
CLASSLOADERS AND YOU

Joel Tosi
04/07/2011

This technical whitepaper covers classloading in the JBoss Enterprise Application Platform.

Contents
1. ClassLoader Background..2

1.1 What is ClassLoading?..2
1.2 Common Issues with ClassLoading..2

2. JBoss Classloading Configuration File..2
2.1 JBoss ClassLoading Configuration File Format..2
2.2 JBoss ClassLoading Configuration File Location..4

3. War ClassLoading...4
4. Ear Isolation..4
5. Debugging...5
6. Common Exceptions...8
Resources...9

Questions/Comments/Issues...9

Classloaders and You | Joel Tosi1

1. CLASSLOADER BACKGROUND

1.1 What is ClassLoading?

We are familiar with the Java ClassLoader – it is quite simply the part of the JVM that loads our Java classes

for execution. Java classes are loaded into the JVM and reside in the permanent generation (PermGen) of

the heap. They reside in this space so they are always available to the JVM.

ClassLoading is the act of the class loader loading java class files into memory to be used by the JVM. In

addition to the loading of classes, the ClassLoader handles such things as visibility of classes and security

permissions around loaded classes.

1.2 Common Issues with ClassLoading

Most of the time, we have no reason to worry about class loading. In simple, isolated programs that run

independently, there is little risk of issues with class loading. However, as soon as we are developing

applications in the same memory space, we increasingly run the risk of class loader issues.

The most common issue is when two applications are attempting to use different versions of a library. For

example, say you have some common code for tax calculation and two applications that use that common

code. If one application is using version 1 of that tax calculation code and another application is trying to

use version 2 – you are fine if those applications are running independently. However, if both applications

run in the same memory space, which class should the ClassLoader load? And there is our problem –

applications in the same memory space needing different versions of class(es).

The JBoss application server is, at its most simplest, a Java application. Your application that you deploy to

JBoss EAP is running in the same memory space as JBoss EAP, and therefore you need to be aware of

potential conflicts with class loading between your application and JBoss EAP.

2. JBOSS CLASSLOADING CONFIGURATION FILE

How do we go about customizing our classloading behavior? There is one critical file you will be want to be

aware of. This file is called jboss-classloading.xml. Where it is placed depends on what you are trying to

apply your classloading policy against. We will cover the various locations for this file as well as the format

of this very important file in this section.

2.1 JBoss ClassLoading Configuration File Format

The jboss-classloading.xml file is relatively straight forward. Here is an example with all possible attributes.

An explanation of attributes follows.

Classloaders and You | Joel Tosi2

<?xml version="1.0" encoding="UTF-8"?>
<classloading xmlns="urn:jboss:classloading:1.0"

 name="MySampleApp.war”
 domain="MySampleAppDomain"

 parent-domain="SomeParentDomain"
 top-level-classloader="true"
 parent-first="true"
 export-all="NON_EMPTY"
 import-all="true">
</classloading>

As promised, here is what the individual attributes mean in this file:

Name – the name of your deployment (war file, ear file, jar file). In this example, we are deploying

MySampleApp.war, hence the name in this file.

Domain – this is the classloading domain. This value you can be arbitrary, but for simplicity and for

troubleshooting, we recommend that this domain be named similar to your application. Be aware that if the

domain you choose already exists, then your deployment will join that classloading domain.

Parent-domain – Use this to let the classloader know the domain that you want searched when a class is

not found in your domain. This attribute is optional and by default it is the ‘DefaultDomain’ which is that of

the container. A good use of this value would be if you have a war file and want it to look at your ear domain

for resolution of missing class files.

Top-level-classloader – Values here either are true or false. This is used to enable embedded apps, like a

war within an ear file, to have their classloader be a true-top level classloader in your domain as opposed to

a child classloader with the top-level (usually DefaultDomain) classloader as parent. Set this to true if you

want the classloader of your sub-deployment (think war file inside ear) to be a top level class-loader.

Parent-first – Values here are either true or false. This controls whether or not the parent classloader is

loaded first. Setting this value to false means that this domain will be searched for all class definitions prior

to the parent domain which is against j2ee compliance.

Export-all - The only value here is ‘NON_EMPTY’. This means that all classes are exposed to other

applications.

Import-all – Values here are either true or false. Setting this value to true makes all classes exported from

other applications visible to this domain / application. You may consider setting this to true when you have a

few applications with different versions of libraries / components being used in the same JVM.

Classloaders and You | Joel Tosi3

www.redhat.comCopyright © 2011 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

2.2 JBoss ClassLoading Configuration File Location

Where you place the classloading configuration depends on what you are trying to apply your classloading

policy against. The three most common items you will want to control classloading behavior of are war files,

ear files, and jar files.

• To control the classloading behavior of a war file, place the jboss-classloading.xml file in the

WEB-INF directory of your war file. For example, if your war file is myWarFile.war, your

classloading configuration file would be at myWarFile.war/WEB-INF/jboss-classloading.xml.

• To control the classloading behavior of an ear file, place the jboss-classloading.xml file in the

META-INF directory of your ear file. For example, if your ear file is myEarFile.ear, your

classloading configuration file would be at myEarFile.ear/META-INF/jboss-classloading.xml.

• To control the classloading behavior of a jar file, place the jboss-classloading.xml file in the

META-INF directory of your jar file. For example, if your jar file is myJarFile.jar, your

classloading configuration file would be at myJarFile.jar/WEB-INF/jboss-classloading.xml.

3. WAR CLASSLOADING

War files are slightly nicer / easier to work with because as part of the Servlet spec, war files are in their own

classloader. This gives us some nice benefits such as classes in WEB-INF/classes and jars in WEB-INF/lib

of our war file are not visible to other wars. In essence we are getting some nice war isolation right out of

the box. Additionally, war files by default are deployed with a classloading scheme that looks up classes

within the war first before looking for them in the parent domain. However, ear files by default look to the

parent domain first. Be aware of this difference and the problems it can cause, even by simply moving a war

file into an ear deployment.

When you have classes that need to be shared, say between an ejb and a war, then you will want to put

those classes in either the lib directory of the ear (if you want to limit outside application access) or in

jboss/lib or jboss/deploy if you want the classes more globally accessible.

4. EAR ISOLATION

Lets look at the following scenario – you have an ear file that you need to deploy. When you deploy it as is,

JBoss starts up with errors because the ear file has its own set of libraries and dependencies that conflict

with the JBoss runtime. Additionally, the ear file in this example has libraries that you simply don’t want

exposed to the rest of the environment – lets say a legacy string utility package. What can we do in this

situation?

We will want to create a jboss-classloading.xml file in our ear file META-INF directory. In this file, we will

define an new classloader for this ear file that will isolate the ear file from the container.

Our resulting classloading xml file will look as follows:

Classloaders and You | Joel Tosi4

There are two key points in this example. First is that we are placing this classloading configuration file in

the ear deployment META-INF directory. Second we define a new unique domain that this classloader

should reside in. Since this domain is different than our parent domain (in this case the container), this ear

is properly isolated. Lastly you will notice that we are defining a parent-domain (which is fine because there

are services we want from the container) but are defining the classloader so that the parent domain does not

load first and take precedence.

NOTE – with ‘parent-first’ set to ‘false’, the app is no longer in j2ee compliance as the application domain is

searched for classes prior to the container.

5. DEBUGGING

With all this information now, a natural question to ask is how can you verify what classloaders are being

used. The easiest way to achieve this is by looking at the jmx-console under the jboss.classloader group.

This is found in the left navigation under ‘Object Name Filter.’ There you will find a list of all classloaders

used.

Classloaders and You | Joel Tosi5

Illustration 1: Sample jboss-classloading.xml that shows ear isolation. This file must be called jboss-classloading.xml and
be placed in your deployment META-INF directory

Clicking on any of these items gives us more information about those deployments and their classloader.

For example, we could choose the one for the jmx-console war file and see the following:

Classloaders and You | Joel Tosi6

Illustration 2: jboss.classloader listing under the jmx-console. This is accessible on your JBoss EAP instance at the /jmx-
console app, i.e. http://localhost:8080/jmx-console

Illustration 3: Drilling down on the classloader information for the jmx-console war file

Of interest here is the fact that we can see the policy being enforced on this class loader as well as there are

some exposed methods that we can execute. This is a great place to start debugging by finding out which

classloaders are loading your specific classes as well as the policies in place around those classloaders.

Please Note - The JMX console will not show you every class loaded. It will only show those loaded

through JBoss. To see all classes loaded you could add the -verbose:class switch to your startup script and

all the loaded classes will be output to the console.

Classloaders and You | Joel Tosi7

Illustration 4: Adding verbose:class to run.conf - located in the bin directory of your JBoss EAP install

6. COMMON EXCEPTIONS

Here are some common exceptions that you may see in your log files that could be caused by a class

loading issue.

ClassNotFoundException

This exception is normally caused by a class not being in the class path. It can also be caused by a class or

jar file missing from the application deployment altogether. For example, the jar file might not be listed in

META-INF / MANIFEST.MF Classpath and also is not in the lib directory in the ear. A final scenario where

this can happen is when ear isolation is done (more information on ear isolation in section 4). If the ear is

isolated (using META-INF / jboss-app.xml) then the jar files and classes are only available for the particular

ear file they are in. If those jar files or classes are needed outside that ear, you would see this ear. To

resolve this issue, the second ear would need to specify the same loader repository name in its jboss-

app.xml.

ClassCastException

ClassCastExceptions, when they aren’t simply coding issues, usually occur when there are multiple versions

of a class available to the classloader. You will see this exception when the developer is trying to package a

different version of a jar file or class in their application that has been isolated using jboss-app.xml. You will

see this, for example, around xml parsers. With XML parsers, JBoss EAP uses its own version of common

Classloaders and You | Joel Tosi8

Illustration 5: Sample Output from console when verbose:class is applied

xml parsers and therefore the application that is deployed gets a reference and cast to a class that isn’t what

it expects, resulting in a ClassCastException.

NoSuchMethodException

This exception usually indicates a class version mismatch between jar files. This means that one class is

calling a method on another class that does not exist in the version that is currently loaded. This most

frequently occurs when customers package different versions of common libraries or container provided

libraries in their application, for example hibernate or jboss-cache. This can also happen if you are migrating

between versions of JBoss EAP and do no recompile your application against the updated EAP jars.

RESOURCES

Permanent Generation, Heap Space - http://blogs.sun.com/jonthecollector/entry/presenting_the_permanent_generation

JBoss ClassLoader Glossary - http://community.jboss.org/wiki/JBossClassLoaderGlossary

JBoss ClassLoader Documentation - http://docs.redhat.com/docs/en-

US/JBoss_Enterprise_Application_Platform/5/html/JBoss_Microcontainer_User_Guide/sect-

JBoss_Microcontainer_User_Guide-The_ClassLoading_Layer-ClassLoading.html

Detailed information on JBoss ClassLoading - http://java.dzone.com/articles/jboss-microcontainer-classloading

Questions/Comments/Issues

If you have questions or comments about this whitepaper, please enter them in the Red Hat customer portal for this

specific whitepaper: https://access.redhat.com/knowledge/techbriefs . If you have a technical issue following this

whitepaper please open a support case: https://access.redhat.com/support/cases/new

Classloaders and You | Joel Tosi9

http://blogs.sun.com/jonthecollector/entry/presenting_the_permanent_generation
https://access.redhat.com/support/cases/new
https://access.redhat.com/knowledge/techbriefs
http://java.dzone.com/articles/jboss-microcontainer-classloading
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5/html/JBoss_Microcontainer_User_Guide/sect-JBoss_Microcontainer_User_Guide-The_ClassLoading_Layer-ClassLoading.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5/html/JBoss_Microcontainer_User_Guide/sect-JBoss_Microcontainer_User_Guide-The_ClassLoading_Layer-ClassLoading.html
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5/html/JBoss_Microcontainer_User_Guide/sect-JBoss_Microcontainer_User_Guide-The_ClassLoading_Layer-ClassLoading.html
http://community.jboss.org/wiki/JBossClassLoaderGlossary

