
Practical Rule Engines
Or

How I Learned to Stop
Worrying and Set Up Us the

Bomb
Thomas Meeks

This might not make sense without the corresponding talk.

What is a rule engine?
A system that attempts to act as a domain expert

So lets climb the Peak of
Inflated Expectations

•Helps simplify complicated logic

•Lowers the cost of changing business logic

•Usually very fast

•Basically a business logic framework

Wait, did you say... framework?

For my business logic?

So I have a framework for:

• My UI (wicket, JSF, tapestry)

• My Database (hibernate, iBatis)

• Logging (commons logging)

• Compilation (ant, maven)

I even have a framework to tie together all my
frameworks!!!! (spring, guice)

And now you want me to use another
framework... For my business logic!?

It's a hammer, not a bullet

Use rule engines when it makes sense, or
you will hate them

I feel your pain (really), but...

When should I use a Rule
Engine?

•Complicated logic (not 1+1 = 2)

•Changes often (whatever that means)

•Traditional approaches are unmaintainable

Don't use for a shopping cart

•Don't use on applications with simple
business logic

•If the logic is complicated but will never
(ever) change, might not need it.

•Easy logic, changes often?

•Scripting

Didn't you say something
about speed?

Rete

• Latin for “net”

• As in network, or graph

• Performance is theoretically independent of
the number of rules in the system

• Here's a quick overview

Example

Captn' the Domain Expert

• Arr, Take off every
ZIG!!! (For great
justice! Grr.)

if (us.somebodySetUsUpTheBomb()) {
 for (Zig zig : us.getZigs()) {
 zig.launch(); // for justice!
 }
}

Sally the Mechanic

• Zigs should not
launch without
their weapon
system...

Which, of course, are...

Atomic
Kittens!

if (us.somebodySetUsUpTheBomb()) {
 for (Zig zig : us.getZigs()) {
 if (zig.hasAtomicKitty()) {
 zig.launch();

}
 }
}

Johnny the Regulator

• Zigs must have
been inspected in
the last 24 hours
to launch!

if (us.somebodySetUsUpTheBomb()) {
 for (Zig zig : us.getZigs()) {
 if (zig.hasAtomicKitty()
 && zig.isInspected()) {
 zig.launch();

}
 }
}

Johnny the Regulator

• Oh, and rule
23.43-57a#32.57
explicitly states
that no more than
10 Zigs can fly at a
time!

if (us.somebodySetUsUpTheBomb()) {
 int i = 0;
 for (Zig zig : us.getZigs()) {
 if (i == 10) {
 break;
 }
 if (zig.hasAtomicKitty()
 && zig.inspected()) {
 zig.launch();
 i++;
 }
 }
}

Captn' the Domain Expert

• Arr! Only 10!?

• If a Zig be shot
down, launch
more!

• Or ye be walkin'
the plank!

Hmmm....

• We could keep checking every Zig's status in
an infinite loop.

• We could implement the observer pattern on
Zigs (when they explode, they tell someone).

• etc...

• Lets stick with the loop for the example

int i = 0;
while (us.somebodySetUsUpTheBomb()) {
 for (Zig zig : us.getZigs()) {
 if (zig.hasExploded()) {
 us.getZigs().remove(zig);
 i--;
 continue;
 }
 if (zig.hasAtomicKitty() && zig.inspected()
 && i < 10) {
 zig.launch();
 i++;
 }
 }
}

Sally the Mechanic

• If those Zigs get
beat up, they
should land so I
can fix them!

• And don't try to
launch them while
I'm working on
them!

int i = 0;
while (somebodySetUsUpTheBomb()) {
 for (Zig zig : us.getZigs()) {
 if (zig.needsMaintenance()) {
 zig.land();
 mechanic.startFixing(zig);
 i--;
 continue;
 }
 if (zig.hasExploded()) {
 us.getZigs().remove(zig);
 i--;
 continue;
 }
 if (zig.hasAtomicKitty() && zig.inspected()
 && i < 10 && !zig.inMaintenance()) {
 zig.launch();
 i++;
 }
 }
}

Johnny the Regulator

• I forgot to mention
that rule
23.43-57a#32.57a
explicitly states
that all Zigs can fly
if you fax form
453.438-347#B in
triplicate

Captn' the Domain Expert

• Arr! That form
takes hours to fill!

• Arr! Launch 10
until we fax it, then
 Take off every Zig!
(for great justice,
grr.)

int i = 0;
while (somebodySetUsUpTheBomb()) {
 form.asyncFillOutAndFax();
 for (Zig zig : us.getZigs()) {
 if (zig.needsMaintenance()) {
 zig.land();
 mechanic.startFixing(zig);
 i--;
 continue;
 }
 if (zig.hasExploded()) {
 us.getZigs().remove(zig);
 i--;
 continue;
 }
 if (zig.hasAtomicKitty() && zig.inspected()
 && (i < 10 || form.isFaxed()) && !zig.inMaintenance()) {
 zig.launch();
 i++;
 }
 }
}

Johnny the Regulator

• We just changed
the rules!

• All Zigs must be
pink to fly

Sally the Mechanic

• Paint them pink!?
That will take
months! We have
thousands!

Captn' the Domain Expert

• Arr! Take off all
pink Zigs!

• If we finish
painting a Zig,
launch it!

This is getting complicated!

• Thousands of Zigs? That loop could take a
while.

• A lot of event-driven logic

• Looks like it is going to end up really messy

• No, the regulator will not stop

Wait a second...

• You might be thinking – that was awfully
arbitrary!

• Or – Hey, I can make up stupid
requirements that are hard to implement in
a huge loop cleanly too!

• I must assume you aren't in a regulated
industry...

So Lets Take a Look at Rules

• Specifically Drools / Jboss Rules

• It is a Domain Specific Language (DSL)
that wraps plain Java

• Plenty of other implementations in other
languages.

• Not necessarily more concise

rule “take off every zig for great justice”
 no-loop true;
 when
 Us(somebodySetUpUsTheBomb == true)
 zig : Zig(inspected == true,
 pink == true,
 atomicKitten == true,
 inMaintenance == false,
 launched == false)
 launched : launched(launched < 10
 || formFaxed == true)
 then
 zig.launch();
 launched.increment();
 update(zig);
 update(launched);
end

rule “zig explodes”
 no-loop true
 when
 zig : Zig(destroyed == true)
 launched : Launched()
 then
 retract(zig)
 launched.decrement();
 update(launched);
end

rule “repair zig”
 no-loop true
 when
 zig : Zig(needsMaintenance == true)
 mechanic : Mechanic()
 launched : Launched()
 then
 zig.land();
 launched.decrement();
 mechanic.startFixing(zig); //update zig when done
 update(zig);
end

Where's the loop?

• It is implied

• Each rule fires for each fact combination
that matches

• If you assert 1000 Zigs, the first rule will be
checked 1000 times.

This is kinda confusing

• Think about it like an event-driven system

• It will re-schedule rules when insert(),
update(), or retract() is called

Neato Spandito

• New rules can be gracefully inserted into a
large ruleset

•Will automatically fire when conditions
are met

• Caching facts makes execution very fast

• Properly managed rules can create very
dynamic systems

Now Lets Descend into
Disillusionment

• Easy to overuse rules

• Not all logic (even in complex systems)
should be in rules

•Notice that I don't have a rule describing
how a Zig launches

• Bugs can be evil

Evil Bugs?

• Usually in a DSL – IDE's are not as mature

• Rules are recursive & loosely coupled by
nature

• Rules usually compiled at runtime

•But not every time they are executed

Java Bug

C / C++ Bug

Drools Bug

Onwards! To Enlightenment!

• Don't avoid adding fact classes

•Trying to avoid it leads to messy rules

• Let the rule engine deal with the when,
rather than the how

•Orchestrate business logic

•Work with your domain model as if it
were a DSL itself

Onwards! To Enlightenment!

• Assert object's, don't walk graphs

• trade.getAccount().getClient() is usually
bad

•Helps as you add more rules

• Read!

•A bunch of links are on
www.thomasmeeks.com

A quick aside on choosing a
rule engine...

• Avoid XML DSL's

• It needs to have a NOT conditional (e.g.
Operate on the non-existance of a fact)

• Don't trust claims of graphical programming

• It is neat, but not a bullet

• Non-programmers probably shouldn't write
the final rules in the rule engine

Questions?

Thanks!

