Practical Rule Engines
Or
How | Learned to Stop
Worrying and Set Up Us the
Bomb

Thomas Meeks

This might not make sense without the corresponding talk.

What is a rule engine?

A system that attempts to act as a domain expert

% barcamp

Gartner Hype Cycle

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

{ Technology Trigger

ORLANDO

bar

Gartner Hype Cycle

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

{ Technology Trigger

ORLANDO

bar

So lets climb the Peak of
Inflated Expectations

lelps simplify comp

_owers the cost of ¢

.Usually very fast

icated logic

nanging business logic

.Basically a business logic framework

% barco

ORLANDO

Mmp

Wait, did you say... framework?

% barcamp

Form y business logic?

% barcamp

So | have a framework for:

. My Ul (wicket, JSF, tapestry)

. My Database (hibernate, iBatis)
. Logging (commons logging)

. Compilation (ant, maven)

| even have a framework to tie together all my
frameworks!!!! (spring, guice)

% barcamp

And now you want me to use another
framework... For my business logic!?

% barcamp

ORLANDO

barcomp

| feel your pain (really), but...

It's a hammer, not a bullet

Use rule engines when it makes sense, or
you will hate them

% barcamp

When should | use a Rule
Engine?
.Complicated logic (not 1+1 = 2)
.Changes often (whatever that means)

. Iraditional approaches are unmaintainable

% barcamp

A

A

ORLANDO

barcamp

..... = . , = T
o E_ .
s F - =
g -
E E %
I
= | =t
1
Y s i
§
(! i i =
A

Don't use for a shopping cart

.Don't use on applications with simple
business logic

.If the logic is complicated but will never
(ever) change, might not need it.

.Easy logic, changes often?

. Scripting

% barcamp

_
tag

TagEvent

Tag

oavg —

date

value

label
schema

Toaf:Agent

foaf:name

foal:mbox

ORLANDO

Didn't you say something
about speed?

ORLANDO

Rete

. Latin for “net”
. As In network, or graph

. Performance is theoretically independent of
the number of rules in the system

. Here's a quick overview

% barcamp

Rete

Type Nodes
Root
Node
Facts C:>
&
\
\
\ Alpha
Memaory

Assertions &
Ratractions

ORLANDO

barcomp

Example

HEMUARKTM * ONHEENIY ZET 1D

Captn' the Domain Expert

. Arr, Take off every
ZIG! (For great
justice! Grr.)

ORLANDO

arcompo

if (us.somebodySetUsUpTheBomb ()) ({
for (Zig zig : us.getZigs()) {
zig.launch(); // for justice!
}
}

% barcamp

Sally the Mechanic

. Zigs should not
launch without
their weapon
system...

% barcamp

Which, of course, are...

Atomic
Kittens!

B #

KITTY HAS REACHED CRITICAL MASS

»% barcamp

1f (us.somebodySetUsUpTheBomb ()) {
for (Zig zig : us.getZigs()) {
if (zig.hasAtomicKitty()) {
z1g.launch () ;

}
J
J

% barcamp

Johnny the Regulator

. Zigs must have
been inspected In

the last 24 hours
to launch!

1f (us.somebodySetUsUpTheBomb ()) {
for (Zig zig : us.getZigs()) {
1f (zig.hasAtomicKitty()
&& zig.isInspected()) {
z1g.launch () ;

J

% barcamp

Johnny the Regulator

. Oh, and rule

23. 43 S7a#32.57
explicitly states
that no more than
10 Zigs can fly at a
time!

1f (us.somebodySetUsUpTheBomb ()) {

int i = 0;
for (219 zi1ig : us.getZigs()) {
if (1 == 10) {
break;
}
1f (zig.hasAtomicKitty ()
&& zig.linspected()) {
z1g.launch () ;
i1++;

J
J

}
% barcamp

Captn' the Domain Expert

. Arr! Only 1017

. If a Zig be shot
down, launch
more!

. Or ye be walkin
the plank!

Hmmm....

. We could keep checking every Zig's status in
an infinite loop.

. We could implement the observer pattern on
Zigs (when they explode, they tell someone).

. etc...

. Lets stick with the loop for the example

% barcamp

int i = 0;
while (us.somebodySetUsUpTheBomb()) ({
for (Z1g z1ig : us.getZigs()) {
if (zig.hasExploded()) {
us.getZigs () .remove (ziq) ;
i--;
continue;
}
1f (zi1g.hasAtomicKitty () && zig.lnspected()
&& 1 < 10) ¢{
z1g.launch () ;
1++;
}
}

% barcamp

Sally the Mechanic

. If those Zigs get
beat up, they
should land so |
can fix them!

. And don't try to
launch them while
I'm working on
them!

ﬁ% barcamp

int 1 = 0;
while (somebodySetUsUpTheBomb ()) {
for (Zig zig : us.getZigs()) {

if (zig.needsMaintenance()) ({
zig.land() ;
mechanic.startFixing(ziqg) ;
i--;
continue;

}

if (zig.hasExploded()) {
us.getZigs () .remove (z19) ;
1--;
continue;

}
1if (zig.hasAtomicKitty () && zig.inspected/()

&& 1 < 10 && 'zig.inMaintenance()) {
z1g.launch () ;
i++;
}

% barcamp

Johnny the Regulator

b

ORLANDO

arcamp

. | forgot to mention
that rule
23.43-57a#32.57a
explicitly states
that all Zigs can fly
iIf you fax form
453.438-347#B in
triplicate

Captn' the Domain Expert

. Arr! That form
takes hours to fill!

. Arr! Launch 10
until we fax it, then
Take off every Zig!
(for great justice,

grr.)

int 1 = 0;
while (somebodySetUsUpTheBomb ()) {
form.asyncFillOutAndFax () ;

for (Zig zig : us.getZigs()) {
1f (zig.needsMaintenance ()) {
zig.land() ;
mechanic.startFixing (z1iqg) ;
i-=7
continue;

}

if (zig.hasExploded()) {
us.getZigs () .remove (z1qg) ;
1-—;

continue;

}
if (zig.hasAtomicKitty () && zig.inspected()

&& (1 < 10 || form.isFaxed()) && !zig.inMaintenance()) {
zig.launch () ;
i++;

}
}

% barcamp

Johnny the Regulator

. We just changed
the rules!

. All Zigs must be
pink to fly

Sally the Mechanic

. Paint them pink!?
That will take
months! We have
thousands!

% barcamp

Captn' the Domain Expert

. Arr! Take off all
pink Zigs!

. |If we finish
painting a Zig,
launch It!

This is getting complicated!

. Thousands of Zigs? That loop could take a
while.

. A lot of event-driven logic

. Looks like it is going to end up really messy

. No, the regulator will not stop

% barcamp

Wait a second...

. You might be thinking — that was awfully
arbitrary!

. Or — Hey, | can make up stupid
requirements that are hard to implement in
a huge loop cleanly too!

. | must assume you aren't in a regulated
industry...

% barcamp

So Lets Take a Look at Rules

. Specifically Drools / Jboss Rules

. It is a Domain Specific Language (DSL)
that wraps plain Java

. Plenty of other implementations in other
languages.

. Not necessarily more concise

% barcamp

rule “take off every zig for great Jjustice”
no-loop true;

when
Us (somebodySetUpUsTheBomb == true)
zig : Zig(inspected == true,
pink == true,
atomicKitten == true,
inMaintenance == false,
launched == false)
launched : launched(launched < 10
| | formFaxed == true)
then

zig.launch() ;
launched.increment () ;
update (zigqg) ;

update (launched) ;

% barcamp

rule “zig explodes”
no-loop true

when
zig : Zig(destroyed == true)
launched : Launched()

then

retract(zig)
launched.decrement () ;
update (launched) ;

end

% barcamp

rule “repair zig”
no-loop true

when
zig : Zig(needsMaintenance == true)

mechanic : Mechanic()
launched : Launched()

then
zig.land() ;
launched.decrement () ;
mechanic.startFixing(zig); //update zig when done
update (zigqg) ;
end

% barcamp

Where's the loop?

. It is implied

. Each rule fires for each fact combination
that matches

. If you assert 1000 Zigs, the first rule will be
checked 1000 times.

% barcamp

This is kinda confusing

. Think about it like an event-driven system

. It will re-schedule rules when insert(),
update(), or retract() is called

% barcamp

Neato Spandito

. New rules can be gracefully inserted into a
large ruleset

. Will automatically fire when conditions
are met

. Caching facts makes execution very fast

. Properly managed rules can create very
dynamic systems

% barcamp

Now Lets Descend into
Disillusionment

. Easy to overuse rules

. Not all logic (even in complex systems)
should be in rules

. Notice that | don't have a rule describing
how a Zig launches

. Bugs can be evil

% barcamp

Evil Bugs?

. Usually in a DSL — IDE's are not as mature

. Rules are recursive & loosely coupled by
nature

. Rules usually compiled at runtime

. But not every time they are executed

% barcamp

Java Bug

ORLANDO

barcomp

C / C++ Bug
I'm In ur programz

ORLANDO

Drools Bug

ORLANDO

Onwards! To Enlightenment!

. Don't avoid adding fact classes
. Irying to avoid it leads to messy rules

. Let the rule engine deal with the when,
rather than the how

. Orchestrate business logic

. Work with your domain model as if it
were a DSL itself

ORLANDO

barcomp

Onwards! To Enlightenment!

. Assert object's, don't walk graphs

. trade.getAccount().getClient() is usually
bad

. Helps as you add more rules
. Read!

. A bunch of links are on
www.thomasmeeks.com

ORLANDO

barcomp

A quick aside on choosing a
rule engine...
. Avoid XML DSL's

. It needs to have a NOT conditional (e.qg.
Operate on the non-existance of a fact)

. Don't trust claims of graphical programming
. It Is neat, but not a bullet

. Non-programmers probably shouldn't write
the final rules in the rule engine

ORLANDO

barcomp

Questions?

Thanks!

