USING TEIID DESIGNER TO
CONSUME A REST-BASED WEB
SERVICE AS A RELATIONAL MODEL

Blaine Mincey
10/17/2011

The purpose of this paper is to provide an introduction on how to consume a REST-based Web Service as a
relational data source using the Teiid Designer which is part of the JBoss Developer Studio (JBDS) Eclipse-
based IDE. The Teiid Designer is a visual tool that enables rapid, model-driven definition, integration,
management, and testing of data services. This tool is part of the Enterprise Data Services Platform (EDSP)
product. EDSP is a powerful set of tools and runtime components that makes it easy for your applications
and business processes to integrate and use data from many data sources.

CONTENTS

OVERVIEW......ccoiceeiieeeeeiiiiiis s s ss s e e e e s s s m s aaaa s s aa e a e e e e e e e e e e e e e nmn s nnrnnn 2
ENVIRONMENTcoiiiiiiiiimmmmrnsnnssessssssss s s s s sssssssssssssssmsssses s ssssnsssssssssssssennn 2
EXAMPLE REST-BASED WEB SERVICE...........coiiimmmmmmmmsesssssssssssssss e 3
SAMPLE XIML...uuiiiiiiiiiiiminnnnneesssssss s sssssssssssssss e ssssssssssssssssssssssnennenns 4
CREATE NEW MODEL PROJECT......cccoiiiiiiiiiininnirrrnsssssssssssssssssssss s ssssssssssesnas 5
PHYSICAL DATA SOURCE ...ccceeeieiiiiiiiiiiiinnnnssssssssssssssssssssss s ssssssssssssssssnannas 6
CONNECTION PROFILE........ccuiiiinnnssssssssssssssssss s ssssssssssssssssss e 8
VIRTUAL BASE LAYER......ccuu s s sssssssssss e ssss s s nsssns 13
TRANSFORMATION.....ciiiittiiememmnnnnnsiiirrnnssssssssssssssssssss s s assssssssnnssas 15
RESOURGCES.......cotttiiiiiiiiisssssssssssiissss s sssssssssssss s ssssss s ssssssssnnne 17
QUESTIONS/COMMENTS/ISSUES.........cottiiimmmmmmmssissses 17

Consume a REST-based Web Service | Blaine Mincey 1

OVERVIEW

This technical brief will guide you through the steps required to build a Teiid project that will consume a
REST-based web service as a relational data model. This relational model can then be used in conjunction
with other virtualized relational models to further extend your data abstraction layer. Specifically, the
following steps will be performed:

1. Create and deploy a RESTful service that can be invoked by the Enterprise Data Services
Platform

2. Create a project in JBoss Developer Studio using the Teiid Designer
3. Model the physical structure of the RESTful service

4. Connect to the RESTful service through JBoss Developer Studio using a Connection
Profile

5. Create the virtual abstraction layer for the data returned by the RESTful service
6. Transform the data into the virtual abstraction layer

7. Test the newly created virtual relational model

ENVIRONMENT

The following environment was utilized in order to produce the required artifacts for this example. It should
be noted that this example should work with slightly different version numbers of the listed tools. However,
different tool configurations were not tested.

Operating System: RHEL 6.1 (Santiago)

JVM: Sun/Oracle 1.6.0_25 64-bit

NOTE: It should be noted that this specific environment is not required. There are JBDS binaries
for not only RHEL, but Windows and Mac-OSX platforms as well. Additionally, the JBoss
Enterprise Data Services Platform is supported with a compatible JVM so it is possible to run it on a
variety of operating systems including RHEL, Windows, and Solaris.

There is an example REST-based Web Service available within a public repository on GitHub
(http://www.github.com) that was utilized as the data source for this paper. Instructions will be provided later
in the paper on how to acquire the source artifacts from GitHub as well as how to build and deploy the
application. The following tools were used for the REST-based Web Service.

Git: 1.7.1
Maven: 3.0.3

Consume a REST-based Web Service | Blaine Mincey 2

http://www.github.com/

T

EXAMPLE REST-BASED WEB SERVICE

In order to provide an easy way to get started with this example, a sample REST-based Web Service is
available for download. No knowledge of REST or web services is required to build and deploy the
application. A general understanding of both Git and Maven is required. Additional information on Git is
available at http://git-scm.com/. This link provides information on how to setup Git for your target
environment. Additionally, Maven information can be found at http://maven.apache.org/. This link provides
a tutorial as well as the ability to download the Maven binaries. If this is your first time using Maven, you will
need to point your Maven settings to the JBoss Maven repositories in order to access JBoss artifacts. The

following article describes how to do this: http://community.jboss.org/wiki/MavenGettingStarted-Users.

The public GitHub repository for the example REST-based Web Service is at
https://github.com/blainemincey/CustomerRESTWebSvc.

In order to download the repository to your local workstation, execute the following command from a
command or terminal window:

git clone git://github.com/blainemincey/CustomerRESTWebSvc.git

If git has been configured correctly on your system, this command will copy the public repository to your
local workstation. After the command is completed, there should be a new directory,
CustomerRESTWebSvc. Now, ‘cd’ (change directory) into this newly created directory. There should be a
pom.xml file, a README file, and a src directory.

At this point, if Maven has been correctly installed on your system, you can simply execute the following
Maven command in order to build the WAR file that will be deployed to the Data Services Platform.

mvn clean compile war:war
This command will compile the source files as well as build a deployable WAR file. This command wiill
create a ‘target’ directory. This newly created directory will contain the CustomerRESTWebSvc.war file.
This file can simply be copied to the running configuration’s ‘deploy’ directory of the Enterprise Data
Services Platform. In order to manually test the web service to ensure it is working correctly, open a
browser to the following location:

http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList

Consume a REST-based Web Service | Blaine Mincey 3

http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList
https://github.com/blainemincey/CustomerRESTWebSvc
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://maven.apache.org/
http://git-scm.com/

SAMPLE XML

The following XML snippet serves as an example of the literal XML result from the REST-based Web Service
that was deployed in the previous step. This is simply a single record from the web service. It should be
noted that well over 100 records will be returned upon executing the REST Web Service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"7?>
<customers>
<customer>
<customernumber>103</customernumber>
<customername>Atelier graphique</customername>
<contactlastname>Schmitt</contactlastname>
<contactfirstname>Blaine</contactfirstname>
<phone>40.32.2555</phone>
<addresslinel>54, rue Royale</addresslinel>
<addressline2 />
<city>Nantes</city>
<state />
<postalcode>44000</postalcode>
<country>France</country>
<salesrepemployeenumber>1370</salesrepemployeenumber>
<creditlimit>21000.0</creditlimit>
</customer>
</customers>

Consume a REST-based Web Service | Blaine Mincey 4

CREATE NEW MODEL PROJECT

With JBDS opened in the Teiid Designer perspective, right-click within the Model Explorer section and select
“New” and then “Teiid Model Project”.

New Model Project

New Model Project 4
Create a new model project. B

Project name: | MyRESTProject| |

Use default location

s it | BackedUp/bmincey/prod sfibdsfibdevs fiod =Rl

Working sets

[] Add project to working sets

@

Next > || cancel || Enish

Enter a “Project name”. For the purposes of this paper, the project name “MyRESTProject” has been
chosen.

Next, following Teiid Designer best practices, create two folders within the project. This can be done by
right-clicking on “MyRESTProject” in the Model Explorer view and selecting “New” and then “Folder”. Create
the following two folders: DataSources and VirtualBaseLayer. Your project should now resemble the image
below.

< =% MyRESTProject
= DataSources

& \irtualBaselLayer

Consume a REST-based Web Service | Blaine Mincey 5

PHYSICAL DATA SOURCE

The solution to many of today’s data challenges is data virtualization. JBoss Enterprise Data Services
Platform provides you with the ability to create a data abstraction, or data virtualization, layer on top of your
physical data sources. It is then possible to create a variety of virtual data layers on top of your physical
data sources and expose them as a single interface. For the purpose of this paper, you will be able to model
a REST based web service and make it appear as a relational data source. From this point, it is possible to

join the data source with other virtual models providing you with the means to turn the data you have into the
information you need.

At this point, the physical data source can be modeled. Right-click on the folder “DataSources” and select
“New” and then “Teiid Metadata Model".

New Model Wizard

New Model Wizard

Specify model name and options then create model file.

Lecation: [MyRESTPrujchDataEuurCEE.] [Brﬂwsfe...l
Model Name: [MyRESTDataSource]
Model Class: | Relational =
Model Type: [Source Model 2]

Select a model builder (optional):

é‘ Generate File Translator Procedures

e Copy from an existing model of the same model class

@

MNext =] l Cancel E

For this example, the location of this metadata model should be within the datasources folder. As indicated
above, the Model Name is “MyRESTDataSource”, Model Class is “Relational”, and Model Type is “Source”.

Consume a REST-based Web Service | Blaine Mincey 6

It is also important to be sure and select “Generate Web Service Translator Procedures”. At this point, click
the “Next” button in the bottom right-hand corner. This will bring up the window below.

New Model Wizard

Generate Web Service Translator Procedures

Generate default relational procedures compatible with Telid Web Service translator. Select desired
procedures and 'Finish'

-Available Web Service Translator Procedures

invoke(binding in String, action in STRING, request in OBJECT, endpoint in STRING, result out XML)|

[[] invokeHttp(action in STRING, request in OBJECT, endpaint in STRING, result out BLOB, contentType out STRING)

® Next Cancel l [Finish

The window indicates that there are two separate Available Web Service Translator Procedures: invoke and
invokeHttp. For the purposes of this example, select the first method which is “invoke”. After clicking the
“Finish” button, the Teiid Designer perspective should resemble the image below.

1= Model Explorer 52 = O || g MyRESTDataSource.xmi 52
| 1% ¢ = B2 & - o5
'

~ =% MyRESTProject
~ [= DataSources £

b & MyRESTDataSource.xmi _

&= VirtualBaseLayer

il

& pinding : string

& action : string

& request : XMLLiteral
& endpoint : string

¥ result : XMLLiteral

B & o

Consume a REST-based Web Service | Blaine Mincey 7

CONNECTION PROFILE

A connection profile is used to identify the actual data source required for the physical data source
representation within the Teiid Designer. In fact, it might be easier to associate this with being the *-ds.xml
(data source connection file) that is required by the JBoss Enterprise Application Platform for INDI based
data sources. In other words, the connection profile defines the actual data source connection from within
the context of JBoss Developer Studio.

At this point, it is important to point the metadata model to a connection profile. Right-click on
“MyRESTDataSource.xmi”. Select “Modeling” and then “Select Connection Profile”. The following pop-up
window should open.

Set Connection Profile

Select Connection Profile

[l<unknown> | | new... | ‘

Select Existing Connection Profile or click "New..." above

P = Database Connections
= Connection Profile Repositories
= Teiid Importer Connections

[* = ODA Data Sources

@ Mo valid selection

® Cancel] [OK

Consume a REST-based Web Service | Blaine Mincey 8

Click the “New” button along the top row to create a new connection profile. The “New Connection Profile”
window should open as indicated in the image below.

New Connectlon Profile

Connection Profile

Create an non-S0AP Web Service connection profile. [

~Connection Profile Types:

[type filter text

MySQL

@ Oracle

@ PostgresQL
S0QL Server
EZ sqLite

‘X' SalesForce

EZ sybase asA
Sybase ASE
EZ Teiid

@ Web Services Data Source

£ Web Services Data Source (non-SOAP)
XML Data Source

Mame:

[MyRES'I'DataSourceCunnectlﬂ-nPrﬂ-ﬁIe]

Description (optional):

[My connection profile to my REST-based Web Ser'urlce-|]

@ =< Back |[Next =] [Cancel] [Finish

Consume a REST-based Web Service | Blaine Mincey 9

Scroll down the list of available Connection Profile types. Select “Web Services Data Source (non-SOAP)”.
As indicated in the image, the name of the connection profile is “MyRESTDataSourceConnectionProfile” and
the Description is “My connection profile to my REST-based Web Service”.

Now, click the “Next” button along the bottom row. The following window will open.

New connection profile

Web Service Connection Properties e
Click Mext or Finish

Properties
Profile Name MyRESTDataSourceConnectionProfile

Profile Description mpMy connection profile to my REST-based Web Service
Connection URL

[i ost:2080/CustomersRESTWebService/customers/customerLi 5t|]

Security Type

[N:}ne >]
User Mame
Password
@ <Back | mMext> || cancet || Einish

Within this window, be sure to enter the “Connection URL” of the REST-based web service that is being
modeled. Additionally, if the web service requires authentication, the values can be entered here as well.
For purposes of this paper, a non-secured web service was utilized. For the purposes of this example, use
the URL for the example REST-based Web Service that was deployed to the platform earlier. If you are
using this REST-based Web Service, the Connection URL to use will be:

http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList

If you are using a different REST-based Web Service, be sure to enter the correct URL for that one. Once
this has been entered, click the “Finish” button.

Consume a REST-based Web Service | Blaine Mincey 10

Q.

http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList

Set Connection Profile

Select Connection Profile
=

[MyRESTDataSourceConnectionProfile

Select Existing Connection Profile or click "New..." abowve

[* = Database Connections

= Connection Profile Repositories
=~ = Teiid Importer Connections
K MyRESTDataSourceConnectionProfile

[* = ODA Data Sources

i Select OK to finish

Cancel] [Ok

@

Now, be sure to select the Connection Profile that was just created:

“MyRESTDataSourceConnectionProfile”.

Consume a REST-based Web Service | Blaine Mincey 11

12 Model Explorer i3 = B | @ myrESTDataS0urce xmi 8 3 MyCustomers VBL.xmi

F 1 < == (5]

I FinancialsDemo .
< 2 MyRESTProject
v (= DataSources

I @ MyRESTDataSource.xmi

v & VirtualBaseLayer i ¥ binding : string

@0 |

Missing Password Required

The data source for model "MyRESTDataSource.xmi" requires a password.
The referenced connection profile is "MyRESTDataSourceConnectionProfile.”

Password: [|

o Teiid 53 = = gk

= % mms://localhost:31443

v (= Data Sources

[J, APAC_Customers_MysSQL a1
[, BPELDB %= Package Diagram | [Table Editor

At this point, a pop-up window should appear requesting the password for the referenced connection profile.
It is important to note that this password is required for this example to work. You did not overlook the
password creation in an earlier section within this document because it was not required. The reason for a
password is so that the Teiid Designer will be able to properly initiate the creation of a preview data source
that is used strictly by the Teiid Designer. Again, this password simply needs to be any series of characters
or a single character. It will simply allow the OK button to become enabled.

Be sure to enter any password. Again, this is required so that a PREVIEW data source file will be generated
and deployed to the running EDSP instance that is configured with JBDS. For this example, the password
used was “user” which is the default Teiid JDBC connection password.

Consume a REST-based Web Service | Blaine Mincey 12

VIRTUAL BASE LAYER

At this point, you should begin to be able to see the power of data virtualization. You have worked through
creating essentially the pointers to the physical data source, the REST web service. Now, it is time to begin
building the virtual layer on top of the physical data source. Ultimately, this provides you with the capabillity
to model your virtual layers to be exactly what you need them to be. It would now be possible to “join” this
virtual relational model with another virtual relational model and expose it as a single virtual table through an

external interface. To your applications, these disparate data sources will now be able to appear as a single
relational table within a virtual database!

Now that we have our physical data source modeled, we can create the virtual base layer that will act as our
relational model. It should be noted that additional virtual layers can be built upon the virtual base layer.

Right-click on the “VirtualBaseLayer” folder. Select “New” and “Teiid Metadata Model”.

New Model Wizard

New Model Wizard

Specify model name and options then create model file.

Location: [MyRESTPrujecWirtualBaE.eLayer] [Brﬂw5e...
Model Name: [MyCu5tumer5_‘~.FBL]

Model Class: | Relational ¢

Model Type: | View Model 2

Select a model builder (optional):

Eﬁ\ Transform from an existing model
e Copy from an existing model of the same model class

@ Cancel] [Finish

Consume a REST-based Web Service | Blaine Mincey 13

As indicated above, the New Model Wizard window will open. Be sure to check that the location of this
model is within the VirtualBaseLayer folder. In this instance, the Model Name is “MyCustomers_VBL”, the

Model Class is “Relational”, and the Model Type is"View Model”. Do not select a model builder from the
list. Now, click the “Finish” button.

Now right-click within the model that was just created. Select “New Child” and then “Base Table”. Double-

click within the Base Table and rename it to “MyCustomers”. The Teiid Designer perspective should look like
the image below.

{E-” Model Explorer &3 =0 {% MyCustomers VBL.xmi 52
® 1% e B g ¥ B
LT FinancialsDemo 2 <<Base Table==>
< [MyRESTProject 2 MyCustomers
I (= DataSources &
= = VirtualBaseLayer -
~ 3 MyCustomers VBL.xmi ®
“z import declarations (0)
8 Package Diagram
¥ A MyCustomers

Notice that there is a red “X” which indicates that there are errors within this model. This is due to not

having any columns within this model. Now, double-click on the MyCustomers base table to open up the
Transformation Editor.

At this point, it is extremely important to note the format of the literal XML data that is returned from your

REST-based web service. The following transformation is specific to the XML snippet that is referenced at
the beginning of this document.

Consume a REST-based Web Service | Blaine Mincey 14

TRANSFORMATION

The following transformation can simply be copied and pasted within the Transformation Editor in the Teiid
Designer perspective.

SELECT
MyCustomers.ID,
MyCustomers.Name,
MyCustomers.ContactFirstName,
MyCustomers.ContactLastName,
MyCustomers.Phone,
MyCustomers.Address,
MyCustomers.Address2,
MyCustomers.City,
MyCustomers.State,
MyCustomers.PostalCode,
MyCustomers.Country,
MyCustomers.CreditLimit

FROM
(EXEC MyRESTDataSource.invoke(binding => 'HTTP', action => 'GET')) AS ws,
XMLTABLE('/customers/customer' PASSING ws.result COLUMNS
ID integer PATH './customernumber’,
Name string PATH './customername’,
ContactFirstName string PATH './contactfirstname’,
ContactLastName string PATH './contactlastname’,
Phone string PATH './phone’,
Address string PATH './addresslinel’,
Address?2 string PATH './addressline2’,
City string PATH './city',
State string PATH './state’,
PostalCode string PATH './postalcode’,
Country string PATH './country’,
CreditLimit bigdecimal PATH './creditlimit')

AS MyCustomers

There are a few important items to take note of. This is simply a standard SQL SELECT statement
integrated with some Teiid constructs and XPath. The SELECT portion is very easy to follow as these are
the columns that will make up our base table, MyCustomers. The FROM clause executes the physical data
source that was created in earlier steps. Then, the XMLTABLE function was utilized in order to query the
result from the web service and parse the elements. When parsing the various elements, be sure to utilize
correct data types as well as the XPath elements that correspond to your literal XML result.

Using the example transformation above, the resulting transformation should look similar to the image
below.

Consume a REST-based Web Service | Blaine Mincey 15

& Model Explorer &2 = O || 6§ MyRESTDataSource.xmi | Ef MyCustomers_ VBL.xmi 532

EaRN- g 7
LT FinancialsDemo MyCustomers
= 4% MyRESTProject Bt
¥ (& Datasources £ Name : string(10) ¥ binding : string
b @ MyRESTDataSource.xmi £ ContactFirstName : string(10) B action : string
¥ 5= VirtualBaselayer I ContactLastName : string(10)) request : XMLLiteral
< 5 MyCustomers VBL.xmi & Phone : string(10) :i: endpoint : string
.) result :
b “z import declarations (3} B Address : string(10) & result : XMLLiteral
£\ Address2 : string(10})

% Package Diagram 2 City : string(10)

MyCustomers B State : string(10)
B 4 Transformation Diagram [Table Editor
@ >

5 Teild 52 A - =g|fTan F | 42 Cursor at (3, 6) [J supports Update 8% i A s By &R x

SELECT A
MyCustomers.|D, MyCustomers.Name, MyCustomers.ContactFirstName, MyCustomers.ContactLastName,
MyCustomers.Phone, MyCustomers.Address, MyCustomers.Address2, MyCustomers.City, MyCustomers.State,
Mycustolmers.PostaICode, MyCustomers.Country, MyCustomers.CreditLimit
FROM
(EXEC MyRESTDataSource.invoke(binding == 'HTTP', action => 'GET')) AS ws, XMLTABLE('/customers/
customer' PASSING ws.result COLUMNS ID integer PATH *./customernumber’, Name string PATH "./
customemame', ContactFirstName string PATH './contactfirstname’, ContactLastName string PATH '/
contactlastname’, Phone string PATH './phone’, Address string PATH './addresslinel’, Address2 string PATH *./
Loty e stri ' lsta /oo

= oot i
A00re il &’ rnna PATH rng PATH

[3, ModeShapeDS

[3, ModeShapeEDSRepo

[7, PREVIEW_49C074-3959-4566-ae4fa

[, Products_MySQL

[3, US_Customers_MySQL

[1, YahooQuote_File
(R]

At this point, the MyCustomers base table can be clicked in order to enable the “Preview” button, H—

For illustrative purposes, the image below is the resulting preview of the data.

/E_\ Problems [@ Error Log (ﬁ»ﬁ Servers [E Console (EI SQL Results &2 L& = L
[!Type guery expression here l Status [Resu\tll _
Status Operation | Date ID| Name ContactFirstName ContactLastName Phone Address Address? City State PostalCode Country CreditLimit |

2 11; Signal; Jean King 70255; 8489 5t Las i NV 83030 USA 71800.0

3 {11 Austre Peter Ferguson 03 95% 636 Stk Level 3 Melk{ Victor, 3004 Australiz 117300.0

4 11 La Roc Janine Labrune 40.67.; 67, rue Nan 44000 France ; 118200.0

5 {12 Baanei Jonas Bergulfsen 07-98 : Erling Sk Stav 4110 Norway i 81700.0

6 12 Mini G} Susan Nelson 41555; 5677 5t Sani CA 97562 USA 210500.0 |

7 12; Havel | Zbyszek Piestrzeniewicz (26) 6} ul. Filtrov War: 01-012 Poland { 0.0

8 12 Blauer; Roland Keitel +49 6: Lyonerst: Fran; 60528 Germany 59700.0

9 12: Mini W Julie Murphy 65055; 5557 Nc San; CA 94217 USA 64600.0

10 : 13i Land ¢ Kwal Lee 21255 897 Lon NYC: NY 10022 usa 114900.0

11 : 14; Euro+i Diego Freyre {91) 5: C/ Moral; Mad 28034 Spain 227600.0

12 : 14 Volvo | Christina Berglund 0921-: Berguvs: Lule: 5958 22 | Sweden; 53100.0

13 : 14; Danisl: Jytte Petersen 3112 VinbuDo: Kobe 1734 Denmark 83400.0

14 : 14; Savele; Mary Saveley 78.32. 2, rue di Lyor; 69004 France :123900.0

15 : 14i Drago; Eric Natividad +65 2 Bronz Sc¢ Bronz Apti Sing 079903 Singapoi 103800.0

16 ; 15} Muscl Jeff Young 21255 4092 Fu: Suite 400; NYC: NY 10022 USA 138500.0

17 : 15; Diecas Kelvin Leong 21555; 7586 Po! Aller; PA 70267 usa 100600.0

18 : 16; Techni; Juri Hashimoto 65055; 9408 Fu Burl; CA 94217 usa 84600.0

19 : 16 Handji; Wendy Victorino +65 2i 106 Linc 2nd Floor; Sing 069045 Singapoi 97900.0

20 : 16: Herkke: Veysel Oeztan +47 2: Brehmer. PR 334 5¢ Berc N 5804 Norway : 96800.0

21 : 16 Amerii Keith Franco 20355; 149 Spit Suite 101; New: CT 97823 usa 0.0

22 : 16 Porto [Isabel de Castro (1) 35: Estrada Lisb 1756 Portugal; 0.0

23 i 17: Daeda; Martine Rancu005cul05c; 20.16.; 184, chi Lille 59000 France :82900.0

24 : 17: La Cor: Marie Bertrand (1) 42: 265, bot; Paris 75012 France :84300.0

25 : 17 Cambi Jerry Teeng 61755; 4658 Ba Cam: MA 51247 usa 43400.0

26 : 17 Gift D¢ Julie King 20355: 25593 § Brid: CT 97562 usa 84300.0

27 17 Dsakai Moryv Kentary +R1 0i 1-R-20 T Kitad Osakz 530-0007 lanan /12000 Z
arT| [>] Total 122 records shown

Consume a REST-based Web Service | Blaine Mincey 16

RESOURCES

JBoss Enterprise Data Services Documentation

http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Data_Services/index.html

QUESTIONS/ICOMMENTSI/ISSUES

If you have questions or comments about this whitepaper, please enter them in the Red Hat customer portal
for this specific whitepaper: https://access.redhat.com/knowledge/techbriefs . If you have a technical issue
following this whitepaper please open a support case: https://access.redhat.com/support/cases/new.

Consume a REST-based Web Service | Blaine Mincey 17

Copyright © 2011 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products www.redhat.com
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

https://access.redhat.com/support/cases/new
https://access.redhat.com/knowledge/techbriefs
http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Data_Services/index.html

	Blaine Mincey 10/17/2011
	The purpose of this paper is to provide an introduction on how to consume a REST-based Web Service as a relational data source using the Teiid Designer which is part of the JBoss Developer Studio (JBDS) Eclipse-based IDE. The Teiid Designer is a visual tool that enables rapid, model-driven definition, integration, management, and testing of data services. This tool is part of the Enterprise Data Services Platform (EDSP) product. EDSP is a powerful set of tools and runtime components that makes it easy for your applications and business processes to integrate and use data from many data sources.
	Overview 2
	Environment 2
	Example REST-based web service 3
	Sample Xml 4
	create new model project 5
	Physical data source 6
	Connection profile 8
	Virtual base layer 13
	transformation 15
	RESOUrces 17
	Questions/comments/issues 17
	Overview
	This technical brief will guide you through the steps required to build a Teiid project that will consume a REST-based web service as a relational data model. This relational model can then be used in conjunction with other virtualized relational models to further extend your data abstraction layer. Specifically, the following steps will be performed:
	1. Create and deploy a RESTful service that can be invoked by the Enterprise Data Services Platform
	2. Create a project in JBoss Developer Studio using the Teiid Designer
	3. Model the physical structure of the RESTful service
	4. Connect to the RESTful service through JBoss Developer Studio using a Connection Profile
	5. Create the virtual abstraction layer for the data returned by the RESTful service
	6. Transform the data into the virtual abstraction layer
	7. Test the newly created virtual relational model
	Environment
	The following environment was utilized in order to produce the required artifacts for this example. It should be noted that this example should work with slightly different version numbers of the listed tools. However, different tool configurations were not tested.
	Operating System: RHEL 6.1 (Santiago)
	JVM: Sun/Oracle 1.6.0_25 64-bit
	NOTE: It should be noted that this specific environment is not required. There are JBDS binaries for not only RHEL, but Windows and Mac-OSX platforms as well. Additionally, the JBoss Enterprise Data Services Platform is supported with a compatible JVM so it is possible to run it on a variety of operating systems including RHEL, Windows, and Solaris.
	There is an example REST-based Web Service available within a public repository on GitHub (http://www.github.com) that was utilized as the data source for this paper. Instructions will be provided later in the paper on how to acquire the source artifacts from GitHub as well as how to build and deploy the application. The following tools were used for the REST-based Web Service.
	Git: 1.7.1
	Maven: 3.0.3
	Example REST-based web service
	In order to provide an easy way to get started with this example, a sample REST-based Web Service is available for download. No knowledge of REST or web services is required to build and deploy the application. A general understanding of both Git and Maven is required. Additional information on Git is available at http://git-scm.com/. This link provides information on how to setup Git for your target environment. Additionally, Maven information can be found at http://maven.apache.org/. This link provides a tutorial as well as the ability to download the Maven binaries. If this is your first time using Maven, you will need to point your Maven settings to the JBoss Maven repositories in order to access JBoss artifacts. The following article describes how to do this: http://community.jboss.org/wiki/MavenGettingStarted-Users.
	The public GitHub repository for the example REST-based Web Service is at https://github.com/blainemincey/CustomerRESTWebSvc.
	In order to download the repository to your local workstation, execute the following command from a command or terminal window:
	git clone git://github.com/blainemincey/CustomerRESTWebSvc.git
	If git has been configured correctly on your system, this command will copy the public repository to your local workstation. After the command is completed, there should be a new directory, CustomerRESTWebSvc. Now, ‘cd’ (change directory) into this newly created directory. There should be a pom.xml file, a README file, and a src directory.
	At this point, if Maven has been correctly installed on your system, you can simply execute the following Maven command in order to build the WAR file that will be deployed to the Data Services Platform.
	mvn clean compile war:war
	This command will compile the source files as well as build a deployable WAR file. This command will create a ‘target’ directory. This newly created directory will contain the CustomerRESTWebSvc.war file. This file can simply be copied to the running configuration’s ‘deploy’ directory of the Enterprise Data Services Platform. In order to manually test the web service to ensure it is working correctly, open a browser to the following location:
	http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList
	Sample Xml
	The following XML snippet serves as an example of the literal XML result from the REST-based Web Service that was deployed in the previous step. This is simply a single record from the web service. It should be noted that well over 100 records will be returned upon executing the REST Web Service.
	create new model project
	With JBDS opened in the Teiid Designer perspective, right-click within the Model Explorer section and select “New” and then “Teiid Model Project”.
	Physical data source
	The solution to many of today’s data challenges is data virtualization. JBoss Enterprise Data Services Platform provides you with the ability to create a data abstraction, or data virtualization, layer on top of your physical data sources. It is then possible to create a variety of virtual data layers on top of your physical data sources and expose them as a single interface. For the purpose of this paper, you will be able to model a REST based web service and make it appear as a relational data source. From this point, it is possible to join the data source with other virtual models providing you with the means to turn the data you have into the information you need.
	At this point, the physical data source can be modeled. Right-click on the folder “DataSources” and select “New” and then “Teiid Metadata Model”.
	For this example, the location of this metadata model should be within the datasources folder. As indicated above, the Model Name is “MyRESTDataSource”, Model Class is “Relational”, and Model Type is “Source”. It is also important to be sure and select “Generate Web Service Translator Procedures”. At this point, click the “Next” button in the bottom right-hand corner. This will bring up the window below.
	The window indicates that there are two separate Available Web Service Translator Procedures: invoke and invokeHttp. For the purposes of this example, select the first method which is “invoke”. After clicking the “Finish” button, the Teiid Designer perspective should resemble the image below.
	Connection profile
	A connection profile is used to identify the actual data source required for the physical data source representation within the Teiid Designer. In fact, it might be easier to associate this with being the *-ds.xml (data source connection file) that is required by the JBoss Enterprise Application Platform for JNDI based data sources. In other words, the connection profile defines the actual data source connection from within the context of JBoss Developer Studio.
	At this point, it is important to point the metadata model to a connection profile. Right-click on “MyRESTDataSource.xmi”. Select “Modeling” and then “Select Connection Profile”. The following pop-up window should open.
	Click the “New” button along the top row to create a new connection profile. The “New Connection Profile” window should open as indicated in the image below.
	Scroll down the list of available Connection Profile types. Select “Web Services Data Source (non-SOAP)”. As indicated in the image, the name of the connection profile is “MyRESTDataSourceConnectionProfile” and the Description is “My connection profile to my REST-based Web Service”.
	Now, click the “Next” button along the bottom row. The following window will open.
	Within this window, be sure to enter the “Connection URL” of the REST-based web service that is being modeled. Additionally, if the web service requires authentication, the values can be entered here as well. For purposes of this paper, a non-secured web service was utilized. For the purposes of this example, use the URL for the example REST-based Web Service that was deployed to the platform earlier. If you are using this REST-based Web Service, the Connection URL to use will be:
	http://localhost:8080/CustomerRESTWebSvc/MyRESTApplication/customerList
	If you are using a different REST-based Web Service, be sure to enter the correct URL for that one. Once this has been entered, click the “Finish” button.
	Now, be sure to select the Connection Profile that was just created: “MyRESTDataSourceConnectionProfile”.
	At this point, a pop-up window should appear requesting the password for the referenced connection profile. It is important to note that this password is required for this example to work. You did not overlook the password creation in an earlier section within this document because it was not required. The reason for a password is so that the Teiid Designer will be able to properly initiate the creation of a preview data source that is used strictly by the Teiid Designer. Again, this password simply needs to be any series of characters or a single character. It will simply allow the OK button to become enabled.
	Be sure to enter any password. Again, this is required so that a PREVIEW data source file will be generated and deployed to the running EDSP instance that is configured with JBDS. For this example, the password used was “user” which is the default Teiid JDBC connection password.
	Virtual base layer
	At this point, you should begin to be able to see the power of data virtualization. You have worked through creating essentially the pointers to the physical data source, the REST web service. Now, it is time to begin building the virtual layer on top of the physical data source. Ultimately, this provides you with the capabillity to model your virtual layers to be exactly what you need them to be. It would now be possible to “join” this virtual relational model with another virtual relational model and expose it as a single virtual table through an external interface. To your applications, these disparate data sources will now be able to appear as a single relational table within a virtual database!
	Now that we have our physical data source modeled, we can create the virtual base layer that will act as our relational model. It should be noted that additional virtual layers can be built upon the virtual base layer.
	Right-click on the “VirtualBaseLayer” folder. Select “New” and “Teiid Metadata Model”.
	As indicated above, the New Model Wizard window will open. Be sure to check that the location of this model is within the VirtualBaseLayer folder. In this instance, the Model Name is “MyCustomers_VBL”, the Model Class is “Relational”, and the Model Type is”View Model”. Do not select a model builder from the list. Now, click the “Finish” button.
	Now right-click within the model that was just created. Select “New Child” and then “Base Table”. Double-click within the Base Table and rename it to “MyCustomers”. The Teiid Designer perspective should look like the image below.
	Notice that there is a red “X” which indicates that there are errors within this model. This is due to not having any columns within this model. Now, double-click on the MyCustomers base table to open up the Transformation Editor.
	At this point, it is extremely important to note the format of the literal XML data that is returned from your REST-based web service. The following transformation is specific to the XML snippet that is referenced at the beginning of this document.
	transformation
	The following transformation can simply be copied and pasted within the Transformation Editor in the Teiid Designer perspective.
	There are a few important items to take note of. This is simply a standard SQL SELECT statement integrated with some Teiid constructs and XPath. The SELECT portion is very easy to follow as these are the columns that will make up our base table, MyCustomers. The FROM clause executes the physical data source that was created in earlier steps. Then, the XMLTABLE function was utilized in order to query the result from the web service and parse the elements. When parsing the various elements, be sure to utilize correct data types as well as the XPath elements that correspond to your literal XML result.
	Using the example transformation above, the resulting transformation should look similar to the image below.
	At this point, the MyCustomers base table can be clicked in order to enable the “Preview” button,
	For illustrative purposes, the image below is the resulting preview of the data.
	RESOUrces
	JBoss Enterprise Data Services Documentation
	http://docs.redhat.com/docs/en-US/JBoss_Enterprise_Data_Services/index.html
	Questions/comments/issues
	If you have questions or comments about this whitepaper, please enter them in the Red Hat customer portal
	for this specific whitepaper: https://access.redhat.com/knowledge/techbriefs . If you have a technical issue
	following this whitepaper please open a support case: https://access.redhat.com/support/cases/new.

