsd:documentation>

 The metadata-complete attribute defines whether this
 deployment descriptor and other related deployment
 descriptors for this module (e.g., web service
 descriptors) are complete, or whether the class
 files available to this module and packaged with
 this application should be examined for annotations
 that specify deployment information.

 If metadata-complete is set to "true", the deployment
 tool must ignore any annotations that specify deployment
 information, which might be present in the class files
 of the application.

 If metadata-complete is not specified or is set to
 "false", the deployment tool must examine the class
 files of the application for annotations, as
 specified by the specifications.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-nameType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The ejb-nameType specifies an enterprise bean's name. It is
 used by ejb-name elements. This name is assigned by the
 file producer to name the enterprise bean in the
 ejb-jar or .war file's deployment descriptor. The name must be
 unique among the names of the enterprise beans in the same
 ejb-jar or .war file.

 There is no architected relationship between the used
 ejb-name in the deployment descriptor and the JNDI name that
 the Deployer will assign to the enterprise bean's home.

 The name for an entity bean must conform to the lexical
 rules for an NMTOKEN.

 Example:

 <ejb-name>EmployeeService</ejb-name>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:xsdNMTOKENType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->
549 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:complexType name="ejb-relationType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationType describes a relationship between two
 entity beans with container-managed persistence. It is used
 by ejb-relation elements. It contains a description; an
 optional ejb-relation-name element; and exactly two
 relationship role declarations, defined by the
 ejb-relationship-role elements. The name of the
 relationship, if specified, is unique within the ejb-jar
 file.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation-name"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name element provides a unique name
 within the ejb-jar file for a relationship.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-relationship-role"
 type="javaee:ejb-relationship-roleType"/>
 <xsd:element name="ejb-relationship-role"
 type="javaee:ejb-relationship-roleType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-relationship-roleType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The ejb-relationship-roleType describes a role within a
 relationship. There are two roles in each relationship.

 The ejb-relationship-roleType contains an optional
 description; an optional name for the relationship role; a
 specification of the multiplicity of the role; an optional
 specification of cascade-delete functionality for the role;
 the role source; and a declaration of the cmr-field, if any,
 by means of which the other side of the relationship is
 accessed from the perspective of the role source.

 The multiplicity and role-source element are mandatory.

 The relationship-role-source element designates an entity
 bean by means of an ejb-name element. For bidirectional
 relationships, both roles of a relationship must declare a
 relationship-role-source element that specifies a cmr-field
 11/5/09 550

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 in terms of which the relationship is accessed. The lack of
 a cmr-field element in an ejb-relationship-role specifies
 that the relationship is unidirectional in navigability and
 the entity bean that participates in the relationship is
 "not aware" of the relationship.

 Example:

 <ejb-relation>
 <ejb-relation-name>Product-LineItem</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>product-has-lineitems
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>ProductEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relationship-role-name"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name element defines a
 name for a role that is unique within an
 ejb-relation. Different relationships can use the
 same name for a role.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="multiplicity"
 type="javaee:multiplicityType"/>
 <xsd:element name="cascade-delete"
 type="javaee:emptyType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The cascade-delete element specifies that, within a
 particular relationship, the lifetime of one or more
 entity beans is dependent upon the lifetime of
 another entity bean. The cascade-delete element can
 only be specified for an ejb-relationship-role
 element contained in an ejb-relation element in
 which the other ejb-relationship-role
 element specifies a multiplicity of One.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="relationship-role-source"
 type="javaee:relationship-role-sourceType"/>
 <xsd:element name="cmr-field"
 type="javaee:cmr-fieldType"
551 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="enterprise-beansType">
 <xsd:annotation>
 <xsd:documentation>

 The enterprise-beansType declares one or more enterprise
 beans. Each bean can be a session, entity or message-driven
 bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="session"
 type="javaee:session-beanType">
 <xsd:unique name="session-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.
 11/5/09 552

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="entity"
 type="javaee:entity-beanType">
 <xsd:unique name="entity-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
553 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 11/5/09 554

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:unique>
 <xsd:unique name="entity-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="message-driven"
 type="javaee:message-driven-beanType">
 <xsd:unique name="messaged-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
555 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 </xsd:choice>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="entity-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The entity-beanType declares an entity bean. The declaration
 consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 11/5/09 556

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 - a unique name assigned to the enterprise bean
 in the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of the entity bean's remote home interface. This
 element is not required to be supported by all implementations.
 Any use of this element is non-portable.
 - the names of the entity bean's remote home
 and remote interfaces, if any
 - the names of the entity bean's local home and local
 interfaces, if any
 - the entity bean's implementation class
 - the optional entity bean's persistence management type. If
 this element is not specified it is defaulted to Container.
 - the entity bean's primary key class name
 - an indication of the entity bean's reentrancy
 - an optional specification of the
 entity bean's cmp-version
 - an optional specification of the entity bean's
 abstract schema name
 - an optional list of container-managed fields
 - an optional specification of the primary key
 field
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's EJB
 references
 - an optional declaration of the bean's local
 EJB references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's
 resource manager connection factory references
 - an optional declaration of the bean's
 resource environment references
 - an optional declaration of the bean's message
 destination references
 - an optional set of query declarations
 for finder and select methods for an entity
 bean with cmp-version 2.x.

 The optional abstract-schema-name element must be specified
 for an entity bean with container-managed persistence and
 cmp-version 2.x.

 The optional primkey-field may be present in the descriptor
 if the entity's persistence-type is Container.

 The optional cmp-version element may be present in the
 descriptor if the entity's persistence-type is Container. If
 the persistence-type is Container and the cmp-version
 element is not specified, its value defaults to 2.x.

 The optional home and remote elements must be specified if
 the entity bean cmp-version is 1.x.

 The optional home and remote elements must be specified if
 the entity bean has a remote home and remote interface.

 The optional local-home and local elements must be specified
 if the entity bean has a local home and local interface.

557 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 Either both the local-home and the local elements or both
 the home and the remote elements must be specified.

 The optional query elements must be present if the
 persistence-type is Container and the cmp-version is 2.x and
 query methods other than findByPrimaryKey have been defined
 for the entity bean.

 The other elements that are optional are "optional" in the
 sense that they are omitted if the lists represented by them
 are empty.

 At least one cmp-field element must be present in the
 descriptor if the entity's persistence-type is Container and
 the cmp-version is 1.x, and none must not be present if the
 entity's persistence-type is Bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="javaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="javaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="javaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="javaee:localType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"/>
 <xsd:element name="persistence-type"
 type="javaee:persistence-typeType"/>
 <xsd:element name="prim-key-class"
 type="javaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>

 The prim-key-class element contains the
 fully-qualified name of an
 entity bean's primary key class.

 If the definition of the primary key class is
 deferred to deployment time, the prim-key-class
 element should specify java.lang.Object.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="reentrant"
 type="javaee:true-falseType">
 <xsd:annotation>
 <xsd:documentation>

 The reentrant element specifies whether an entity
 bean is reentrant or not.

 11/5/09 558

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 The reentrant element must be one of the two
 following: true or false

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-version"
 type="javaee:cmp-versionType"
 minOccurs="0"/>
 <xsd:element name="abstract-schema-name"
 type="javaee:java-identifierType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The abstract-schema-name element specifies the name
 of the abstract schema type of an entity bean with
 cmp-version 2.x. It is used in EJB QL queries.

 For example, the abstract-schema-name for an entity
 bean whose local interface is
 com.acme.commerce.Order might be Order.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-field"
 type="javaee:cmp-fieldType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="primkey-field"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The primkey-field element is used to specify the
 name of the primary key field for an entity with
 container-managed persistence.

 The primkey-field must be one of the fields declared
 in the cmp-field element, and the type of the field
 must be the same as the primary key type.

 The primkey-field element is not used if the primary
 key maps to multiple container-managed fields
 (i.e. the key is a compound key). In this case, the
 fields of the primary key class must be public, and
 their names must correspond to the field names of
 the entity bean class that comprise the key.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-role-ref"
 type="javaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0"/>
 <xsd:element name="query"
 type="javaee:queryType"
 minOccurs="0"
 maxOccurs="unbounded"/>
559 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="exclude-listType">
 <xsd:annotation>
 <xsd:documentation>

 The exclude-listType specifies one or more methods which
 the Assembler marks to be uncallable.

 If the method permission relation contains methods that are
 in the exclude list, the Deployer should consider those
 methods to be uncallable.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="application-exceptionType">
 <xsd:annotation>
 <xsd:documentation>

 The application-exceptionType declares an application
 exception. The declaration consists of:

 - the exception class. When the container receives
 an exception of this type, it is required to
 forward this exception as an applcation exception
 to the client regardless of whether it is a checked
 or unchecked exception.
 - an optional rollback element. If this element is
 set to true, the container must rollback the current
 transaction before forwarding the exception to the
 client. If not specified, it defaults to false.
 - an optional inherited element. If this element is
 set to true, subclasses of the exception class type
 are also automatically considered application
 exceptions (unless overriden at a lower level).
 If set to false, only the exception class type is
 considered an application-exception, not its
 exception subclasses. If not specified, this
 value defaults to true.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="exception-class"
 11/5/09 560

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 type="javaee:fully-qualified-classType"/>
 <xsd:element name="rollback"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="inherited"
 type="javaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptorsType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorsType element declares one or more interceptor
 classes used by components within this ejb-jar or .war. The declara-
tion
 consists of :

 - An optional description.
 - One or more interceptor elements.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor"
 type="javaee:interceptorType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptorType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorType element declares information about a single
 interceptor class. It consists of :

 - An optional description.
 - The fully-qualified name of the interceptor class.
 - An optional list of around invoke methods declared on the
 interceptor class and/or its super-classes.
 - An optional list of around timeout methods declared on the
 interceptor class and/or its super-classes.
 - An optional list environment dependencies for the interceptor
 class and/or its super-classes.
 - An optional list of post-activate methods declared on the
 interceptor class and/or its super-classes.
 - An optional list of pre-passivate methods declared on the
 interceptor class and/or its super-classes.

 </xsd:documentation>
561 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="javaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptor-bindingType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The interceptor-bindingType element describes the binding of
 interceptor classes to beans within the ejb-jar or .war.
 It consists of :

 - An optional description.
 - The name of an ejb within the module or the wildcard value "*",
 which is used to define interceptors that are bound to all
 beans in the ejb-jar or .war.
 - A list of interceptor classes that are bound to the contents of
 the ejb-name element or a specification of the total ordering
 over the interceptors defined for the given level and above.
 - An optional exclude-default-interceptors element. If set to true,
 specifies that default interceptors are not to be applied to
 a bean-class and/or business method.
 - An optional exclude-class-interceptors element. If set to true,
 specifies that class interceptors are not to be applied to
 a business method.
 - An optional set of method elements for describing the name/params
 of a method-level interceptor.

 Interceptors bound to all classes using the wildcard syntax
 "*" are default interceptors for the components in the ejb-jar or
.war.
 In addition, interceptors may be bound at the level of the bean
 class (class-level interceptors) or business methods (method-level
 interceptors).

 The binding of interceptors to classes is additive. If interceptors
 are bound at the class-level and/or default-level as well as the
 11/5/09 562

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 method-level, both class-level and/or default-level as well as
 method-level will apply.

 There are four possible styles of the interceptor element syntax :

 1.
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 Specifying the ejb-name as the wildcard value "*" designates
 default interceptors (interceptors that apply to all session and
 message-driven beans contained in the ejb-jar or .war).

 2.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 This style is used to refer to interceptors associated with the
 specified enterprise bean(class-level interceptors).

 3.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 </method>
 </interceptor-binding>

 This style is used to associate a method-level interceptor with
 the specified enterprise bean. If there are multiple methods
 with the same overloaded name, the element of this style refers
 to all the methods with the overloaded name. Method-level
 interceptors can only be associated with business methods of the
 bean class. Note that the wildcard value "*" cannot be used
 to specify method-level interceptors.

 4.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-N</method-param>
 </method-params>
 </method>
 </interceptor-binding>

 This style is used to associate a method-level interceptor with
 the specified method of the specified enterprise bean. This
 style is used to refer to a single method within a set of methods
 with an overloaded name. The values PARAM-1 through PARAM-N
 are the fully-qualified Java types of the method's input parameters
 (if the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of square
 brackets (e.g. int[][]).

563 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:string"/>
 <xsd:choice>
 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-order"
 type="javaee:interceptor-orderType"
 minOccurs="1"/>
 </xsd:choice>
 <xsd:element name="exclude-default-interceptors"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="exclude-class-interceptors"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptor-orderType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptor-orderType element describes a total ordering
 of interceptor classes.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="named-methodType">
 <xsd:sequence>
 <xsd:element name="method-name"
 type="javaee:string"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 11/5/09 564

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="init-methodType">
 <xsd:sequence>
 <xsd:element name="create-method"
 type="javaee:named-methodType"/>
 <xsd:element name="bean-method"
 type="javaee:named-methodType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remove-methodType">
 <xsd:sequence>
 <xsd:element name="bean-method"
 type="javaee:named-methodType"/>
 <xsd:element name="retain-if-exception"
 type="javaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-driven-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The message-driven element declares a message-driven
 bean. The declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name.
 - a name assigned to the enterprise bean in
 the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of destination from which this message-driven bean
 should consume. This element is not required to be supported
 by all implementations. Any use of this element is non-portable.
 - the message-driven bean's implementation class
 - an optional declaration of the bean's messaging
 type
 - an optional declaration of the bean's timeout method for
 handling programmatically created timers
 - an optional declaration of timers to be automatically created at
 deployment time
 - the optional message-driven bean's transaction management
 type. If it is not defined, it is defaulted to Container.
 - an optional declaration of the bean's
 message-destination-type
 - an optional declaration of the bean's
565 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 message-destination-link
 - an optional declaration of the message-driven bean's
 activation configuration properties
 - an optional list of the message-driven bean class and/or
 superclass around-invoke methods.
 - an optional list of the message-driven bean class and/or
 superclass around-timeout methods.
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's EJB references
 - an optional declaration of the bean's local EJB
 references
 - an optional declaration of the bean's web service
 references
 - an optional declaration of the security role
 references
 - an optional declaration of the security
 identity to be used for the execution of the bean's
 methods
 - an optional declaration of the bean's
 resource manager connection factory
 references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="messaging-type"
 type="javaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The messaging-type element specifies the message
 listener interface of the message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timeout-method"
 type="javaee:named-methodType"
 minOccurs="0">
 <xsd:annotation>
 11/5/09 566

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:documentation>

 The timeout-method element specifies the method that
 will receive callbacks for programmatically
 created timers.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timer"
 type="javaee:timerType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="transaction-type"
 type="javaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="message-destination-type"
 type="javaee:message-destination-typeType"
 minOccurs="0"/>
 <xsd:element name="message-destination-link"
 type="javaee:message-destination-linkType"
 minOccurs="0"/>
 <xsd:element name="activation-config"
 type="javaee:activation-configType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="javaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-role-ref"
 type="javaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded">
 </xsd:element>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="methodType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The methodType is used to denote a method of an enterprise
 bean's business, home, component, and/or web service endpoint
 interface, or, in the case of a message-driven bean, the
 bean's message listener method, or a set of such
 methods. The ejb-name element must be the name of one of the
 enterprise beans declared in the deployment descriptor; the
 optional method-intf element allows to distinguish between a
 method with the same signature that is multiply defined
 across the business, home, component, and/or web service
 endpoint nterfaces; the method-name element specifies the
 method name; and the optional method-params elements identify
 a single method among multiple methods with an overloaded
567 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 method name.

 There are three possible styles of using methodType element
 within a method element:

 1.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>

 This style is used to refer to all the methods of the
 specified enterprise bean's business, home, component,
 and/or web service endpoint interfaces.

 2.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 </method>

 This style is used to refer to the specified method of
 the specified enterprise bean. If there are multiple
 methods with the same overloaded name, the element of
 this style refers to all the methods with the overloaded
 name.

 3.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
 </method-params>
 </method>

 This style is used to refer to a single method within a
 set of methods with an overloaded name. PARAM-1 through
 PARAM-n are the fully-qualified Java types of the
 method's input parameters (if the method has no input
 arguments, the method-params element contains no
 method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of
 square brackets (e.g. int[][]). If there are multiple
 methods with the same overloaded name, this style refers
 to all of the overloaded methods.

 Examples:

 Style 1: The following method element refers to all the
 methods of the EmployeeService bean's business, home,
 component, and/or web service endpoint interfaces:

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>

 Style 2: The following method element refers to all the
 create methods of the EmployeeService bean's home
 interface(s).

 <method>
 11/5/09 568

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 </method>

 Style 3: The following method element refers to the
 create(String firstName, String LastName) method of the
 EmployeeService bean's home interface(s).

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The following example illustrates a Style 3 element with
 more complex parameter types. The method
 foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
 mypackage.MyClass[][] myclaar) would be specified as:

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>foobar</method-name>
 <method-params>
 <method-param>char</method-param>
 <method-param>int</method-param>
 <method-param>int[]</method-param>
 <method-param>mypackage.MyClass</method-param>
 <method-param>mypackage.MyClass[][]</method-param>
 </method-params>
 </method>

 The optional method-intf element can be used when it becomes
 necessary to differentiate between a method that is multiply
 defined across the enterprise bean's business, home, component,
 and/or web service endpoint interfaces with the same name and
 signature. However, if the same method is a method of both the
 local business interface, and the local component interface,
 the same attribute applies to the method for both interfaces.
 Likewise, if the same method is a method of both the remote
 business interface and the remote component interface, the same
 attribute applies to the method for both interfaces.

 For example, the method element

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 can be used to differentiate the create(String, String)
 method defined in the remote interface from the
 create(String, String) method defined in the remote home
 interface, which would be defined as

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>create</method-name>
569 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 and the create method that is defined in the local home
 interface which would be defined as

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>LocalHome</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The method-intf element can be used with all three Styles
 of the method element usage. For example, the following
 method element example could be used to refer to all the
 methods of the EmployeeService bean's remote home interface
 and the remote business interface.

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>*</method-name>
 </method>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="method-intf"
 type="javaee:method-intfType"
 minOccurs="0">
 </xsd:element>
 <xsd:element name="method-name"
 type="javaee:method-nameType"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-intfType">
 <xsd:annotation>
 <xsd:documentation>

 The method-intf element allows a method element to
 differentiate between the methods with the same name and
 signature that are multiply defined across the home and
 component interfaces (e.g, in both an enterprise bean's
 11/5/09 570

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 remote and local interfaces or in both an enterprise bean's
 home and remote interfaces, etc.); the component and web
 service endpoint interfaces, and so on.

 Local applies to the local component interface, local business
 interfaces, and the no-interface view.

 Remote applies to both remote component interface and the remote
 business interfaces.

 ServiceEndpoint refers to methods exposed through a web service
 endpoint.

 Timer refers to the bean's timeout callback methods.

 MessageEndpoint refers to the methods of a message-driven bean's
 message-listener interface.

 The method-intf element must be one of the following:

 Home
 Remote
 LocalHome
 Local
 ServiceEndpoint
 Timer
 MessageEndpoint

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Home"/>
 <xsd:enumeration value="Remote"/>
 <xsd:enumeration value="LocalHome"/>
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="ServiceEndpoint"/>
 <xsd:enumeration value="Timer"/>
 <xsd:enumeration value="MessageEndpoint"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-nameType">
 <xsd:annotation>
 <xsd:documentation>

 The method-nameType contains a name of an enterprise
 bean method or the asterisk (*) character. The asterisk is
 used when the element denotes all the methods of an
 enterprise bean's client view interfaces.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-paramsType">
571 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:annotation>
 <xsd:documentation>

 The method-paramsType defines a list of the
 fully-qualified Java type names of the method parameters.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-param"
 type="javaee:java-typeType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The method-param element contains a primitive
 or a fully-qualified Java type name of a method
 parameter.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-permissionType">
 <xsd:annotation>
 <xsd:documentation>

 The method-permissionType specifies that one or more
 security roles are allowed to invoke one or more enterprise
 bean methods. The method-permissionType consists of an
 optional description, a list of security role names or an
 indicator to state that the method is unchecked for
 authorization, and a list of method elements.

 The security roles used in the method-permissionType
 must be defined in the security-role elements of the
 deployment descriptor, and the methods must be methods
 defined in the enterprise bean's business, home, component
 and/or web service endpoint interfaces.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="role-name"
 type="javaee:role-nameType"
 maxOccurs="unbounded"/>
 <xsd:element name="unchecked"
 type="javaee:emptyType">
 <xsd:annotation>
 <xsd:documentation>

 The unchecked element specifies that a method is
 not checked for authorization by the container
 11/5/09 572

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 prior to invocation of the method.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="multiplicityType">
 <xsd:annotation>
 <xsd:documentation>

 The multiplicityType describes the multiplicity of the
 role that participates in a relation.

 The value must be one of the two following:

 One
 Many

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="One"/>
 <xsd:enumeration value="Many"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="persistence-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The persistence-typeType specifies an entity bean's persistence
 management type.

 The persistence-type element must be one of the two following:

 Bean
 Container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->
573 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:complexType name="queryType">
 <xsd:annotation>
 <xsd:documentation>

 The queryType defines a finder or select
 query. It contains
 - an optional description of the query
 - the specification of the finder or select
 method it is used by
 - an optional specification of the result type
 mapping, if the query is for a select method
 and entity objects are returned.
 - the EJB QL query string that defines the query.

 Queries that are expressible in EJB QL must use the ejb-ql
 element to specify the query. If a query is not expressible
 in EJB QL, the description element should be used to
 describe the semantics of the query and the ejb-ql element
 should be empty.

 The result-type-mapping is an optional element. It can only
 be present if the query-method specifies a select method
 that returns entity objects. The default value for the
 result-type-mapping element is "Local".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"/>
 <xsd:element name="query-method"
 type="javaee:query-methodType"/>
 <xsd:element name="result-type-mapping"
 type="javaee:result-type-mappingType"
 minOccurs="0"/>
 <xsd:element name="ejb-ql"
 type="javaee:xsdStringType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="query-methodType">
 <xsd:annotation>
 <xsd:documentation>
<![CDATA[[
 The query-method specifies the method for a finder or select
 query.

 The method-name element specifies the name of a finder or select
 method in the entity bean's implementation class.

 Each method-param must be defined for a query-method using the
 method-params element.

 It is used by the query-method element.

 Example:

 <query>
 <description>Method finds large orders</description>
 11/5/09 574

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <query-method>
 <method-name>findLargeOrders</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(o) FROM Order o
 WHERE o.amount > 1000
 </ejb-ql>
 </query>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-name"
 type="javaee:method-nameType"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationship-role-sourceType">
 <xsd:annotation>
 <xsd:documentation>

 The relationship-role-sourceType designates the source of a
 role that participates in a relationship. A
 relationship-role-sourceType is used by
 relationship-role-source elements to uniquely identify an
 entity bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationshipsType">
 <xsd:annotation>
 <xsd:documentation>

 The relationshipsType describes the relationships in
 which entity beans with container-managed persistence
 participate. The relationshipsType contains an optional
 description; and a list of ejb-relation elements, which
 specify the container managed relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
575 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation"
 type="javaee:ejb-relationType"
 maxOccurs="unbounded">
 <xsd:unique name="role-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name contains the name of a
 relationship role. The name must be unique within
 a relationship, but can be reused in different
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath=".//javaee:ejb-relationship-role-name"/>
 <xsd:field xpath="."/>
 </xsd:unique>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="result-type-mappingType">
 <xsd:annotation>
 <xsd:documentation>

 The result-type-mappingType is used in the query element to
 specify whether an abstract schema type returned by a query
 for a select method is to be mapped to an EJBLocalObject or
 EJBObject type.

 The value must be one of the following:

 Local
 Remote

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="Remote"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-identityType">
 <xsd:annotation>
 <xsd:documentation>

 The security-identityType specifies whether the caller's
 security identity is to be used for the execution of the
 methods of the enterprise bean or whether a specific run-as
 identity is to be used. It contains an optional description
 and a specification of the security identity to be used.
 11/5/09 576

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="use-caller-identity"
 type="javaee:emptyType">
 <xsd:annotation>
 <xsd:documentation>

 The use-caller-identity element specifies that
 the caller's security identity be used as the
 security identity for the execution of the
 enterprise bean's methods.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="run-as"
 type="javaee:run-asType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The session-beanType declares an session bean. The
 declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 - a name assigned to the enterprise bean
 in the deployment description
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of the session bean's remote home/business interface.
 This element is not required to be supported by all
 implementations. Any use of this element is non-portable.
 - the names of all the remote or local business interfaces,
 if any
 - the names of the session bean's remote home and
 remote interfaces, if any
 - the names of the session bean's local home and
 local interfaces, if any
 - an optional declaration that this bean exposes a
 no-interface view
 - the name of the session bean's web service endpoint
 interface, if any
 - the session bean's implementation class
 - the session bean's state management type
 - an optional declaration of a stateful session bean's timeout value
 - an optional declaration of the session bean's timeout method for
 handling programmatically created timers
577 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 - an optional declaration of timers to be automatically created at
 deployment time
 - an optional declaration that a Singleton bean has eager
 initialization
 - an optional declaration of a Singleton/Stateful bean's concurrency
 management type
 - an optional declaration of the method locking metadata
 for a Singleton with container managed concurrency
 - an optional declaration of the other Singleton beans in the
 application that must be initialized before this bean
 - an optional declaration of the session bean's asynchronous
 methods
 - the optional session bean's transaction management type.
 If it is not present, it is defaulted to Container.
 - an optional declaration of a stateful session bean's
 afterBegin, beforeCompletion, and/or afterCompletion methods
 - an optional list of the session bean class and/or
 superclass around-invoke methods.
 - an optional list of the session bean class and/or
 superclass around-timeout methods.
 - an optional declaration of the bean's
 environment entries
 - an optional declaration of the bean's EJB references
 - an optional declaration of the bean's local
 EJB references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's resource
 manager connection factory references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references

 The elements that are optional are "optional" in the sense
 that they are omitted when if lists represented by them are
 empty.

 The service-endpoint element may only be specified if the
 bean is a stateless session bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="javaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="javaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="javaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="javaee:localType"
 minOccurs="0"/>
 11/5/09 578

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:element name="business-local"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="business-remote"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="local-bean"
 type="javaee:emptyType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The local-bean element declares that this
 session bean exposes a no-interface Local client view.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="service-endpoint"
 type="javaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The service-endpoint element contains the
 fully-qualified name of the enterprise bean's web
 service endpoint interface. The service-endpoint
 element may only be specified for a stateless
 session bean. The specified interface must be a
 valid JAX-RPC service endpoint interface.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="session-type"
 type="javaee:session-typeType"
 minOccurs="0"/>
 <xsd:element name="stateful-timeout"
 type="javaee:stateful-timeoutType"
 minOccurs="0"/>
 <xsd:element name="timeout-method"
 type="javaee:named-methodType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The timeout-method element specifies the method that
 will receive callbacks for programmatically
 created timers.

579 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timer"
 type="javaee:timerType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="init-on-startup"
 type="javaee:true-falseType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The init-on-startup element specifies that a Singleton
 bean has eager initialization.
 This element can only be specified for singleton session
 beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="concurrency-management-type"
 type="javaee:concurrency-management-typeType"
 minOccurs="0"/>
 <xsd:element name="concurrent-method"
 type="javaee:concurrent-methodType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="depends-on"
 type="javaee:depends-onType"
 minOccurs="0"/>
 <xsd:element name="init-method"
 type="javaee:init-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The init-method element specifies the mappings for
 EJB 2.x style create methods for an EJB 3.x bean.
 This element can only be specified for stateful
 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="remove-method"
 type="javaee:remove-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The remove-method element specifies the mappings for
 EJB 2.x style remove methods for an EJB 3.x bean.
 This element can only be specified for stateful
 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="async-method"
 type="javaee:async-methodType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="transaction-type"
 11/5/09 580

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 type="javaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="after-begin-method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="before-completion-method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="after-completion-method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="javaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-role-ref"
 type="javaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded">
 </xsd:element>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The session-typeType describes whether the session bean is a
 singleton, stateful or stateless session. It is used by
 session-type elements.

 The value must be one of the three following:

 Singleton
 Stateful
 Stateless

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Singleton"/>
 <xsd:enumeration value="Stateful"/>
 <xsd:enumeration value="Stateless"/>
581 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="stateful-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The stateful-timeoutType represents the amount of time
 a stateful session bean can be idle(not receive any client
 invocations) before it is eligible for removal by the container.

 A timeout value of 0 means the bean is immediately eligible for
removal.

 A timeout value of -1 means the bean will never be removed due to tim-
eout.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="timeout"
 type="javaee:xsdIntegerType"/>
 <xsd:element name="unit"
 type="javaee:time-unit-typeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="time-unit-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The time-unit-typeType represents a time duration at a given
 unit of granularity.

 The time unit type must be one of the following :

 Days
 Hours
 Minutes
 Seconds
 Milliseconds
 Microseconds
 Nanoseconds

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Days"/>
 <xsd:enumeration value="Hours"/>
 <xsd:enumeration value="Minutes"/>
 <xsd:enumeration value="Seconds"/>
 <xsd:enumeration value="Milliseconds"/>
 <xsd:enumeration value="Microseconds"/>
 <xsd:enumeration value="Nanoseconds"/>
 </xsd:restriction>
 </xsd:simpleContent>
 11/5/09 582

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="timer-scheduleType">
 <xsd:sequence>
 <xsd:element name="second"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="minute"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="hour"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="day-of-month"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="month"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="day-of-week"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="year"
 type="javaee:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="timerType">
 <xsd:annotation>
 <xsd:documentation>

 The timerType specifies an enterprise bean timer. Each
 timer is automatically created by the container upon
 deployment. Timer callbacks occur based on the
 schedule attributes. All callbacks are made to the
 timeout-method associated with the timer.

 A timer can have an optional start and/or end date. If
 a start date is specified, it takes precedence over the
 associated timer schedule such that any matching
 expirations prior to the start time will not occur.
 Likewise, no matching expirations will occur after any
 end date. Start/End dates are specified using the
 XML Schema dateTime type, which follows the ISO-8601
 standard for date(and optional time-within-the-day)
 representation.

 An optional flag can be used to control whether
 this timer has persistent(true) delivery semantics or
 non-persistent(false) delivery semantics. If not specified,
 the value defaults to persistent(true).

 A time zone can optionally be associated with a timer.
 If specified, the timer's schedule is evaluated in the context
 of that time zone, regardless of the default time zone in which
 the container is executing. Time zones are specified as an
 ID string. The set of required time zone IDs is defined by
583 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 the Zone Name(TZ) column of the public domain zoneinfo database.

 An optional info string can be assigned to the timer and
 retrieved at runtime through the Timer.getInfo() method.

 The timerType can only be specified on stateless session
 beans, singleton session beans, and message-driven beans.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="schedule"
 type="javaee:timer-scheduleType"/>
 <xsd:element name="start"
 type="xsd:dateTime"
 minOccurs="0"/>
 <xsd:element name="end"
 type="xsd:dateTime"
 minOccurs="0"/>
 <xsd:element name="timeout-method"
 type="javaee:named-methodType"/>
 <xsd:element name="persistent"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="timezone"
 type="javaee:string"
 minOccurs="0"/>
 <xsd:element name="info"
 type="javaee:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="trans-attributeType">
 <xsd:annotation>
 <xsd:documentation>

 The trans-attributeType specifies how the container must
 manage the transaction boundaries when delegating a method
 invocation to an enterprise bean's business method.

 The value must be one of the following:

 NotSupported
 Supports
 Required
 RequiresNew
 Mandatory
 Never

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="NotSupported"/>
 <xsd:enumeration value="Supports"/>
 <xsd:enumeration value="Required"/>
 11/5/09 584

Deployment Descriptor XML Schema Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:enumeration value="RequiresNew"/>
 <xsd:enumeration value="Mandatory"/>
 <xsd:enumeration value="Never"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="transaction-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The transaction-typeType specifies an enterprise bean's
 transaction management type.

 The transaction-type must be one of the two following:

 Bean
 Container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

</xsd:schema>
585 November 5, 2009 11:00 am

Deployment Descriptor Enterprise JavaBeans 3.1, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 11/5/09 586

Overview Enterprise JavaBeans 3.1, Final Release Packaging

Sun Microsystems, Inc.
Chapter 20 Packaging

The ejb-jar file is the standard format for the exclusive packaging of enterprise beans. Enterprise
beans can also be packaged within a web application module (.war). The ejb-jar file or .war file
format is used to package un-assembled enterprise beans (the Bean Provider’s output), and to package
assembled applications (the Application Assembler’s output).

20.1 Overview

An ejb-jar file is a Java EE module specifically designed for the exclusive packaging of enterprise
beans. Enterprise beans can also be packaged within a web application module (.war).

The ejb-jar file and .war file formats serve as the contract between the Bean Provider and the
Application Assembler, and between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typically
do not contain application assembly instructions. The ejb-jar file produced by an Application
Assembler (which can be the same person or organization as the Bean Provider) contains one or more
enterprise beans, plus application assembly information describing how the enterprise beans are com-
bined into a single application deployment unit.
587 November 5, 2009 11:00 am

Packaging Enterprise JavaBeans 3.1, Final Release Deployment Descriptor

Sun Microsystems, Inc.
A .war file is not required to contain any enterprise beans. A .war file produced by a Bean Provider
contains one or more enterprise beans that typically do not contain application assembly instructions. A
.war file produced by an Application Assembler (which can be the same person or organization as the
Bean Provider) contains one or more enterprise beans, plus application assembly information describing
how the enterprise beans are combined into a single application deployment unit.

20.2 Deployment Descriptor

The EJB deployment descriptor is optional for both an ejb-jar file and a .war file. If a deployment
descriptor is provided it must conform to the format defined in Chapter 19.

In an ejb-jar file, the deployment descriptor is stored with the name META-INF/ejb-jar.xml.

In a .war file, the deployment descriptor is stored with the name WEB-INF/ejb-jar.xml.

20.3 Packaging Requirements

The ejb-jar file or .war file must contain, either by inclusion or by reference, the class files of each
enterprise bean as follows:

• The enterprise bean class.

• The enterprise bean business interfaces, web service endpoint interfaces, and home and com-
ponent interfaces.

• Interceptor classes.

• The primary key class if the bean is an entity bean.

We say that a .jar file contains a second file “by reference” if the second file is named in the Class-Path
attribute in the Manifest file of the referencing .jar file or is contained (either by inclusion or by refer-
ence) in another .jar file that is named in the Class-Path attribute in the Manifest file of the referencing
.jar file.

The ejb-jar file or .war file must also contain, either by inclusion or by reference, the class files
for all the classes and interfaces that each enterprise bean class and the home interfaces, component
interfaces, and/or web service endpoints depend on, except Java EE and Java SE classes. This includes
their superclasses and superinterfaces, dependent classes, and the classes and interfaces used as method
parameters, results, and exceptions.
 11/5/09 588

Enterprise Beans Packaged in a .war Enterprise JavaBeans 3.1, Final Release Packaging

Sun Microsystems, Inc.
The Application Assembler must not package the stubs of the EJBHome and EJBObject interfaces in
the ejb-jar file or .war file. This includes the stubs for the enterprise beans whose implementations
are provided in the ejb-jar file or .war file as well as the referenced enterprise beans. Generating
the stubs is the responsibility of the container. The stubs are typically generated by the Container Pro-
vider’s deployment tools for each class that extends the EJBHome or EJBObject interfaces, or they
may be generated by the container at runtime.

20.4 Enterprise Beans Packaged in a .war

An enterprise bean class with a component-defining annotation defines an enterprise bean component
when packaged within the WEB-INF/classes directory or in a .jar file within WEB-INF/lib. An
enterprise bean can also be defined via WEB-INF/ejb-jar.xml.

A .war may contain an ejb-jar.xml file. If present, the ejb-jar.xml is packaged as
WEB-INF/ejb-jar.xml. If an ejb-jar.xml is present, it applies to all enterprise beans defined
by the .war file.[103]

A .jar file in WEB-INF/lib that contains enterprise beans is not considered an independent Java EE
“module” in the way that a .war file, stand-alone ejb-jar file, or an .ear-level ejb-jar file is
considered a module. Such a .jar does not define its own module name or its own namespace for
ejb-names, environment dependencies, persistence units, etc. All such namespaces are scoped to the
enclosing .war file. In that sense, the packaging of enterprise bean classes in a WEB-INF/lib .jar is
merely a convenience. It is semantically equivalent to packaging the classes within
WEB-INF/classes.

20.4.1 Class Loading
Enterprise beans (and any related classes) packaged in a .war file have the same class loading require-
ments as other non-enterprise bean classes packaged in a .war file. This means, for example, that a
servlet packaged within a .war file is guaranteed to have visibility to an enterprise bean component
packaged within the same .war file , and vice versa. Detailed class loading requirements for web mod-
ules are covered in the Java EE Platform specification [12].

20.4.2 Component Environment
In a .war file, there is a single component naming environment shared between all the compo-
nents(web, enterprise bean, etc.) defined by the module. Each enterprise bean defined by the .war file
shares this single component environment namespace with all other enterprise beans defined by the
.war file and with all other web components defined by the .war file.

[103]Packaging of an ejb-jar.xml file anywhere else in the .war is not portable and may result in a deployment error.
589 November 5, 2009 11:00 am

Packaging Enterprise JavaBeans 3.1, Final Release Enterprise Beans Packaged in a .war

Sun Microsystems, Inc.
The Bean Developer should be aware of this name scoping behavior when selecting names of environ-
ment dependencies for enterprise beans packaged within a .war file. Unlike enterprise beans packaged
in an ejb-jar file outside a .war, names of environment entries defined by an enterprise bean inside
a .war can clash with names defined by other components. Likewise, enterprise beans packaged in a
.war file have visiblity to all environment entries defined by any other components in the .war file,
including any entries defined within web.xml. This is also true of the advanced case that the
ejb-jar.xml file is used to define multiple bean components based on the same bean class. Extra
caution should be used when configuring environment dependencies for such bean components.

20.4.3 Visibility of the Local Client View

The local client view(including the no-interface view) of an enterprise bean component defined within a
.war file is only required to be accessible to components within the same .war file. Applications
needing access to the local client view of an enterprise bean from a different module in the same appli-
cation should use an ejb-jar file to define the enterprise bean that exposes the local client view.

20.4.4 Ejb-names
A .war file has a single namespace for the ejb-names of any enterprise beans it defines. This one
ejb-name namespace applies to all enterprise beans defined by the .war, regardless of where in the
.war file the enterprise beans are defined and regardless of whether they are defined via
ejb-jar.xml or by annotation.

20.4.5 EJB 2.1/1.1 Entity Bean Restriction
EJB 2.1 Entity Beans and EJB 1.1 Entity Beans are not supported within .war files. These component
types must only be packaged in a stand-alone ejb-jar file or an ejb-jar file packaged within an
.ear file.

20.4.6 JAX-RPC Endpoint Restriction
JAX-RPC based web service endpoints are not supported within .war files. These endpoints must be
only be packaged in a stand-alone ejb-jar file or an ejb-jar file packaged within an .ear file.

20.4.7 Example

Here is a simple stateless session bean with a component-defining annotation and a no-interface view :

package com.acme;

@Stateless
public class FooBean {

public void foo() { ... }
}

 11/5/09 590

Deployment Descriptor and Annotation ProcessingEnterprise JavaBeans 3.1, Final Release Packaging

Sun Microsystems, Inc.
FooBean is packaged in a .war file under a WEB-INF/classes subdirectory corresponding to its
package name. The .war file also contains a Servlet.

webejb.war:
WEB-INF/classes/com/acme/FooServlet.class
WEB-INF/classes/com/acme/FooBean.class

20.5 Deployment Descriptor and Annotation Processing

The following sections describe the cases that the deployment tool must consider when deciding
whether to process annotations on the enterprise bean classes in a module.

20.5.1 Ejb-jar Deployment Descriptor and Annotation Processing

Table 25 describes the requirements for determining when to process annotations on the classes in an
ejb-jar. If the deployment descriptor is not included or is included but not marked metadata-complete,
the deployment tool will process annotations.

Table 25 Ejb-jar Annotation Processing Requirements

20.5.2 .war Deployment Descriptor and Annotation Processing

Table 26 describes the requirements for determining when to process annotations on the enterprise bean
classes of a .war. If the .war contains an ejb-jar.xml file the deployment tool will process anno-
tations unless the ejb-jar.xml has been marked metadata-complete. If the .war does not con-
tain an ejb-jar.xml file, the deployment tool will process annotations unless the web.xml is
marked metadata-complete or its version is prior to web-app_2_5.

Deployment
Descriptor metadata-complete? process annotations?

ejb-jar_2_1 or
earlier

N/A No

ejb-jar_3_x Yes No

ejb-jar_3_x No Yes

none N/A Yes
591 November 5, 2009 11:00 am

Packaging Enterprise JavaBeans 3.1, Final Release The Client View and the ejb-client JAR File

Sun Microsystems, Inc.
Table 26 .war Annotation Processing Requirements for enterprise beans

.

20.6 The Client View and the ejb-client JAR File

The client view of an enterprise bean is comprised of the business interfaces or home and component
interfaces of the referenced enterprise bean and other classes that these interfaces depend on, such as
their superclasses and superinterfaces, the classes and interfaces used as method parameters, results, and
exceptions. The serializable application value classes, including the classes which may be used as mem-
bers of a collection in a remote method call to an enterprise bean, are part of the client view. An exam-
ple of an application value class might be an Address class used as a parameter in a method call.

The ejb-jar file or .war file producer can create an ejb-client JAR file. The ejb-client JAR file con-
tains all the class files that a client program needs to use the client view of the enterprise beans that are
contained in the ejb-jar file or .war file. If this option is used, it is the responsibility of the Application
Assembler to include all the classes necessary to comprise the client view of an enterprise bean in the
ejb-client JAR file.

The ejb-client JAR file is specified in the deployment descriptor of the ejb-jar file or .war file
using the optional ejb-client-jar element. The value of the ejb-client-jar element is the
path name specifying the location of the ejb-client JAR file in the containing Java EE Enterprise Appli-
cation Archive (.ear) file. The path name is relative to the location of the referencing ejb-jar file
or .war file.

ejb-jar.xml
ejb-jar.xml
metadata-complete? web.xml

web.xml
metadata-complete?

process
annotations?

ejb-jar_3_x Yes N/A N/A No

ejb-jar_3_x No N/A N/A Yes

none N/A web-app_3_0 or
web-app_2_5

Yes No

none N/A web-app_3_0 or
web-app_2_5

No Yes

none N/A web-app_2_4 or
earlier

N/A No

none N/A none N/A Yes
 11/5/09 592

Requirements for Clients Enterprise JavaBeans 3.1, Final Release Packaging

Sun Microsystems, Inc.
The EJB specification does not specify whether an ejb-jar file or .war file should include by copy
or by reference the classes that are in an ejb-client JAR file, but they must be included either one way or
the other. If the by-copy approach is used, the producer simply includes all the class files in the ejb-cli-
ent JAR file also in the ejb-jar file or .war file. If the by-reference approach is used, the ejb-jar
file or .war file producer does not duplicate the content of the ejb-client JAR file in the ejb-jar file
or .war file, but instead uses a Manifest Class-Path entry in the ejb-jar file or .war file to specify
that the ejb-jar file or .war file depends on the ejb-client JAR at runtime. The use of the Class-Path
entries in JAR files and .war files is explained in the Java EE Platform specification [12].

20.7 Requirements for Clients

The Application Assembler must construct the application to insure that the client view classes are
available to the client at runtime. The client of an enterprise bean may be another enterprise bean pack-
aged in the same ejb-jar or different ejb-jar file, another enterprise bean packaged in the same
.war file or different .war file, or the client may be another Java EE component, such as a web com-
ponent.

When clients packaged in .jar files refer to enterprise beans, the .jar file that contains the client, e.g. an
ejb-jar file, should contain, either by inclusion or by reference, all the client view classes of the ref-
erenced beans. The client view classes may have been packaged in an ejb-client JAR file. In other
words, the jar file that contains the client should contain one of the following:

• a reference to the ejb-client JAR file

• a reference to the ejb-jar file that contains the client view classes

• a copy of the client view classes

The client may also require the use of system value classes (e.g., the serializable value classes imple-
menting the javax.ejb.Handle, javax.ejb.HomeHandle, javax.ejb.EJBMetaData,
java.util.Enumeration, java.util.Collection, and java.util.Iterator inter-
faces) , although these are not packaged with the application. It is the responsibility of the provider of
the container hosting the referenced beans to provide the system value classes and make them available
for use when the client is deployed. See Section 15.5.5, “System Value Classes”.

20.8 Example

In this example, the Bean Provider has chosen to package the enterprise bean client view classes in a
separate .jar file and to reference that .jar file from the other .jar files that need those classes. Those
classes are needed both by ejb2.jar, packaged in the same application as ejb1.jar, and by
ejb3.jar, packaged in a different application. Those classes are also needed by ejb1.jar itself
because they define the remote interface of the enterprise beans in ejb1.jar, and the Bean Provider
has chosen the by reference approach to making these classes available.
593 November 5, 2009 11:00 am

Packaging Enterprise JavaBeans 3.1, Final Release Example

Sun Microsystems, Inc.
The deployment descriptor for ejb1.jar names the client view jar file in the ejb-client-jar
element. Because ejb2.jar requires these client view classes, it includes a Class-Path reference to
ejb1_client.jar.

The Class-Path mechanism must be used by components in app2.ear to reference the client view jar
file that corresponds to the enterprise beans packaged in ejb1.jar of app1.ear. Those enterprise
beans are referenced by enterprise beans in ejb3.jar. Note that the client view jar file must be
included directly in the app2.ear file.

app1.ear:
META-INF/application.xml
ejb1.jar Class-Path: ejb1_client.jar

deployment descriptor contains:
<ejb-client-jar>ejb1_client.jar</ejb-client-jar>

ejb1_client.jar
ejb2.jar Class-Path: ejb1_client.jar

app2.ear:
META-INF/application.xml
ejb1_client.jar
ejb3.jar Class-Path: ejb1_client.jar
 11/5/09 594

Example Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
Chapter 21 Runtime Environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB 3.1 container
must make available to the enterprise bean instances at runtime. These APIs can be used by portable
enterprise beans because the APIs are guaranteed to be available in all EJB 3.1 containers.

The set of required APIs is divided into two categories : a complete set and a minimum set.The mini-
mum set is also referred to as “EJB 3.1 Lite.” This reflects the ability of Server Providers to provide an
EJB 3.1 container within a product that implements the Full Java EE Platform or within a subset profile
such as the Java EE Web Profile. The complete set is required within an implementation of the Full
Java EE Platform. The minimum set must be supported within an implementation of a subset of the
Full Java EE Platform. Overall profile requirements are described within the Java EE Platform specifi-
cation [12].

The chapter also defines the restrictions that the EJB 3.1 Container Provider can impose on the func-
tionality that it provides to the enterprise beans. These restrictions are necessary to enforce security and
to allow the container to properly manage the runtime environment.
595 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release EJB 3.1 Lite

Sun Microsystems, Inc.
21.1 EJB 3.1 Lite

The EJB API is comprised of a large feature set with support for implementing business logic in a wide
variety of enterprise applications. However, the full range of API contracts is not always crucial for all
runtime environments. In addition, the breadth of the full API can present challenges for developers just
getting started with Enterprise JavaBeans technology.

For these reasons this specification defines a minimal subset of the EJB API known as EJB 3.1 Lite.
EJB 3.1 Lite is not a product. Rather, it is a proper subset of the full EJB 3.1 API that includes a small,
powerful selection of EJB features suitable for writing portable transactional business logic. The defini-
tion of EJB 3.1 Lite gives vendors an option to implement only a portable subset of the EJB API within
their product. The vastly reduced size of the feature set makes it suitable for inclusion in a wider range
of Java products, many of which have much smaller installation and runtime footprints than a typical
full Java EE implementation.

An EJB 3.1 Lite application is merely an EJB application whose EJB API usage falls within the EJB
Lite subset. There are no special APIs defined only for EJB 3.1 Lite. Therefore, any EJB 3.1 Lite appli-
cation can be deployed on any Java EE product that implements Enterprise JavaBeans technology,
whether that product supports EJB 3.1 Lite or the full EJB API.

As detailed in Table 27, the EJB 3.1 Lite API is composed of the following subset of the EJB API :

• Stateless, Stateful, and Singleton Session Bean components
• Local and no-interface view only
• Synchronous method invocations only

• Container-managed transactions / Bean-managed transactions

• Declarative and programmatic Security

• Interceptors

• Deployment Descriptor support (ejb-jar.xml)

Table 27 Required contents of EJB 3.1 Lite and Full EJB 3.1 API

EJB 3.1 Lite Full EJB 3.1 API
COMPONENTS

Session beans
(stateful, stateless,
singleton)

YES YES

Message-driven
Beans

NO YES

2.x/1.x CMP/BMP
Entity Beans

NO YES [Note A]
 11/5/09 596

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
21.2 Bean Provider’s Responsibilities

This section describes the view and responsibilities of the Bean Provider.

Java Persistence 2.0 YES YES

SESSION BEAN
CLIENT VIEWS

Local / No-interface YES YES

3.0 Remote NO YES

2.x Remote
Home/Component

NO YES

JAX-WS Web
Service Endpoint

NO YES

JAX-RPC Web
Service Endpoint

NO YES [Note B]

SERVICES

EJB Timer Service NO YES

Asynchronous
session bean
invocations

NO YES

Interceptors YES YES

RMI-IIOP
Interoperability

NO YES

Container-managed
transactions /
Bean-managed
transactions

YES YES

Declarative and
Programmatic
Security

YES YES

MISC

Embeddable API YES YES[Note C]

Notes:
[A] Identified as a pruning candidate. See Section 2.7
[B] Identified as a pruning candidate. See Section 2.7
[C] In a product implementing the Full EJB 3.1 API, the embeddable API container is only

required to support EJB 3.1 Lite.

EJB 3.1 Lite Full EJB 3.1 API
597 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.
21.2.1 APIs Provided by Container
The requirements on APIs provided by the Container are determined by the associated profile specifica-
tion, e.g. the Java EE 6 specification[12] or the Web Profile Specification.

21.2.2 Programming Restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure that the
enterprise bean is portable and can be deployed in any compliant EJB 3.1 container. The restrictions
apply to the implementation of the business methods. Section 21.3, which describes the container’s
view of these restrictions, defines the programming environment that all EJB containers must provide.

• An enterprise bean must not use read/write static fields. Using read-only static fields is
allowed. Therefore, it is recommended that all static fields in the enterprise bean class be
declared as final.

This rule is required to ensure consistent runtime semantics because while some EJB containers may
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances across
multiple JVMs.

• An enterprise bean must not use thread synchronization primitives to synchronize execution of
multiple instances, except if it is a Singleton session bean with bean-managed concurrency.

This is for the same reason as above. Synchronization would not work if the EJB container distributed
enterprise bean’s instances across multiple JVMs.

• An enterprise bean must not use the AWT functionality to attempt to output information to a
display, or to input information from a keyboard.

Most servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system.

• An enterprise bean must not use the java.io package to attempt to access files and directo-
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business components
should use a resource manager API, such as JDBC, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not
allow it to be a network server. Allowing the instance to become a network server would conflict with
the basic function of the enterprise bean— to serve the EJB clients.

• The enterprise bean must not attempt to query a class to obtain information about the declared
members that are not otherwise accessible to the enterprise bean because of the security rules
of the Java language. The enterprise bean must not attempt to use the Reflection API to access
information that the security rules of the Java programming language make unavailable.
 11/5/09 598

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
Allowing the enterprise bean to access information about other classes and to access the classes in a
manner that is normally disallowed by the Java programming language could compromise security.

• The enterprise bean must not attempt to create a class loader; obtain the current class loader;
set the context class loader; set security manager; create a new security manager; stop the
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB container. Allowing the enterprise bean to use these functions
could compromise security and decrease the container’s ability to properly manage the runtime envi-
ronment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, Socket, or
the stream handler factory used by URL.

These networking functions are reserved for the EJB container. Allowing the enterprise bean to use
these functions could compromise security and decrease the container’s ability to properly manage the
runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not attempt
to start, stop, suspend, or resume a thread, or to change a thread’s priority or name. The enter-
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB container. Allowing the enterprise bean to manage threads
would decrease the container’s ability to properly manage the runtime environment.

• The enterprise bean must not attempt to directly read or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly could compromise security.

• The enterprise bean must not attempt to obtain the security policy information for a particular
code source.

Allowing the enterprise bean to access the security policy information would create a security hole.

• The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB container. Allowing the enterprise bean to load native code would
create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the usual rules
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this function
would create a security hole.

• The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this function
would create a security hole.
599 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release Container Provider’s Responsibility

Sun Microsystems, Inc.
• The enterprise bean must not attempt to access or modify the security configuration objects
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB container. Allowing the enterprise bean to use these functions
could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution features of the
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to pass this as an argument or method result. The
enterprise bean must pass the result of SessionContext.getBusinessObject, Ses-
sionContext.getEJBObject, SessionContext.getEJBLocalObject, Enti-
tyContext.getEJBObject, or EntityContext.getEJBLocalObject instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB 3.1 contain-
ers, the Bean Provider should test the enterprise bean using a container with the security settings defined
in Table 28. That table defines the minimal functionality that a compliant EJB container must provide to
the enterprise bean instances at runtime.

21.3 Container Provider’s Responsibility

This section defines the container’s responsibilities for providing the runtime environment to the enter-
prise bean instances. The requirements described here are considered to be the minimal requirements; a
container may choose to provide additional functionality that is not required by the EJB specification.

The following subsections describes the requirements in more detail.
 11/5/09 600

Container Provider’s Responsibility Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
The following table defines the Java 2 platform security permissions that the EJB container must be
able to grant to the enterprise bean instances at runtime. The term “grant” means that the container must
be able to grant the permission, the term “deny” means that the container should deny the permission.

Some containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table 28. Support for this is not required by the EJB specification. Enterprise
beans that rely on more or fewer permissions will not be portable across all EJB containers.

21.3.1 EJB 3.1 Requirements

The container must implement the EJB 3.1 interfaces as defined in this specification.

The container must implement the semantics of the metadata annotations that are supported by EJB 3.1
as defined by this specification.

21.3.2 JNDI Requirements

At the minimum, the EJB container must provide a JNDI API name space to the enterprise bean
instances. The EJB container must make the name space available to an instance when the instance
invokes the javax.naming.InitialContext default (no-arg) constructor.

Table 28 Java 2 Platform Security Policy for a Standard EJB Container

Permission name EJB Container policy

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant “read”, “*”
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant “queuePrintJob”,
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant “connect”, “*” [Note A],
deny all other

Notes:
[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality of the

Java IDL and RMI-IIOP packages that are part of the Java 2 platform.
601 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release Container Provider’s Responsibility

Sun Microsystems, Inc.
All EJB containers must make available at least the following objects in the name space:

• The local business interfaces of other enterprise beans.

• References to the no-interface view of other enterprise beans.

• UserTransaction objects

• EJBContext objects

• The resource factories used by the enterprise beans.

• The entity managers and entity manager factories used by the enterprise beans.

An EJB 3.1 container within an implementation of the Full Java EE Platform must make available the
following objects in the name space:

• The remote business interfaces of other enterprise beans.

• The web service interfaces used by the enterprise beans.

• The home interfaces of other enterprise beans.

• ORB objects

• TimerService objects

All enterprise beans deployed within the same .war are presented with the same JNDI name space. In
addition, all the instances of the same enterprise bean deployed within an ejb-jar must be presented with
the same JNDI API name space.

21.3.3 JTA 1.1 Requirements

The EJB container must include the JTA 1.1 extension, and it must provide the javax.transac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarcation
through the javax.ejb.EJBContext interface, and also in JNDI under the name
java:comp/UserTransaction, in the cases required by the EJB specification.

The other JTA interfaces are low-level transaction manager and resource manager integration interfaces,
and are not intended for direct use by enterprise beans.

21.3.4 JDBC™ 3.0 Extension Requirements

The EJB container must include the JDBC 3.0 extension and provide its functionality to the enterprise
bean instances, with the exception of the low-level XA and connection pooling interfaces. These
low-level interfaces are intended for integration of a JDBC driver with an application server, not for
direct use by enterprise beans.
 11/5/09 602

Container Provider’s Responsibility Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
21.3.5 JMS 1.1 Requirements

An implementation requiring the full EJB 3.1 API must include the JMS 1.1 extension and provide its
functionality to the enterprise bean instances, with the exception of the low-level interfaces that are
intended for integration of a JMS provider with an application server, not for direct use by enterprise
beans. These interfaces include: javax.jms.ServerSession, javax.jms.ServerSes-
sionPool, javax.jms.ConnectionConsumer, and all the javax.jms XA interfaces.

In addition, the following methods are for use by the container only. Enterprise beans must not call these
methods: javax.jms.Session.setMessageListener, javax.jms.Session.getMes-
sageListener, javax.jms.Session.run, javax.jms.QueueConnection.create-
ConnectionConsumer,
javax.jms.TopicConnection.createConnectionConsumer, javax.jms.TopicCo-
nnection.createDurableConnectionConsumer, javax.jms.Connection.create-
ConnectionConsumer,
javax.jms.Connection.createDurableConnectionConsumer.

The following methods must not be called by enterprise beans because they may interfere with the con-
nection management by the container: javax.jms.Connection.setExceptionListener,
javax.jms.Connection.stop, javax.jms.Connection.setClientID.

Enterprise beans must not call the javax.jms.MessageConsumer.setMessageListener or
javax.jms.MessageConsumer.getMessageListener method.

This specification recommends, but does not require, that the container throw the
javax.jms.JMSException if enterprise beans call any of the methods listed in this section.

21.3.6 Argument Passing Semantics

An enterprise bean’s remote business interfaces and/or remote home and remote interfaces are remote
interfaces for Java RMI. The container must ensure the semantics for passing arguments conforms to
Java RMI-IIOP. Non-remote objects must be passed by value.

Specifically, the EJB container is not allowed to pass non-remote objects by reference on inter-EJB
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics. Any local optimizations of remote interface calls must ensure the semantics for pass-
ing arguments conforms to Java RMI-IIOP.

An enterprise bean’s local business interfaces and/or local home and local interfaces are local Java
interfaces. The caller and callee enterprise beans that make use of these local interfaces are typically
collocated in the same JVM. The EJB container must ensure the semantics for passing arguments across
these interfaces conforms to the standard argument passing semantics of the Java programming lan-
guage.
603 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release Compatibility and Migration

Sun Microsystems, Inc.
21.3.7 Other Requirements
The assertions contained in the Javadoc specification of the EJB interfaces are required functionality
and must be implemented by compliant containers.

21.4 Compatibility and Migration

This chapter addresses issues of compatibility and migration between EJB3.1 and earlier components
and clients.

21.4.1 Support for Existing Applications
Existing EJB 3.0 and earlier applications must be supported to run unchanged in EJB 3.1 containers. All
EJB 3.1 implementations must support EJB 1.1, EJB 2.0, EJB 2.1, and EJB 3.0 deployment descriptors
for applications writen to earlier versions of the Enterprise JavaBeans specfication.

21.4.2 Default Stateful Session Bean Concurrency Behavior

Prior versions of the EJB specification allowed the container to choose the default behavior in the event
of concurrent access attempts to a stateful session bean instance. This specification requires a default of
serialized requests in the face of concurrency. This means by default clients will not receive the
javax.ejb.ConcurrentAccessException when concurrent access occurs for a request. This
should have minimal impact to correctly written applications since even with the prior behavior there
was no guarantee of receiving such an exception due to the inherent race conditions. Applications wish-
ing to receive an exception in the face of concurrency can request that behavior through newly defined
metadata. See Section 4.3.14 for more details.

21.4.3 Default Application Exception Subclassing Behavior

The EJB 3.0 Specification was ambiguous with respect to whether the designation of an unchecked
exception as an application exception applied to that exception’s subclasses. This specification clarifies
that by default the application exception designation is inherited by subclasses. Non-inheriting behavior
may be specified via new metadata on @ApplicationException and in the deployment descriptor. See
Section 14.1.1 for more details.

21.4.4 Interoperability of EJB 3.1 and Earlier Components
This release of Enterprise JavaBeans supports migration and interoperability among client and server
components written to different versions of the EJB APIs as described below.

21.4.4.1 Clients written to the EJB 2.x APIs

An enterprise bean that is written to the EJB 2.1 or earlier API release may be a client of components
written to the EJB 3.x API using the earlier EJB APIs when deployed in an EJB 3.1 container.
 11/5/09 604

Compatibility and Migration Enterprise JavaBeans 3.1, Final Release Runtime Environment

Sun Microsystems, Inc.
Such an EJB 2.1 or earlier client component does not need to be rewritten or recompiled to be a client of
a component written to the EJB 3.x API.

Such clients may access components written to the EJB 3.x APIs and components written to the earlier
EJB APIs within the same transaction.

See Section 21.4.5 for a discussion of the mechanisms that are used to enable components written to the
EJB 3.x API to be accessed and utilized by clients written to earlier versions of the EJB specification.

21.4.4.2 Clients written to the EJB 3.x API

A client written to the JB 3.x API may be a client of a component written to the EJB 2.1 or earlier API.

Such clients may access components written to the EJB 3.x APIs and components written to the earlier
EJB APIs within the same transaction.

Such clients access components written to the earlier EJB APIs using the EJB 2.1 client view home and
component interfaces. The EJB annotation (or the ejb-ref and ejb-local-ref deployment
descriptor elements) may be used to specify the injection of home interfaces into components that are
clients of beans written to the earlier EJB client view.

21.4.4.3 Combined use of EJB 2.x and EJB 3.x persistence APIs

EJB clients may access Java Persistence entities and/or the EntityManager together with EJB 2.x entity
beans within the same transaction as well as within separate transactions.[104]

21.4.5 Adapting EJB 3.x Session Beans to Earlier Client Views

Clients written to the EJB 2.1 and earlier client view depend upon the existence of a home and compo-
nent interface.

A session bean written to the EJB 3.x API may be adapted to such earlier preexisting client view inter-
faces.

The session bean designates the interfaces to be adapted by using the RemoteHome and/or Local-
Home metadata annotations on the bean class (or equivalent deployment descriptor elements). The cor-
responding Remote and/or Local component interfaces are not explicitly specified when using these
annotations. Rather, they are derived from the Home / LocalHome interfaces themselves.

When the client is deployed, the container classes that implement the EJB 2.1 home and remote inter-
faces(or local home and local interfaces) referenced by the client must provide the implementation of
the javax.ejb.EJBHome and javax.ejb.EJBObject interfaces (or the
javax.ejb.EJBLocalHome and javax.ejb.EJBLocalObject interfaces) respectively.

[104]In general, the same database should not be accessed by both Java Persistence entities and EJB 2.x entities within the same appli-
cation: behavior is unspecified if data aliasing occurs.
605 November 5, 2009 11:00 am

Runtime Environment Enterprise JavaBeans 3.1, Final Release Compatibility and Migration

Sun Microsystems, Inc.
In addition, the container implementation classes must implement the methods of the home and como-
nent interfaces to apply to the EJB 3.x component being referenced as described below.

21.4.5.1 Stateless Session Beans

The invocation of the home create() method must return the corresponding local or remote compo-
nent interface of the bean. This may or may not cause the creation of the bean instance, depending on
the container’s implementation strategy. For example, the container may preallocate bean instances
(e.g., in a pooling strategy) or may defer the creation of the bean instance until the first invocation of a
business method on the bean class. When the bean instance is created, the container invokes the set-
SessionContext method(if any), performs any other dependency injection, and invokes the Post-
Construct lifecycle callback method(s), (if any), as specified in Section 4.3.10.

It is likewise implementation-dependent as to whether the invocation of the EJBHome
remove(Handle) or EJBObject or EJBLocalObject remove() method causes the immedi-
ate removal of the bean instance, depending on the container’s implementation strategy. When the bean
instance is removed, the PreDestroy callback method(s) (if any) are invoked, as specified in Section
4.7.1

The invocations of the business methods of the component interface are delegated to the bean class.

21.4.5.2 Stateful Session Beans

The invocation of the home create<METHOD>() method causes construction of the bean instance,
invocation of the PostConstruct lifecycle callback(s) (if any), and invocation of the matching Init
method, and returns the corresponding local or remote component interface of the bean. The invocation
of these methods occurs in the same transaction and security context as the client’s call to the create
method.

The invocation of the EJBHome remove(Handle) or EJBObject or EJBLocalObject
remove() method causes he invocation of the PreDestroy lifecycle callback method(s) (if any) and
removal of the bean instance, as described in Section 4.3.11.

The invocations of the business methods of the component interface are delegated to the bean class.

The Init annotation is used to specify the correspondence of a method on the bean class with a create
method of the adapted EJBHome and/or adapted EJBLocalHome interface. The result type of such an
Init method is required to be void, and its parameter types must be exactly the same as those of the
referenced create<METHOD> method.
 11/5/09 606

Overview Enterprise JavaBeans 3.1, Final Release Embeddable Usage

Sun Microsystems, Inc.
Chapter 22 Embeddable Usage

This chapter describes the requirements for the execution of EJB applications within a Java SE environ-
ment. Unlike traditional Java EE server-based execution, embeddable usage allows client code and its
corresponding enterprise beans to run within the same JVM and class loader. This provides better sup-
port for testing, offline processing (e.g. batch), and the use of the EJB programming model in desktop
applications.

22.1 Overview

Embeddable usage requirements allow client code to instantiate an EJB container that runs within its
own JVM and classloader. The client uses a spec-defined bootstrapping API to start the container and
identify the set of enterprise bean components for execution.

The embeddable EJB container provides a managed environment with support for the same basic ser-
vices that exist within a Java EE runtime : injection, access to a component environment, con-
tainer-managed transactions, etc. In general, enterprise bean components are unaware of the kind of
managed environment in which they are running. This allows maximum reusability of enterprise com-
ponents across a wide range of testing and deployment scenarios without significant rework.
607 November 5, 2009 11:00 am

Embeddable Usage Enterprise JavaBeans 3.1, Final Release Bootstrapping API

Sun Microsystems, Inc.
22.2 Bootstrapping API

The embeddable container is instantiated using a bootstrapping API defined within the javax.ejb
package. By default, the embeddable container uses the JVM class path to scan for the enterprise bean
modules to be initialized. The client can override this behavior during setup by specifying an alternative
set of target modules.

22.2.1 EJBContainer
The javax.ejb.embeddable.EJBContainer abstract class represents an instance of an
embeddable container. It contains factory methods for creating a container instance. The client initial-
izes a new embeddable container by calling the createEJBContainer method of the
javax.ejb.embeddable.EJBContainer class.

For example,

EJBContainer ec = EJBContainer.createEJBContainer();

By default, the embeddable container searches the JVM classpath(the value of the Java System property
java.class.path) to find the set of EJB modules for initialization. A classpath entry is considered
a matching entry if it meets one of the following criteria:

• It is an ejb-jar according to the standard module-type identification rules defined by the Java
EE platform specification

• It is a directory containing a META-INF/ejb-jar.xml file or at least one .class with an enterprise
bean component-defining annotation

Each matching entry is considered an EJB module within the same application.[105]

If an ejb-jar.xml is present the module-name element defines the module name. Otherwise, for ejb-jars
the module name is the unqualified file name excluding the “.jar” extension and for directories the mod-
ule name is the unqualified name of the directory (the last name in the pathname’s name sequence). The
embeddable container is not required to support more than one matching entry with the same module
name.

An alternative form of the createEJBContainer method provides a set of properties for customiz-
ing the embeddable container creation :

javax.ejb.embeddable.EJBContainer createEJBContainer(Map<?, ?> prop-
erties)

This specification reserves the prefix “javax.ejb.” for standard property names. It is expected that
Container Providers will define their own properties as well.

[105]Support for more than one module is required for a Full Java EE platform product. Multi-module support is only required for Java
EE profiles that require support for .ear files.
 11/5/09 608

Bootstrapping API Enterprise JavaBeans 3.1, Final Release Embeddable Usage

Sun Microsystems, Inc.
For example, given the following java command and assuming foo.jar / bar.jar are both valid
ejb-jars :

java -classpath foo.jar:bar.jar:vendor-rt.jar:client.jar
com.acme.Client

The following will result in only the bar.jar module being initialized by the container :

Properties props = new Properties();
props.setProperty(EJBContainer.MODULES, “bar”);

EJBContainer ec = EJBContainer.createEJBContainer(props);

A Container Provider is permitted to require that a preprocessing or tooling step be performed on the
application modules prior to JVM initialization.

After identifying the set of matching modules, the embeddable container commences application initial-
ization. Any Singleton components configured for eager initialization will be initialized at this point.
When the createEJBContainer method returns successfully, the client can access the client view
of any enterprise bean in the application.

Enterprise beans running within the embeddable container are loaded using the context class loader
active on the thread at the time that createEJBContainer is called.

22.2.2 Standard Initialization Properties

The following embeddable container initialization properties are required to be supported by all Con-
tainer Providers.

22.2.2.1 javax.ejb.embeddable.provider

This property holds a String value that specifies the fully-qualified name of an embeddable container
provider class corresponding to the embeddable container implementation that should be used for this
application.

The property name is defined as EJBContainer.PROVIDER.

22.2.2.2 javax.ejb.embeddable.modules

This property is used to explicitly specify the module(s) to be initialized. It can refer to modules that are
included in the JVM classpath or to modules outside the JVM classpath.
609 November 5, 2009 11:00 am

Embeddable Usage Enterprise JavaBeans 3.1, Final Release Bootstrapping API

Sun Microsystems, Inc.
If the target modules are part of the classpath, this property holds either a single module name
(java.lang.String) or an array of module names (java.lang.String[]). For each speci-
fied module name, the container searches the class path for the first eligible ejb-jar or directory whose
corresponding module name matches the given name. All specified modules must match an entry in the
classpath.

If the target modules are outside of the classpath, this property holds either a single java.io.File
object or an array of java.io.File objects, where each file object refers to either an ejb-jar or an
exploded ejb-jar directory in the format listed above. Note that in this case it is the responsibility of the
caller to ensure that the context class loader has visibility to the classes required by these modules.

The property name is defined as EJBContainer.MODULES.

22.2.2.3 javax.ejb.embeddable.appName

This property specifies an application name for the EJB modules executing within the embeddable con-
tainer. If specified, the property value applies to the <app-name> portion of the portable global JNDI
name syntax. It is recommended that this property be set whenever an embeddable container is executed
with more than one ejb module.

The property name is defined as EJBContainer.APP_NAME.

22.2.3 Looking Up Session Bean References

The EJBContainer instance can be used to retrieve a javax.naming.Context object that supports
lookups of client references to session beans running within the embeddable container. Session bean
references are identified using the portable “java:global/” JNDI name syntax defined in Section
4.4 .

A client retrieves a Context object using the following EJBContainer method :

javax.naming.Context EJBContainer.getContext();

Here is an example of a lookup for the FooLocal local business interface of a session bean with
ejb-name FooBean in ejb-jar foo.jar :

Context ctx = ec.getContext();

FooLocal foo = (FooLocal) ctx.lookup(“java:global/foo/FooBean”);

22.2.4 Embeddable Container Shutdown

The EJBContainer.close() method is used to shut down an embeddable container instance and
its associated application. The client is not required to call close()but its use is recommended for
optimal resource cleanup, especially in the case that application lifetime is shorter than the lifetime of
the enclosing JVM. During the processing of the close() method the embeddable container must call
the PreDestroy method(s) of any Singleton bean instances in the application.
 11/5/09 610

Container Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Embeddable Usage

Sun Microsystems, Inc.
A container provider is only required to support one active embeddable EJB container at a time per
JVM. Attempts to concurrently create multiple active mbeddable EJB containers may result in a con-
tainer initialization error.

22.3 Container Provider’s Responsibilities

This section describes the responsibilities of the Container Provider to support an embeddable container
environment.

22.3.1 Runtime Environment

The Container Provider is required to support the EJB Lite subset of the EJB 3.1 API within an
embeddable container environment. A Container Provider may alternatively choose to support the full
EJB API within an embeddable container environment. See Section 21.1 for more details.

22.3.2 Naming Lookups

The Container Provider is required to support naming lookups of the Local and no-interface view of any
session beans defined to run within the embeddable container. Naming entries for these enterprise beans
must conform to the portable global JNDI name requirements in Section 4.4.

22.3.3 Embeddable Container Bootstrapping

A Container Provider implementation also acts as a service provider by supplying a service provider
configuration file as described in the JAR File Specification [33].

The service provider configuration file serves to export the embeddable container implementation class
to the EJBContainer bootstrap class, positioning itself as a candidate for instantiation.

The Container Provider supplies the provider configuration file by creating a text file named
javax.ejb.spi.EJBContainerProvider and placing it in the META-INF/services
directory of one of its JAR files. The contents of the file should be the name of the embeddable con-
tainer provider implementation class of the javax.ejb.spi.EJBContainerProvider inter-
face.

Example:
611 November 5, 2009 11:00 am

Embeddable Usage Enterprise JavaBeans 3.1, Final Release Container Provider’s Responsibilities

Sun Microsystems, Inc.
An embeddable container provider creates a JAR called acme.jar that contains its embeddable con-
tainer implementation. The JAR includes the provider configuration file :

acme.jar
META-INF/services/javax.ejb.spi.EJBContainerProvider
com/acme/EJBContainerProvider.class
...

The contents of the META-INF/services/javax.ejb.spi.EJBContainerProvider file
is nothing more than the name of the implementation class : com.acme.EJBContainerPro-
vider.

The EJBContainer bootstrap class will locate all of the container providers by their provider config-
uration files and call EJBContainerProvider.createEJBContainer(Map<?, ?>) on
them in turn until an appropriate backing provider returns an EJBContainer. A provider may deem
itself as appropriate for the embeddable application if any of the following are true :

• The javax.ejb.embeddable.provider property was included in the Map passed to
createEJBContainer and the value of the property is the provider’s implementation
class.

• No javax.ejb.embeddable.provider property was specified.

If a provider does not qualify as the provider for the embeddable application, it must return null when
createEJBContainer is invoked on it.

22.3.4 Concrete javax.ejb.EJBContainer Implementation Class

The Container Provider is required to provide a sub-class of the javax.ejb.embeddable.EJB-
Container class. The following are the requirements for this class :

• The class must be defined as public and must not be abstract

• The class must extend either directly or indirectly the class
javax.ejb.embeddable.EJBContainer

• The class must provide implementations of the following
javax.ejb.embeddable.EJBContainer methods :

• getContext()

• close()
 11/5/09 612

Bean Provider’s Responsibilities Enterprise JavaBeans 3.1, Final Release Responsibilities of EJB Roles

Sun Microsystems, Inc.
Chapter 23 Responsibilities of EJB Roles

This chapter provides the summary of the responsibilities of each EJB Role.

23.1 Bean Provider’s Responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is necessary
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all compliant
EJB containers.

23.1.1 API Requirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this docu-
ment.

23.1.2 Packaging Requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file or .war file in the
format described in Chapter 20.
613 November 5, 2009 11:00 am

Responsibilities of EJB Roles Enterprise JavaBeans 3.1, Final Release Application Assembler’s Responsibilities

Sun Microsystems, Inc.
The deployment descriptor, if present, must conform to the requirements of Chapter 19.

23.2 Application Assembler’s Responsibilities

The requirements for the Application Assembler are in defined in Chapter 19 and Chapter 20.

23.3 EJB Container Provider’s Responsibilities

The EJB Container Provider is responsible for providing the deployment tools used by the Deployer to
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment tools are
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts and its part of
the contracts described in the document “Java Persistence API” of this specification [2], and for provid-
ing all the runtime services described in the individual chapters of this document.

23.4 Persistence Provider’s Responsibilities

The Persistence Provider is responsible for implementing its part of the contracts described in the docu-
ment “Java Persistence API” of this specification [2].

23.5 Deployer’s Responsibilities

The Deployer uses the deployment tools provided by the EJB Container Provider to deploy ejb-jar files
or .war files produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more detail.

23.6 System Administrator’s Responsibilities

The System Administrator is responsible for configuring the EJB container and server, setting up secu-
rity management, integrating resource managers with the EJB container, and runtime monitoring of
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administrator in
more detail.
 11/5/09 614

Client Programmer’s Responsibilities Enterprise JavaBeans 3.1, Final Release Responsibilities of EJB Roles

Sun Microsystems, Inc.
23.7 Client Programmer’s Responsibilities

The EJB client programmer writes applications that access enterprise beans via their business inter-
faces, via their no-interface view, via their web service client view, or via messages, or view their home
and component interfaces.
615 November 5, 2009 11:00 am

Responsibilities of EJB Roles Enterprise JavaBeans 3.1, Final Release Client Programmer’s Responsibilities

Sun Microsystems, Inc.
 11/5/09 616

Client Programmer’s Responsibilities Enterprise JavaBeans 3.1, Final Release Related Documents

Sun Microsystems, Inc.
Chapter 24 Related Documents

[1] EnterpriseJavaBeans, version 3.1. EJB http://java.sun.com/products/ejb.

[2] Java Persistence API, version 2. http://jcp.org/en/jsr/detail?id=317.

[3] EnterpriseJavaBeans, version 2. (EJB 2.1). http://java.sun.com/products/ejb.

[4] JavaBeans. http://java.sun.com/beans.

[5] Java Naming and Directory Interface (JNDI). http://java.sun.com/products/jndi.

[6] Java Remote Method Invocation (RMI). http://java.sun.com/products/rmi.

[7] Java Security. http://java.sun.com/security.

[8] Java Transaction API (JTA). http://java.sun.com/products/jta.

[9] Java Transaction Service (JTS). http://java.sun.com/products/jts.

[10] Java Language to IDL Mapping Specification. http://www.omg.org/cgi-bin/doc?ptc/00-01-06.

[11] CORBA Object Transaction Service v1.2. http://www.omg.org/cgi-bin/doc?ptc/2000-11-07.

[12] Java Platform, Enterprise Edition (Java EE), v6. http://jcp.org/en/jsr/detail?id=316.

[13] Java Message Service (JMS), v 1.1. http://java.sun.com/products/jms.

[14] Java API for XML Messaging (JAXM).

[15] Java 2 Enterprise Edition Connector Architecture, v1.6 . http://jcp.org/en/jsr/detail?id=322.
617 November 5, 2009 11:00 am

Related Documents Enterprise JavaBeans 3.1, Final Release Client Programmer’s Responsibilities

Sun Microsystems, Inc.
[16] Enterprise JavaBeans to CORBA Mapping v1.1. http://java.sun.com/products/ejb/docs.html.

[17] CORBA 2.3.1 Specification. http://www.omg.org/cgi-bin/doc?formal/99-10-07.

[18] CORBA COSNaming Service. http://www.omg.org/cgi-bin/doc?formal/00-06-19.

[19] Interoperable Name Service FTF document. http://www.omg.org/cgi-bin/doc?ptc/00-08-07.

[20] RFC 2246: The TLS Protocol. ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[21] RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security.
ftp://ftp.isi.edu/in-notes/rfc2712.txt.

[22] The SSL Protocol Version 3.0. http://home.netscape.com/eng/ssl3/draft302.txt.

[23] Common Secure Interoperability Version 2 Final Available Specification.
http://www.omg.org/cgi-bin/doc?ptc/2001-06-17.

[24] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

[25] Java API for XML-based RPC (JAX-RPC) 2.0. http://jcp.org/en/jsr/detail?id=101.

[26] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[27] W3C: SOAP 1.1. http://www.w3.org/TR/SOAP/.

[28] The Java Virtual Machine Specification.

[29] JDBC 3.0 Specification. http://java.sun.com/products/jdbc.

[30] Web Services Metadata for the Java Platform. http://jcp.org/en/jsr/detail?id=181.

[31] Web Services for Java EE, Version 1.2. http://jcp.org/en/jsr/detail?id=109.

[32] Java API for XML Web Services (JAX-WS 2.0). http://jcp.org/en/jsr/detail?id=224.

[33] JAR File Specification, http://java.sun.com/javase/6/docs/technotes/guides/jar/index.html.

[34] Java SE 6 API, http://java.sun.com/javase/6/docs/api

[35] Enterprise JavaBeans, version 3.0. (EJB 3.0). http://java.sun.com/products/ejb

[36] List of zoneinfo time zones : http://en.wikipedia.org/wiki/List_of_tz_zones

[37] Java Platform, Enterprise Edition (Java EE) Managed Bean Specification.
http://jcp.org/en/jsr/detail?id=316
 11/5/09 618

Early Draft Enterprise JavaBeans 3.1, Final Release Revision History

Sun Microsystems, Inc.
Appendix A Revision History

This appendix lists the significant changes that have been made during the development of the EJB 3.1
Specification.

A.1 Early Draft

Created document from the EJB 3.0 Final Release.

Applied modifications specified by JSR 220 Change Log.

Clarified Session Bean Creation Section 4.3.10 to emphasize the absence of any ordering dependencies
between injected SessionContext objects and other kinds of injected dependencies.

Added no-interface view.

Removed restriction from Section 12.3 that prohibited AroundInvoke methods from being exposed
as business methods. This is to achieve a consistent rule allowing any callback method to be exposed as
a business method. Added caveats to Section 4.9.8 about exposing callbacks as business methods.

Added Singleton session bean component.

Added Timer Service calendar-based expressions and automatic timers.
619 November 5, 2009 11:00 am

Revision History Enterprise JavaBeans 3.1, Final Release Public Draft

Sun Microsystems, Inc.
Added requirements for packing/deploying enterprise beans directly within a .war.

Added asynchronous session bean invocations.

Added requirements for EJB container support in Java EE subset Profiles.

Clarified PostConstruct/PreDestroy session bean behavior in Section 14.3.3 , Table 19

A.2 Public Draft

Chapter 2 Overview

• Added section describing goals for pruning and pruning candidates

Chapter 3 Session Bean Client View

• Added caveats to no-interface view section regarding assumptions about access to instance
state and constructors (3.4.4)

• Clarified requirements for support of intra-application vs. inter-application access to the Local
view (3.2.2)

Chapter 4 Session Bean Component Contract

• Added individual annotations for each of the SessionSynchronization methods

• Added requirements for use of @Asynchronous on business interfaces

• Added container managed concurrency AccessTimeout

• Added container managed transaction (CMT) requirements to Singleton @PostCon-
struct/@PreDestroy

• Added section on portable Global JNDI name syntax

• Removed transacted / persistent semantics requirements from asynchronous session bean
methods .

• Removed restriction prohibiting use of session bean class as superclass of session bean class.

• Changed concurrency management annotations to match style of tx management / tx attribute
annotations

• Clarified behavior of stateful session bean getCallerPrincipal/isCallerInRole callback methods
(4.6.1)

• Clarified Singleton eager/lazy initialization requirements (4.8.1)
 11/5/09 620

Public Draft Enterprise JavaBeans 3.1, Final Release Revision History

Sun Microsystems, Inc.
• Clarified Singleton destruction behavior, including access to dependent singletons during
@PreDestroy (4.8.2)

• Clarified distinction between required concurrency locking semantics and optional container
policies (4.8.4.1)

• Clarified defaulting rules for a bean with only a no-interface view or single local business
interface (4.9.7 / 4.9.8)

Chapter 5 Message-Driven Beans

• Added isCallerInRole to Operations Allowed method list for message listener methods

• Added section on security context to describe possibility that caller principal flows into mes-
sage listener methods

Chapter 7 Client View of an EJB 2.1 Entity Bean

Chapter 8 EJB 2.1 Entity Bean Component Contract for CMP

Chapter 9 EJB QL

Chapter 10 Entity Bean Component Contract for BMP

Chapter 11 EJB 1.1 Entity Bean Component Contract for CMP

• All marked as pruning candidates

Chapter 13 Support for Transactions

• Added requirement for timing of return value marshalling with respect to transaction bound-
aries

Chapter 16 Enterprise Bean Environment

• Added support for <module-name>/<bean-name> syntax in ejb-ref/ejb-local-ref ejb-link ele-
ment and @EJB beanName() attribute

• Added support for portable global JNDI name syntax in ejb-ref/ejb-local-ref mapped-name
element and @EJB mappedName() attribute

Chapter 18 Timer Service

• Added increment (x/y) syntax

• Added to day of month syntax to support nth day of week, last day of month, and n days before
last day of month

• Added non-persistent timers
621 November 5, 2009 11:00 am

Revision History Enterprise JavaBeans 3.1, Final Release Proposed Final Draft

Sun Microsystems, Inc.
• Added optional “info” string for automatic timers specified via @Schedule

Chapter 20 Packaging

• Added requirements for packaging of ejb-jar in WEB-INF/lib

• Added restriction that local/no-interview views of beans packaged in .war are only required to
be accessible within the .war

• Added section detailing EJB annotation processing requirements for ejb-jars and .wars

Chapter 21 Runtime Environment

• Added section on EJB Lite

Added new Chapter (23) on Embeddable EJB Usage

A.3 Proposed Final Draft

Chapter 1 Introduction

• Added separate Interceptor document to list of Specification Documents

Chapter 3 Session Bean Client View

• Clarified asynchronous Future.cancel() behavior

Chapter 4 Session Bean Component Contract

• Clarified behavior of SessionContext method(renamed wasCancelCalled) corresponding
to asynchronous Future.cancel.

• Clarified Singleton PostConstruct/PreDestroy transactional behavior

• Clarified that AfterBegin, BeforeCompletion, AfterCompletion callback meth-
ods can have any method access type.

• Added spec-defined stateful session bean timeout (@StatefulTimeout)

• Made serialization of concurrent requests(including the option to use @AccessTimeout) the
default behavior for Stateful session beans. Added CONCURRENCY_NOT_ALLOWED option
that results in exception behavior upon concurrent access attempts that matches previous spec-
ification.

• Updated Global JNDI section to synchronize with Java EE 6 Specification.

• Clarified that session bean asynchronous methods only apply to no-interface, Local business,
and Remote business views.
 11/5/09 622

Proposed Final Draft Enterprise JavaBeans 3.1, Final Release Revision History

Sun Microsystems, Inc.
• Clarified behavior of javax.ejb.AsyncResult

• Defined Singleton reentrancy behavior.

• Clarified transactional semantics of Singleton PostConstruct/PreDestroy

• Clarified that the EJB 2.x client view is not supported by Singletons

• Added general warning about the use of callback methods as business methods

• Added restriction that bean class and superclass methods of a bean with a no-interface view
must not be marked final.

Chapter 5 Message-Driven Bean Component Contract

• Made superclass behavior consistent with Session Beans

Chapter 6 Persistence

• Clarified that Java Persistence is now defined in a separate specification.

Chapter 12 Interceptors

• Revised chapter to refer to common requirements in Interceptors document and only list spe-
cific requirements w.r.t. the combination of enterprise bean components and interceptors.

• Added @AroundTimeout coverage for EJB timers

Chapter 13 Support for Transactions

• Clarified requirements for assigning Singleton PostConstruct/PreDestroy transaction
attributes.

• Clarified that Local method-intf tag includes no-interface view.

Chapter 14 Exception Handling

• Clarified subclassing behavior of unchecked exceptions marked as application exceptions.
Added inherited attribute to allow setting of desired subclassing behavior.

• Updated exception handling tables to use consistent terminology w.r.t. transaction rollback.

Chapter 15 Support for Distributed Interoperability

• Clarified that distributed interoperability requirements do not apply to EJB 3.x Remote client
view.

Chapter 16 Security Management

• Clarified that Local method-intf tag includes no-interface view.
623 November 5, 2009 11:00 am

Revision History Enterprise JavaBeans 3.1, Final Release Final Release

Sun Microsystems, Inc.
Chapter 18 Timer Service

• Made a number of syntax clarifications for calendar-based time expressions

• Added timezone support for calendar-based timers

• Clarified that the new timer functionality (calendar-based timers and non-persistent timers) is
not supported for EJB 2.x entity beans

• Renamed some timer creation methods to resolve compilation ambiguity.

• Extended optional timer parameter support to programmatic timeout callback methods.

• Clarified removal / getNextTimeout / getTimeRemaining behavior for schedule-based timers

Chapter 19 Deployment Descriptor

• Updated schema document

Chapter 20 Packaging

• Added restriction that a .war can contain at most one ejb-jar.xml

• Clarified packaging requirements for enterprise beans in a .war

• Clarified scoping requirements for ejb-names, component environment entries, etc. in a .war.

Chapter 21 Runtime Environment

• Added table showing required contents of EJB 3.1 Lite vs. Full EJB 3.1 API

• Removed sections listing API requirements of EJB containers. This is the responsibility of the
profile specifications that include EJB 3.1.

• Added Compatibility and Migration section

Chapter 22 Embeddable Usage

• Added requirement for support of Files in the embeddable modules property.

• Added embeddable app name property for setting the <app-name> portion of
the global naming syntax

A.4 Final Release

Chapter 2 Overview
 11/5/09 624

Final Release Enterprise JavaBeans 3.1, Final Release Revision History

Sun Microsystems, Inc.
• Added sub-section on relationship of EJB 3.1 specification to Java EE 6 Managed Bean speci-
fication.

Chapter 3 Session Bean Client View

• Clarified that it is permissible for a session bean to expose both a webservice view and remote
view based on the same interface.

• Clarified exception behavior for access of singletons whose initialization failed.

• Clarified system exception behavior for asynchronous invocations on remote business inter-
faces that are subtypes of java.rmi.Remote

• Clarified concurrency behavior of session bean reference objects

Chapter 4 Session Bean Component Contract

• Added getContextData method to EJBContext.

• Added requirements for stateful timeout values 0 and -1.

• Added requirements for access timeout values 0 and -1.

• Removed CONCURRENCY_NOT_ALLOWED concurrency management type and replaced
it with use of specific access timeout value.

• Changed java:app portable JNDI name syntax to require <module-name> for all module pack-
aging scenarios.

• Removed support for use of @Asynchronous on business interfaces.

• Clarified that the prohibition against invoking a stateful session bean that is participating in a
transaction only applies to EJB 2.x style remove methods, not EJB 3.x style @Remote meth-
ods.

• Clarified meaning of “external” client requests in the context of Singleton initialization rules.

• Stated that circular dependencies within DependsOn metadata are not required to be detected.

• Fixed client view determination rules for local interface view to reflect EJB 3.0 requirements
by not taking web service view into account.

Chapter 17 Security

• Updated annotation requirements to match new JSR 250 requirements that DenyAll is allowed
at the bean class level.

Chapter 18 Timer Service

• Clarified default timezone rules.
625 November 5, 2009 11:00 am

Revision History Enterprise JavaBeans 3.1, Final Release Final Release

Sun Microsystems, Inc.
• Clarified rules for specification of timer-method parameters in ejb-jar.xml.

Chatper 19 Deployment Descriptor

• Updated deployment descriptor sections with coverage of EJB 3.1 elements.

• Updated ejb-jar_3_1.xsd content to match final schema.

Chapter 20 Packaging

• Updated deployment descriptor requirements in .war to only support packaging of ejb-jar.xml
within WEB-INF.

• Added restriction that JAX-RPC based EJB endpoints can not be packaged in a .war.

Chapter 21 Embeddable Usage

• Improvements to embeddable API names .

• Clarified that only one embeddable EJB container instance is required to be supported at any
one time per JVM.
 11/5/09 626

	Chapter 1 Introduction
	1.1 Target Audience
	1.2 What is New in EJB 3.1
	1.2.1 What Was New in EJB 3.0

	1.3 Acknowledgements
	1.4 Organization of the Specification Documents
	1.5 Document Conventions

	Chapter 2 Overview
	2.1 Overall Goals
	2.2 EJB Roles
	2.2.1 Enterprise Bean Provider
	2.2.2 Application Assembler
	2.2.3 Deployer
	2.2.4 EJB Server Provider
	2.2.5 EJB Container Provider
	2.2.6 Persistence Provider
	2.2.7 System Administrator

	2.3 Enterprise Beans
	2.3.1 Characteristics of Enterprise Beans
	2.3.2 Flexible Model

	2.4 Session, Entity, and Message-Driven Objects
	2.4.1 Session Objects
	2.4.2 Message-Driven Objects
	2.4.3 Entity Objects

	2.5 Standard Mapping to CORBA Protocols
	2.6 Mapping to Web Service Protocols
	2.7 Pruning the EJB API
	2.8 Relationship to Managed Bean Specification

	Chapter 3 Client View of a Session Bean
	3.1 Overview
	3.2 Local, Remote, and Web Service Client Views
	3.2.1 Remote Clients
	3.2.2 Local Clients
	3.2.3 Choosing Between a Local or Remote Client View
	3.2.4 Web Service Clients

	3.3 EJB Container
	3.4 Client View of Session Beans Written to the EJB 3.x Simplified API
	3.4.1 Obtaining a Session Bean’s Business Interface
	3.4.2 Obtaining a Reference to the No-interface View
	3.4.3 Session Bean’s Business Interface
	3.4.4 Session Bean’s No-Interface View
	3.4.5 Client View of Session Object’s Life Cycle
	3.4.6 Example of Obtaining and Using a Session Object
	3.4.7 Session Object Identity
	3.4.7.1 Stateful Session Beans
	3.4.7.2 Stateless Session Beans
	3.4.7.3 Singleton Session Beans

	3.4.8 Asynchronous Invocations
	3.4.8.1 Return Values
	3.4.8.1.1 Future.cancel(boolean mayInterruptIfRunning)
	3.4.8.1.2 Future.get

	3.4.9 Concurrent Access to Session Bean References

	3.5 The Web Service Client View of a Session Bean
	3.5.1 JAX-WS Web Service Clients
	3.5.2 JAX-RPC Web Service Clients

	3.6 Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API
	3.6.1 Locating a Session Bean’s Home Interface
	3.6.2 Session Bean’s Remote Home Interface
	3.6.2.1 Creating a Session Object
	3.6.2.2 Removing a Session Object

	3.6.3 Session Bean’s Local Home Interface
	3.6.3.1 Creating a Session Object
	3.6.3.2 Removing a Session Object

	3.6.4 EJBObject and EJBLocalObject
	3.6.5 Object Identity
	3.6.6 Client view of Session Object’s Life Cycle
	3.6.6.1 References to Session Object Remote Interfaces
	3.6.6.2 References to Session Object Local Interfaces

	3.6.7 Creating and Using a Session Object
	3.6.8 Object Identity
	3.6.8.1 Stateful Session Beans
	3.6.8.2 Stateless Session Beans
	3.6.8.3 getPrimaryKey()

	3.6.9 Type Narrowing

	Chapter 4 Session Bean Component Contract
	4.1 Overview
	4.2 Conversational State of a Stateful Session Bean
	4.2.1 Instance Passivation and Conversational State
	4.2.2 The Effect of Transaction Rollback on Conversational State

	4.3 Protocol Between a Session Bean Instance and its Container
	4.3.1 Required Session Bean Metadata
	4.3.2 Dependency Injection
	4.3.3 The SessionContext Interface
	4.3.4 Session Bean Lifecycle Callback Interceptor Methods
	4.3.5 The Optional SessionBean Interface
	4.3.6 Use of the MessageContext Interface by Session Beans
	4.3.7 The Optional Session Synchronization Notifications for Stateful Session Beans
	4.3.8 Timeout Callbacks for Stateless and Singleton Session Beans
	4.3.9 Business Method Delegation
	4.3.10 Session Bean Creation
	4.3.10.1 Stateful Session Beans
	4.3.10.2 Stateless Session Beans

	4.3.11 Stateful Session Bean Removal
	4.3.12 Stateful Session Bean Timeout
	4.3.13 Business Method Interceptor Methods for Session Beans
	4.3.14 Serializing Session Bean Methods
	4.3.14.1 Stateful Session Bean Concurrent Access Timeouts

	4.3.15 Transaction Context of Session Bean Methods

	4.4 Global JNDI Access
	4.4.1 Syntax
	4.4.1.1 java:app
	4.4.1.1.1 javax.ejb.embeddable.appName

	4.4.1.2 java:module

	4.4.2 Examples
	4.4.2.1 Session bean exposing a single local business interface
	4.4.2.2 Session bean exposing multiple client views

	4.5 Asynchronous Methods
	4.5.1 Metadata
	4.5.2 Method Requirements
	4.5.2.1 Business Interfaces
	4.5.2.2 Bean Classes

	4.5.3 Transactions
	4.5.4 Security
	4.5.5 Client Exception Behavior

	4.6 Stateful Session Bean State Diagram
	4.6.1 Operations Allowed in the Methods of a Stateful Session Bean Class
	4.6.2 Dealing with Exceptions
	4.6.3 Missed PreDestroy Calls
	4.6.4 Restrictions for Transactions

	4.7 Stateless Session Beans
	4.7.1 Stateless Session Bean State Diagram
	4.7.2 Operations Allowed in the Methods of a Stateless Session Bean Class
	4.7.3 Dealing with Exceptions

	4.8 Singleton Session Beans
	4.8.1 Singleton Initialization
	4.8.2 Singleton Destruction
	4.8.3 Transaction Semantics of Initialization and Destruction
	4.8.4 Singleton Error Handling
	4.8.5 Singleton Concurrency
	4.8.5.1 Container Managed Concurrency
	4.8.5.1.1 Reentrant Locking Behavior

	4.8.5.2 Bean Managed Concurrency
	4.8.5.3 Specification of a Concurrency Management Type
	4.8.5.4 Specification of the Container Managed Concurrency Metadata for a Bean’s Methods
	4.8.5.5 Specification of Concurrency Locking Attributes with Metadata Annotations
	4.8.5.5.1 Concurrent Access Timeouts

	4.8.6 Operations Allowed in the Methods of a Singleton Session Bean

	4.9 The Responsibilities of the Bean Provider
	4.9.1 Classes and Interfaces
	4.9.2 Session Bean Class
	4.9.2.1 Session Bean Superclasses

	4.9.3 Lifecycle Callback Interceptor Methods
	4.9.4 Session Synchronization Methods
	4.9.5 ejbCreate<METHOD> Methods
	4.9.6 Business Methods
	4.9.7 Session Bean’s Business Interface
	4.9.8 Session Bean’s No-Interface View
	4.9.9 Session Bean’s Remote Interface
	4.9.10 Session Bean’s Remote Home Interface
	4.9.11 Session Bean’s Local Interface
	4.9.12 Session Bean’s Local Home Interface
	4.9.13 Session Bean’s Web Service Endpoint Interface

	4.10 The Responsibilities of the Container Provider
	4.10.1 Generation of Implementation Classes
	4.10.2 Generation of WSDL
	4.10.3 Session Business Interface Implementation Class
	4.10.4 No-Interface View Reference Class
	4.10.5 Session EJBHome Class
	4.10.6 Session EJBObject Class
	4.10.7 Session EJBLocalHome Class
	4.10.8 Session EJBLocalObject Class
	4.10.9 Web Service Endpoint Implementation Class
	4.10.10 Asynchronous Client Future<V> Return Value Implementation Class
	4.10.11 Handle Classes
	4.10.12 EJBMetaData Class
	4.10.13 Non-reentrant Instances
	4.10.14 Transaction Scoping, Security, Exceptions
	4.10.15 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints
	4.10.16 SessionContext

	Chapter 5 Message-Driven Bean Component Contract
	5.1 Overview
	5.2 Goals
	5.3 Client View of a Message-Driven Bean
	5.4 Protocol Between a Message-Driven Bean Instance and its Container
	5.4.1 Required MessageDrivenBean Metadata
	5.4.2 The Required Message Listener Interface
	5.4.3 Dependency Injection
	5.4.4 The MessageDrivenContext Interface
	5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods
	5.4.6 The Optional MessageDrivenBean Interface
	5.4.7 Timeout Callbacks
	5.4.8 Message-Driven Bean Creation
	5.4.9 Message Listener Interceptor Methods for Message-Driven Beans
	5.4.10 Serializing Message-Driven Bean Methods
	5.4.11 Concurrency of Message Processing
	5.4.12 Transaction Context of Message-Driven Bean Methods
	5.4.13 Security Context of Message-Driven Bean Methods
	5.4.14 Activation Configuration Properties
	5.4.15 Message Acknowledgment for JMS Message-Driven Beans
	5.4.16 Message Selectors for JMS Message-Driven Beans
	5.4.17 Association of a Message-Driven Bean with a Destination or Endpoint
	5.4.17.1 JMS Message-Driven Beans

	5.4.18 Dealing with Exceptions
	5.4.19 Missed PreDestroy Callbacks
	5.4.20 Replying to a JMS Message

	5.5 Message-Driven Bean State Diagram
	5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class

	5.6 The Responsibilities of the Bean Provider
	5.6.1 Classes and Interfaces
	5.6.2 Message-Driven Bean Class
	5.6.3 Message-Driven Bean Superclasses
	5.6.4 Message Listener Method
	5.6.5 Lifecycle Callback Interceptor Methods

	5.7 The Responsibilities of the Container Provider
	5.7.1 Generation of Implementation Classes
	5.7.2 Deployment of JMS Message-Driven Beans
	5.7.3 Request/Response Messaging Types
	5.7.4 Non-reentrant Instances
	5.7.5 Transaction Scoping, Security, Exceptions

	Chapter 6 Persistence
	Chapter 7 Client View of an EJB 2.1 Entity Bean
	7.1 Overview
	7.2 Remote Clients
	7.3 Local Clients
	7.4 EJB Container
	7.4.1 Locating an Entity Bean’s Home Interface
	7.4.2 What a Container Provides

	7.5 Entity Bean’s Remote Home Interface
	7.5.1 Create Methods
	7.5.2 Finder Methods
	7.5.3 Remove Methods
	7.5.4 Home Methods

	7.6 Entity Bean’s Local Home Interface
	7.6.1 Create Methods
	7.6.2 Finder Methods
	7.6.3 Remove Methods
	7.6.4 Home Methods

	7.7 Entity Object’s Life Cycle
	7.7.1 References to Entity Object Remote Interfaces
	7.7.2 References to Entity Object Local Interfaces

	7.8 Primary Key and Object Identity
	7.9 Entity Bean’s Remote Interface
	7.10 Entity Bean’s Local Interface
	7.11 Entity Bean’s Handle
	7.12 Entity Home Handles
	7.13 Type Narrowing of Object References

	Chapter 8 EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence
	8.1 Overview
	8.2 Container-Managed Entity Persistence and Data Independence
	8.3 The Entity Bean Provider’s View of Container-Managed Persistence
	8.3.1 The Entity Bean Provider’s Programming Contract
	8.3.2 The Entity Bean Provider’s View of Persistent Relationships
	8.3.3 Dependent Value Classes
	8.3.4 Remove Protocols
	8.3.4.1 Remove Methods
	8.3.4.2 Cascade-delete

	8.3.5 Identity of Entity Objects
	8.3.6 Semantics of Assignment for Relationships
	8.3.6.1 Use of the java.util.Collection API to Update Relationships
	8.3.6.2 Use of Set Accessor Methods to Update Relationships

	8.3.7 Assignment Rules for Relationships
	8.3.7.1 One-to-one Bidirectional Relationships
	8.3.7.2 One-to-one Unidirectional Relationships
	8.3.7.3 One-to-many Bidirectional Relationships
	8.3.7.4 One-to-many Unidirectional Relationships
	8.3.7.5 Many-to-one Unidirectional Relationships
	8.3.7.6 Many-to-many Bidirectional Relationships
	8.3.7.7 Many-to-many Unidirectional Relationships

	8.3.8 Collections Managed by the Container
	8.3.9 Non-persistent State
	8.3.10 The Relationship Between the Internal View and the Client View
	8.3.10.1 Restrictions on Remote Interfaces

	8.3.11 Mapping Data to a Persistent Store
	8.3.12 Example
	8.3.13 The Bean Provider’s View of the Deployment Descriptor

	8.4 The Entity Bean Component Contract
	8.4.1 Runtime Execution Model of Entity Beans
	8.4.2 Container Responsibilities
	8.4.2.1 Container-Managed Fields
	8.4.2.2 Container-Managed Relationships

	8.5 Instance Life Cycle Contract Between the Bean and the Container
	8.5.1 Instance Life Cycle
	8.5.2 Bean Provider’s Entity Bean Instance’s View
	8.5.3 Container’s View
	8.5.4 Read-only Entity Beans
	8.5.5 The EntityContext Interface
	8.5.6 Operations Allowed in the Methods of the Entity Bean Class
	8.5.7 Finder Methods
	8.5.7.1 Single-Object Finder Methods
	8.5.7.2 Multi-Object Finder Methods

	8.5.8 Select Methods
	8.5.8.1 Single-Object Select Methods
	8.5.8.2 Multi-Object Select Methods

	8.5.9 Timer Notifications
	8.5.10 Standard Application Exceptions for Entities
	8.5.10.1 CreateException
	8.5.10.2 DuplicateKeyException
	8.5.10.3 FinderException
	8.5.10.4 ObjectNotFoundException
	8.5.10.5 RemoveException

	8.5.11 Commit Options
	8.5.12 Concurrent Access from Multiple Transactions
	8.5.13 Non-reentrant and Re-entrant Instances

	8.6 Responsibilities of the Enterprise Bean Provider
	8.6.1 Classes and Interfaces
	8.6.2 Enterprise Bean Class
	8.6.3 Dependent Value Classes
	8.6.4 ejbCreate<METHOD> Methods
	8.6.5 ejbPostCreate<METHOD> Methods
	8.6.6 ejbHome<METHOD> Methods
	8.6.7 ejbSelect<METHOD> Methods
	8.6.8 Business Methods
	8.6.9 Entity Bean’s Remote Interface
	8.6.10 Entity Bean’s Remote Home Interface
	8.6.11 Entity Bean’s Local Interface
	8.6.12 Entity Bean’s Local Home Interface
	8.6.13 Entity Bean’s Primary Key Class
	8.6.14 Entity Bean’s Deployment Descriptor

	8.7 The Responsibilities of the Container Provider
	8.7.1 Generation of Implementation Classes
	8.7.2 Enterprise Bean Class
	8.7.3 ejbFind<METHOD> Methods
	8.7.4 ejbSelect<METHOD> Methods
	8.7.5 Entity EJBHome Class
	8.7.6 Entity EJBObject Class
	8.7.7 Entity EJBLocalHome Class
	8.7.8 Entity EJBLocalObject Class
	8.7.9 Handle Class
	8.7.10 Home Handle Class
	8.7.11 Metadata Class
	8.7.12 Instance’s Re-entrance
	8.7.13 Transaction Scoping, Security, Exceptions
	8.7.14 Implementation of Object References
	8.7.15 EntityContext

	8.8 Primary Keys
	8.8.1 Primary Key That Maps to a Single Field in the Entity Bean Class
	8.8.2 Primary Key That Maps to Multiple Fields in the Entity Bean Class
	8.8.3 Special Case: Unknown Primary Key Class

	Chapter 9 EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods
	9.1 Overview
	9.2 EJB QL Definition
	9.2.1 Abstract Schema Types and Query Domains
	9.2.2 Query Methods
	9.2.3 Naming
	9.2.4 Examples
	9.2.5 The FROM Clause and Navigational Declarations
	9.2.5.1 Identifiers
	9.2.5.2 Identification Variables
	9.2.5.3 Range Variable Declarations
	9.2.5.4 Collection Member Declarations
	9.2.5.5 Example
	9.2.5.6 Path Expressions

	9.2.6 WHERE Clause and Conditional Expressions
	9.2.6.1 Literals
	9.2.6.2 Identification Variables
	9.2.6.3 Path Expressions
	9.2.6.4 Input Parameters
	9.2.6.5 Conditional Expression Composition
	9.2.6.6 Operators and Operator Precedence
	9.2.6.7 Between Expressions
	9.2.6.8 In Expressions
	9.2.6.9 Like Expressions
	9.2.6.10 Null Comparison Expressions
	9.2.6.11 Empty Collection Comparison Expressions
	9.2.6.12 Collection Member Expressions
	9.2.6.13 Functional Expressions

	9.2.7 SELECT Clause
	9.2.7.1 Null Values in the Query Result
	9.2.7.2 Aggregate Functions in the SELECT Clause
	9.2.7.3 Examples

	9.2.8 ORDER BY Clause
	9.2.9 Return Value Types
	9.2.10 Null Values
	9.2.11 Equality and Comparison Semantics
	9.2.12 Restrictions

	9.3 Examples
	9.3.1 Simple Queries
	9.3.2 Queries with Relationships
	9.3.3 Queries Using Input Parameters
	9.3.4 Queries for Select Methods
	9.3.5 EJB QL and SQL

	9.4 EJB QL BNF

	Chapter 10 EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence
	10.1 Overview of Bean-Managed Entity Persistence
	10.1.1 Entity Bean Provider’s View of Persistence
	10.1.2 Runtime Execution Model
	10.1.3 Instance Life Cycle
	10.1.4 The Entity Bean Component Contract
	10.1.4.1 Entity Bean Instance’s View
	10.1.4.2 Container’s View

	10.1.5 Read-only Entity Beans
	10.1.6 The EntityContext Interface
	10.1.7 Operations Allowed in the Methods of the Entity Bean Class
	10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods
	10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attribute

	10.1.9 Finder Method Return Type
	10.1.9.1 Single-Object Finder
	10.1.9.2 Multi-Object Finders

	10.1.10 Timer Notifications
	10.1.11 Standard Application Exceptions for Entities
	10.1.11.1 CreateException
	10.1.11.2 DuplicateKeyException
	10.1.11.3 FinderException
	10.1.11.4 ObjectNotFoundException
	10.1.11.5 RemoveException

	10.1.12 Commit Options
	10.1.13 Concurrent Access from Multiple Transactions
	10.1.14 Non-reentrant and Re-entrant Instances

	10.2 Responsibilities of the Enterprise Bean Provider
	10.2.1 Classes and Interfaces
	10.2.2 Enterprise Bean Class
	10.2.3 ejbCreate<METHOD> Methods
	10.2.4 ejbPostCreate<METHOD> Methods
	10.2.5 ejbFind Methods
	10.2.6 ejbHome<METHOD> Methods
	10.2.7 Business Methods
	10.2.8 Entity Bean’s Remote Interface
	10.2.9 Entity Bean’s Remote Home Interface
	10.2.10 Entity Bean’s Local Interface
	10.2.11 Entity Bean’s Local Home Interface
	10.2.12 Entity Bean’s Primary Key Class

	10.3 The Responsibilities of the Container Provider
	10.3.1 Generation of Implementation Classes
	10.3.2 Entity EJBHome Class
	10.3.3 Entity EJBObject Class
	10.3.4 Entity EJBLocalHome Class
	10.3.5 Entity EJBLocalObject Class
	10.3.6 Handle Class
	10.3.7 Home Handle Class
	10.3.8 Metadata Class
	10.3.9 Instance’s Re-entrance
	10.3.10 Transaction Scoping, Security, Exceptions
	10.3.11 Implementation of Object References
	10.3.12 EntityContext

	Chapter 11 EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence
	11.1 EJB 1.1 Entity Beans with Container-Managed Persistence
	11.1.1 Container-Managed Fields
	11.1.2 ejbCreate, ejbPostCreate
	11.1.3 ejbRemove
	11.1.4 ejbLoad
	11.1.5 ejbStore
	11.1.6 Finder Hethods
	11.1.7 Home Methods
	11.1.8 Create Methods
	11.1.9 Primary Key Type
	11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Class
	11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Class
	11.1.9.3 Special Case: Unknown Primary Key Class

	Chapter 12 Interceptors
	12.1 Overview
	12.2 Interceptor Life Cycle
	12.3 Business Method Interceptors
	12.3.1 Exceptions

	12.4 Timer Timeout Method Interceptors
	12.4.1 Exceptions

	12.5 Interceptors for LifeCycle Event Callbacks
	12.5.1 Exceptions

	12.6 InvocationContext
	12.7 Specification of Interceptors in the Deployment Descriptor

	Chapter 13 Support for Transactions
	13.1 Overview
	13.1.1 Transactions
	13.1.2 Transaction Model
	13.1.3 Relationship to JTA and JTS

	13.2 Sample Scenarios
	13.2.1 Update of Multiple Databases
	13.2.2 Messages Sent or Received Over JMS Sessions and Update of Multiple Databases
	13.2.3 Update of Databases via Multiple EJB Servers
	13.2.4 Client-Managed Demarcation
	13.2.5 Container-Managed Demarcation

	13.3 Bean Provider’s Responsibilities
	13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation
	13.3.1.1 Non-Transactional Execution

	13.3.2 Isolation Levels
	13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation
	13.3.3.1 getRollbackOnly and setRollbackOnly Methods

	13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation
	13.3.4.1 javax.ejb.SessionSynchronization Interface
	13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method
	13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method

	13.3.5 Use of JMS APIs in Transactions
	13.3.6 Specification of a Bean’s Transaction Management Type
	13.3.7 Specification of the Transaction Attributes for a Bean’s Methods
	13.3.7.1 Specification of Transaction Attributes with Metadata Annotations
	13.3.7.2 Specification of Transaction Attributes in the Deployment Descriptor
	13.3.7.2.1 Use of the container-transaction element

	13.4 Application Assembler’s Responsibilities
	13.5 Deployer’s Responsibilities
	13.6 Container Provider Responsibilities
	13.6.1 Bean-Managed Transaction Demarcation
	13.6.2 Container-Managed Transaction Demarcation for Session and Entity Beans
	13.6.2.1 NOT_SUPPORTED
	13.6.2.2 REQUIRED
	13.6.2.3 SUPPORTS
	13.6.2.4 REQUIRES_NEW
	13.6.2.5 MANDATORY
	13.6.2.6 NEVER
	13.6.2.7 Transaction Attribute Summary
	13.6.2.8 Handling of setRollbackOnly Method
	13.6.2.9 Handling of getRollbackOnly Method
	13.6.2.10 Handling of getUserTransaction Method
	13.6.2.11 Session Synchronization Callbacks
	13.6.2.12 Timing of Return Value Marshalling w.r.t. Transaction Boundaries

	13.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans
	13.6.3.1 NOT_SUPPORTED
	13.6.3.2 REQUIRED
	13.6.3.3 Handling of setRollbackOnly Method
	13.6.3.4 Handling of getRollbackOnly Method
	13.6.3.5 Handling of getUserTransaction Method

	13.6.4 Local Transaction Optimization
	13.6.5 Handling of Methods that Run with “an unspecified transaction context”

	13.7 Access from Multiple Clients in the Same Transaction Context
	13.7.1 Transaction “Diamond” Scenario with an Entity Object
	13.7.2 Container Provider’s Responsibilities
	13.7.3 Bean Provider’s Responsibilities
	13.7.4 Application Assembler and Deployer’s Responsibilities
	13.7.5 Transaction Diamonds involving Session Objects

	Chapter 14 Exception Handling
	14.1 Overview and Concepts
	14.1.1 Application Exceptions
	14.1.2 Goals for Exception Handling

	14.2 Bean Provider’s Responsibilities
	14.2.1 Application Exceptions
	14.2.2 System Exceptions
	14.2.2.1 javax.ejb.NoSuchEntityException

	14.3 Container Provider Responsibilities
	14.3.1 Exceptions from a Session Bean’s Business Interface Methods and No-Interface View Methods
	14.3.2 Exceptions from Method Invoked via Session or Entity Bean’s 2.1 Client View or through Web Service Client View
	14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Session Bean
	14.3.4 Exceptions from Message-Driven Bean Message Listener Methods
	14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Message-Driven Bean
	14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method
	14.3.7 Exceptions from Other Container-invoked Callbacks
	14.3.8 javax.ejb.NoSuchEntityException
	14.3.9 Non-existing Stateful Session or Entity Object
	14.3.10 Exceptions from the Management of Container-Managed Transactions
	14.3.11 Release of Resources
	14.3.12 Support for Deprecated Use of java.rmi.RemoteException

	14.4 Client’s View of Exceptions
	14.4.1 Application Exception
	14.4.1.1 Local and Remote Clients
	14.4.1.2 Web Service Clients

	14.4.2 java.rmi.RemoteException and javax.ejb.EJBException
	14.4.2.1 javax.ejb.EJBTransactionRolledbackException, javax.ejb.TransactionRolledbackLocalException, and javax.transaction.TransactionRolledbackException
	14.4.2.2 javax.ejb.EJBTransactionRequiredException, javax.ejb.TransactionRequiredLocalException, and javax.transaction.TransactionRequiredException
	14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and java.rmi.NoSuchObjectException

	14.5 System Administrator’s Responsibilities

	Chapter 15 Support for Distributed Interoperability
	15.1 Support for Distribution
	15.1.1 Client-Side Objects in a Distributed Environment

	15.2 Interoperability Overview
	15.2.1 Interoperability Goals

	15.3 Interoperability Scenarios
	15.3.1 Interactions Between Web Containers and EJB Containers for E-Commerce Applications
	15.3.2 Interactions Between Application Client Containers and EJB Containers Within an Enterprise’s Intranet
	15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet
	15.3.4 Intranet Application Interactions Between Web Containers and EJB Containers

	15.4 Overview of Interoperability Requirements
	15.5 Remote Invocation Interoperability
	15.5.1 Mapping Java Remote Interfaces to IDL
	15.5.2 Mapping Value Objects to IDL
	15.5.3 Mapping of System Exceptions
	15.5.4 Obtaining Stub and Client View Classes
	15.5.5 System Value Classes
	15.5.5.1 HandleDelegate SPI

	15.6 Transaction Interoperability
	15.6.1 Transaction Interoperability Requirements
	15.6.1.1 Transaction Context Wire Format
	15.6.1.2 Two-Phase Commit Protocol
	15.6.1.3 Transactional Policies of Enterprise Bean References
	15.6.1.4 Exception Handling Behavior

	15.6.2 Interoperating with Containers that do not Implement Transaction Interoperability
	15.6.2.1 Client Container Requirements
	15.6.2.2 EJB container requirements
	15.6.2.2.1 Requirements for EJB Containers Supporting Transaction Interoperability
	15.6.2.2.2 Requirements for EJB Containers not Supporting Transaction Interoperability

	15.7 Naming Interoperability
	15.8 Security Interoperability
	15.8.1 Introduction
	15.8.1.1 Trust Relationships Between Containers, Principal Propagation
	15.8.1.2 Application Client Authentication

	15.8.2 Securing EJB Invocations
	15.8.2.1 Secure Transport Protocol
	15.8.2.2 Security Information in IORs
	15.8.2.3 Propagating Principals and Authentication Data in IIOP Messages
	15.8.2.4 Security Configuration for Containers
	15.8.2.5 Runtime Behavior

	Chapter 16 Enterprise Bean Environment
	16.1 Overview
	16.2 Enterprise Bean’s Environment as a JNDI Naming Context
	16.2.1 Sharing of Environment Entries
	16.2.2 Annotations for Environment Entries
	16.2.3 Annotations and Deployment Descriptors

	16.3 Responsibilities by EJB Role
	16.3.1 Bean Provider’s Responsibilities
	16.3.2 Application Assembler’s Responsibility
	16.3.3 Deployer’s Responsibility
	16.3.4 Container Provider Responsibility

	16.4 Simple Environment Entries
	16.4.1 Bean Provider’s Responsibilities
	16.4.1.1 Injection of Simple Environment Entries Using Annotations
	16.4.1.2 Programming Interfaces for Accessing Simple Environment Entries
	16.4.1.3 Declaration of Simple Environment Entries in the Deployment Descriptor

	16.4.2 Application Assembler’s Responsibility
	16.4.3 Deployer’s Responsibility
	16.4.4 Container Provider Responsibility

	16.5 EJB References
	16.5.1 Bean Provider’s Responsibilities
	16.5.1.1 Injection of EJB References
	16.5.1.2 EJB Reference Programming Interfaces
	16.5.1.3 Declaration of EJB References in Deployment Descriptor

	16.5.2 Application Assembler’s Responsibilities
	16.5.2.1 Overriding Rules

	16.5.3 Deployer’s Responsibility
	16.5.4 Container Provider’s Responsibility

	16.6 Web Service References
	16.7 Resource Manager Connection Factory References
	16.7.1 Bean Provider’s Responsibilities
	16.7.1.1 Injection of Resource Manager Connection Factory References
	16.7.1.2 Programming Interfaces for Resource Manager Connection Factory References
	16.7.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	16.7.1.4 Standard Resource Manager Connection Factory Types

	16.7.2 Deployer’s Responsibility
	16.7.3 Container Provider Responsibility
	16.7.4 System Administrator’s Responsibility

	16.8 Resource Environment References
	16.8.1 Bean Provider’s Responsibilities
	16.8.1.1 Injection of Resource Environment References
	16.8.1.2 Resource Environment Reference Programming Interfaces
	16.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

	16.8.2 Deployer’s Responsibility
	16.8.3 Container Provider’s Responsibility

	16.9 Message Destination References
	16.9.1 Bean Provider’s Responsibilities
	16.9.1.1 Injection of Message Destination References
	16.9.1.2 Message Destination Reference Programming Interfaces
	16.9.1.3 Declaration of Message Destination References in Deployment Descriptor

	16.9.2 Application Assembler’s Responsibilities
	16.9.3 Deployer’s Responsibility
	16.9.4 Container Provider’s Responsibility

	16.10 Persistence Unit References
	16.10.1 Bean Provider’s Responsibilities
	16.10.1.1 Injection of Persistence Unit References
	16.10.1.2 Programming Interfaces for Persistence Unit References
	16.10.1.3 Declaration of Persistence Unit References in Deployment Descriptor

	16.10.2 Application Assembler’s Responsibilities
	16.10.2.1 Overriding Rules

	16.10.3 Deployer’s Responsibility
	16.10.4 Container Provider Responsibility
	16.10.5 System Administrator’s Responsibility

	16.11 Persistence Context References
	16.11.1 Bean Provider’s Responsibilities
	16.11.1.1 Injection of Persistence Context References
	16.11.1.2 Programming Interfaces for Persistence Context References
	16.11.1.3 Declaration of Persistence Context References in Deployment Descriptor

	16.11.2 Application Assembler’s Responsibilities
	16.11.2.1 Overriding Rules

	16.11.3 Deployer’s Responsibility
	16.11.4 Container Provider Responsibility
	16.11.5 System Administrator’s Responsibility

	16.12 UserTransaction Interface
	16.12.1 Bean Provider’s Responsibility
	16.12.2 Container Provider’s Responsibility

	16.13 ORB References
	16.13.1 Bean Provider’s Responsibility
	16.13.2 Container Provider’s Responsibility

	16.14 TimerService References
	16.14.1 Bean Provider’s Responsibility
	16.14.2 Container Provider’s Responsibility

	16.15 EJBContext References
	16.15.1 Bean Provider’s Responsibility
	16.15.2 Container Provider’s Responsibility

	16.16 Deprecated EJBContext.getEnvironment Method

	Chapter 17 Security Management
	17.1 Overview
	17.2 Bean Provider’s Responsibilities
	17.2.1 Invocation of Other Enterprise Beans
	17.2.2 Resource Access
	17.2.3 Access of Underlying OS Resources
	17.2.4 Programming Style Recommendations
	17.2.5 Programmatic Access to Caller’s Security Context
	17.2.5.1 Use of getCallerPrincipal
	17.2.5.2 Use of isCallerInRole
	17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Code

	17.3 Responsibilities of the Bean Provider and/or Application Assembler
	17.3.1 Security Roles
	17.3.2 Method Permissions
	17.3.2.1 Specification of Method Permissions with Metadata Annotations
	17.3.2.2 Specification of Method Permissions in the Deployment Descriptor
	17.3.2.3 Unspecified Method Permissions

	17.3.3 Linking Security Role References to Security Roles
	17.3.4 Specification of Security Identities in the Deployment Descriptor
	17.3.4.1 Run-as

	17.4 Deployer’s Responsibilities
	17.4.1 Security Domain and Principal Realm Assignment
	17.4.2 Assignment of Security Roles
	17.4.3 Principal Delegation
	17.4.4 Security Management of Resource Access
	17.4.5 General Notes on Deployment Descriptor Processing

	17.5 EJB Client Responsibilities
	17.6 EJB Container Provider’s Responsibilities
	17.6.1 Deployment Tools
	17.6.2 Security Domain(s)
	17.6.3 Security Mechanisms
	17.6.4 Passing Principals on EJB Calls
	17.6.5 Security Methods in javax.ejb.EJBContext
	17.6.6 Secure Access to Resource Managers
	17.6.7 Principal Mapping
	17.6.8 System Principal
	17.6.9 Runtime Security Enforcement
	17.6.10 Audit Trail

	17.7 System Administrator’s Responsibilities
	17.7.1 Security Domain Administration
	17.7.2 Principal Mapping
	17.7.3 Audit Trail Review

	Chapter 18 Timer Service
	18.1 Overview
	18.2 Bean Provider’s View of the Timer Service
	18.2.1 Calendar-Based Time Expressions
	18.2.1.1 Attribute Syntax
	18.2.1.1.1 Single Value
	18.2.1.1.2 Wild Card
	18.2.1.1.3 List
	18.2.1.1.4 Range
	18.2.1.1.5 Increments
	18.2.1.1.6 Time Zone Support

	18.2.1.2 Expression Rules
	18.2.1.3 Examples
	18.2.1.3.1 “Every Monday at Midnight”
	18.2.1.3.2 “Every Weekday morning at 3:15”
	18.2.1.3.3 “Every morning at 3:15 U.S. Eastern Time”
	18.2.1.3.4 “Every minute of every hour of every day”
	18.2.1.3.5 “Every Monday, Wednesday, and Friday at 30 seconds past noon”
	18.2.1.3.6 “Every five minutes within the hour”
	18.2.1.3.7 “The last Thursday in November at 2 p.m.”
	18.2.1.3.8 “The second to last day (one day before the last day) of each month at 1 a.m.”
	18.2.1.3.9 “Every other hour within the day starting at noon on the 2nd Tuesday of every month.”

	18.2.2 Automatic Timer Creation
	18.2.3 Non-persistent Timers
	18.2.4 The Timer Service Interface
	18.2.4.1 Example

	18.2.5 Timeout Callbacks
	18.2.5.1 Timeout Callbacks for Programmatic Timers
	18.2.5.2 Timeout Callbacks for Automatically Created Timers
	18.2.5.3 Timeout Callback Method Requirements

	18.2.6 The Timer and TimerHandle Interfaces
	18.2.7 Timer Identity
	18.2.8 Transactions

	18.3 Bean Provider’s Responsibilities
	18.3.1 Enterprise Bean Class
	18.3.2 TimerHandle

	18.4 Container’s Responsibilities
	18.4.1 TimerService, Timer, and TimerHandle Interfaces
	18.4.2 Automatic Timers
	18.4.3 Timer Expiration and Timeout Callback Method
	18.4.4 Timer Cancellation
	18.4.5 Entity Bean Removal

	Chapter 19 Deployment Descriptor
	19.1 Overview
	19.2 Bean Provider’s Responsibilities
	19.3 Application Assembler’s Responsibility
	19.4 Container Provider’s Responsibilities
	19.5 Deployment Descriptor XML Schema

	Chapter 20 Packaging
	20.1 Overview
	20.2 Deployment Descriptor
	20.3 Packaging Requirements
	20.4 Enterprise Beans Packaged in a .war
	20.4.1 Class Loading
	20.4.2 Component Environment
	20.4.3 Visibility of the Local Client View
	20.4.4 Ejb-names
	20.4.5 EJB 2.1/1.1 Entity Bean Restriction
	20.4.6 JAX-RPC Endpoint Restriction
	20.4.7 Example

	20.5 Deployment Descriptor and Annotation Processing
	20.5.1 Ejb-jar Deployment Descriptor and Annotation Processing
	20.5.2 .war Deployment Descriptor and Annotation Processing

	20.6 The Client View and the ejb-client JAR File
	20.7 Requirements for Clients
	20.8 Example

	Chapter 21 Runtime Environment
	21.1 EJB 3.1 Lite
	21.2 Bean Provider’s Responsibilities
	21.2.1 APIs Provided by Container
	21.2.2 Programming Restrictions

	21.3 Container Provider’s Responsibility
	21.3.1 EJB 3.1 Requirements
	21.3.2 JNDI Requirements
	21.3.3 JTA 1.1 Requirements
	21.3.4 JDBC™ 3.0 Extension Requirements
	21.3.5 JMS 1.1 Requirements
	21.3.6 Argument Passing Semantics
	21.3.7 Other Requirements

	21.4 Compatibility and Migration
	21.4.1 Support for Existing Applications
	21.4.2 Default Stateful Session Bean Concurrency Behavior
	21.4.3 Default Application Exception Subclassing Behavior
	21.4.4 Interoperability of EJB 3.1 and Earlier Components
	21.4.4.1 Clients written to the EJB 2.x APIs
	21.4.4.2 Clients written to the EJB 3.x API
	21.4.4.3 Combined use of EJB 2.x and EJB 3.x persistence APIs

	21.4.5 Adapting EJB 3.x Session Beans to Earlier Client Views
	21.4.5.1 Stateless Session Beans
	21.4.5.2 Stateful Session Beans

	Chapter 22 Embeddable Usage
	22.1 Overview
	22.2 Bootstrapping API
	22.2.1 EJBContainer
	22.2.2 Standard Initialization Properties
	22.2.2.1 javax.ejb.embeddable.provider
	22.2.2.2 javax.ejb.embeddable.modules
	22.2.2.3 javax.ejb.embeddable.appName

	22.2.3 Looking Up Session Bean References
	22.2.4 Embeddable Container Shutdown

	22.3 Container Provider’s Responsibilities
	22.3.1 Runtime Environment
	22.3.2 Naming Lookups
	22.3.3 Embeddable Container Bootstrapping
	22.3.4 Concrete javax.ejb.EJBContainer Implementation Class

	Chapter 23 Responsibilities of EJB Roles
	23.1 Bean Provider’s Responsibilities
	23.1.1 API Requirements
	23.1.2 Packaging Requirements

	23.2 Application Assembler’s Responsibilities
	23.3 EJB Container Provider’s Responsibilities
	23.4 Persistence Provider’s Responsibilities
	23.5 Deployer’s Responsibilities
	23.6 System Administrator’s Responsibilities
	23.7 Client Programmer’s Responsibilities

	Chapter 24 Related Documents
	Appendix A Revision History
	A.1 Early Draft
	A.2 Public Draft
	A.3 Proposed Final Draft
	A.4 Final Release

