What to do about
sun.misc.Unsafe

15 June 2015

Greg Luck, Hazelcast JCP EC representative

Chris Engelbert, Hazelcast JCP EC representative
Martijn Verburg, LJC JCP EC representative

Ben Evans, LJC JCP EC representative

Gil Tene, Azul Systems EC representative

Peter Lawrey, Higher Frequency Trading, Java Champion
Rafael Winterhalter, Bouvet ASA

Contents

Summary
Current Problems

Widespread Community use of sun.misc.Unsafe - a proprietary API
Pending removal in Java 9 with Modularisation
Lack of Maintenance of Bugs in Unsafe
Missing Cross-Vendor Specification
Uses of Unsafe
Withdrawn JEPs
Possible Replacements for some aspects (mentioned in the past)
What is Needed
An open, transparent process for planning the retirement of Unsafe
A mapping of Unsafe Features to safe, stable alternatives in Java 9
Fields in sun.misc.Unsafe
JSRs and JEPS
Proposal - Working Group
Working Group Members
JCP EC Members
Third Party Experts

Summary
e Unsafe has become a de facto but not an official standard



e Oracle’s move to clarify this is welcome if it is constructive and not destructive
e The community feels very strongly that there is an upgrade path missing
e We would like to open the debate about how that path should be defined

Current Problems

Widespread Community use of sun.misc.Unsafe - a proprietary API
sun.misc.Unsafe has wide traction in common Java frameworks and applications. Most
applications, at least indirectly, depend on some library that uses Unsafe to speed up one thing
or another.

In fact, even standard libraries such as java.util.concurrent depend upon pieces of Unsafe (such
as park and CAS operations) for which there is no realistic alternative.

Over time, Unsafe has becoming a “dumping ground” for non-standard, yet necessary, methods
for the platform, with useful methods that are relatively safe in experienced hands (such as the
CAS operations) being lumped in with low-level methods that are of no real use to library
developers.

Pending removal in Java 9 with Modularisation

Access to sun.misc.Unsafe is currently slated to be prevented in the upcoming Java 9 release
as part of Project Jigsaw. This will break frameworks that do not (or cannot) offer a sufficient
fallback and will still harm frameworks that do provide a fallback implementation, as the primary
reason for adopting Unsafe in the first place is usually performance.

While additional JNI libraries could provide the same functionality as Unsafe, such libraries
would need to provide 32-bit and 64-bit as well as Windows and Linux variations. This is less
safe than the Unsafe class in Java 8, or a potential replacement in Java 9, as each framework
would have to offer it's own implementation. To achieve comparable performance, more
functionality would need to be migrated into C. e.g. an operation to read or write a String in
UTF-8 format to/from native memory can be written in Java currently and achieve near C
speeds, but without the intrinsics available in Unsafe, such an operation would have to be
written in JNI to avoid crossing the JNI barrier too many times.

Lack of Maintenance of Bugs in Unsafe
Mark Reinhold advised Oracle will not fix bugs reported against Unsafe.

Hazelcast reported a JIT bug that was manifesting as an Unsafe bug starting with Java 8 build
40.


http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-June/018191.html

“Sorry, but as you know sun.misc.Unsafe is not just unsafe but it's not supported for use outside
of the JDK.*
--- Mark Reinhold, 10 June 2015

Missing Cross-Vendor Specification

The current sun.misc.Unsafe class is not specified. Content changes from version to version
and vendor to vendor. Cross-JVM implementations need to check for a lot of circumstances to
make sure the Unsafe based implementation works on most JVMs.

Uses of Unsafe

Low, very predictable latencies (low GC overhead)

Fast de-/serialization

Thread safe 64-bit sized native memory access (for example offheap)
Atomic memory operations

Efficient object / memory layouts

Fast field / memory access

Custom memory fences

Fast interaction with native code

Multi-operating system replacement for JNI.

“Type hijacking” of classes for type-safe APIs without calling a constructor.

Examples of projects/products using Unsafe

MapDB

Netty

Hazelcast
Cassandra
Mockito / EasyMock / JMock / PowerMock
Scala Specs
Spock

Robolectric

Grails

Neo4j

Apache Kafka
Apache Wink
Apache Storm
Apache Continuum
Zookeeper



Dropwizard

Metrics (AOP)

Kryo

Byte Buddy

Hibernate

Liquibase

Spring Framework
Ehcache (sizeof)
OrientDB

Chronicles (OpenHFT)
Apache hadoop, Apache HBase (hadoop based database)
GWT

Disruptor

jRuby

Real Logic Argona

Withdrawn JEPs

There is a lack of transparency over what has happened here. Much of the community think
wrongly there are JEPS to deal with these issues, but in fact some of the JEPs have been
cancelled.

Possible Replacements for some aspects (mentioned in the past)

Green = Already available / Will be available in Java 9
Orange = May be available in Java 9
Red = Unlikely to be available in Java 9

Proposal Expected in Java 9

VarHandle (no JEP) no

Project Panama (JFFI, JEP 191) maybe

Serialization 2.0 (JEP 187) no (JEP disappeared - wayback machine)
ValueTypes (no JEP) no

Enhanced Volatiles (JEP 193) maybe

Arrays 2.0 (no JEP) maybe



http://www.oracle.com/technetwork/java/jvmls2014sandoz-2265216.pdf
http://openjdk.java.net/projects/panama/
http://openjdk.java.net/jeps/191
http://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187
http://cr.openjdk.java.net/~jrose/values/values-0.html
http://openjdk.java.net/jeps/193
http://cr.openjdk.java.net/~jrose/pres/201207-Arrays-2.pdf

Variable Object Layout (no JEP)

no

Byte Buffers

available today (but missing 64 bit and atomic

operations)

Extending Field / Array reflection access

not yet discussed

What is Needed

An open, transparent process for planning the retirement of Unsafe

Ideally, the retirement of Unsafe should be governed by a JEP within OpenJDK, with a JSR to
cover the standardisation of the “good / safe pieces of Unsafe”.

A mapping of Unsafe Features to safe, stable alternatives in Java 9

In OpenJDK 7 sun.misc.Unsafe consisted of 105 methods. These subdivide into a few groups of

important methods for manipulating various entities. Here are some of the main groupings:

Off-heap memory access is the number one used feature followed by Memory Information.

Green = Full Replacement
Orange = Possible Replacement (partly replacing the functionality)

Red = None
Feature sun.misc.Unsafe Usage Java 9 replacement,
Google Search Results® if any

Memory Information | addressSize 17,700
pageSize 65,800

Objects allocatelnstance 5,290 Reflection (Field),
objectFieldOffset 2,820 JEP 1937

Classes staticFieldOffset 2,820
defineClass 11,400
defineAnonymousClass 2,350
ensureClasslnitialized 2,760

Arrays arrayBaseOffset 1,560 Reflection (Array),
arraylndexScale 4,960 Enhanced Volatiles -



http://www.docjar.com/docs/api/sun/misc/Unsafe.html

JEP 1937

Synchronization

monitorEnter
tryMonitorEnter
monitorExit
park

unpark

4,680
2,360
14,700
N/A
13,200

Existing Java syntax
and libraries.

park / unpark by
using LockSupport

“Safe Unsafe”
On-heap Object

Unordered field access:
getX(Object o, ...)

26.300 (object)

Reflection (Field,

access putX(Obiject o, ...) 5.420 (object) Array).
Volatile/ordered field access: Enhanced Volatiles -
Note: All other getXVolatile 3.350 (object) JEP 1937
access operations putXVolatile 3.110 (object) VarHandle?, Arrays
(e.g. getX/putX with putOrderedX 4.030 (int) 2.07?, Variable Object
address argument) | Atomics: Layout,
are currently invalid compareAndSwapX 3.800 (int) A fences API JEP?
(as in “will cause getAndAddX 1.010 (int)
random heap getAndSetX 290 (int)
corruption”) for Fences:
on-heap object storeFence 1.820
access readFence 202
fullFence 1.900
copyMemory(Object src, ..., 19.400
Object dst, ...)
setMemory(Object o, ...) 19.900
Off-heap Memory allocateMemory 39,200 Mapped Byte Buffers
access freeMemory 122,000 (Speed-enhanced
copyMemory 19.400 mapped buffer? e.g.
setMemory 19.900 ones with a constant
getAddress 10.600 limit that can allow

Unordered field access:
getX(long address, ...)
putX(long address, ...)

Volatile/ordered field access:

getXVolatile(0, ...)
putXVolatile(0, ...)
putOrderedX(0, ...)
Atomics:
compareAndSwapX(0, ...)
getAndAddX(0, ...)
getAndSetX(0, ...)
Fences:
storeFence
readFence
fullFence

26.300 (object)
5.420 (object)

3.350 (object)
3.110 (object)
4.030 (int)

3.800 (int)
1.010 (int)
290 (int)

1.820
202
1.900

compilers to avoid
range checks in
loops)

Variable Object
Layout,

A fences API JEP?




¥ An indicator of popularity

Fields in sun.misc.Unsafe

INVALID_FIELD_OFFSET

ARRAY_ BOOLEAN_BASE_OFFSET

ARRAY_BYTE_BASE_OFFSET

ARRAY_ SHORT BASE_OFFSET

ARRAY_CHAR_BASE_OFFSET

ARRAY_INT_BASE_OFFSET

ARRAY LONG_BASE_OFFSET

ARRAY_FLOAT_BASE_OFFSET

ARRAY_DOUBLE_BASE_OFFSET

ARRAY_ OBJECT BASE_OFFSET

ARRAY_BOOLEAN_INDEX_SCALE

ARRAY_ BYTE_INDEX_SCALE

ARRAY_SHORT_INDEX_SCALE

ARRAY_CHAR_INDEX_SCALE

ARRAY _INT_INDEX_SCALE

ARRAY_LONG_INDEX_SCALE

This constant differs from all results that will
ever be returned from #staticFieldOffset ,
#objectFieldOffset , or #arrayBaseOffset .

The value of {@code
arrayBaseOffset(boolean[].class)}

The value of {@code
arrayBaseOffset(byte[].class)}

The value of {@code
arrayBaseOffset(short[].class)}

The value of {@code
arrayBaseOffset(char[].class)}

The value of {@code
arrayBaseOffset(int[].class)}

The value of {@code
arrayBaseOffset(long[].class)}

The value of {@code
arrayBaseOffset(float[].class)}

The value of {@code
arrayBaseOffset(double[].class)}

The value of {@code
arrayBaseOffset(Object[].class)}

The value of {@code
arraylndexScale(boolean(].class)}

The value of {@code
arraylndexScale(byte[].class)}

The value of {@code
arraylndexScale(short[].class)}

The value of {@code
arraylndexScale(char[].class)}

The value of {@code
arraylndexScale(int[].class)}

The value of {@code
arraylndexScale(long[].class)}



http://www.docjar.com/docs/api/sun/misc/Unsafe.html#staticFieldOffset
http://www.docjar.com/docs/api/sun/misc/Unsafe.html#objectFieldOffset
http://www.docjar.com/docs/api/sun/misc/Unsafe.html#arrayBaseOffset

ARRAY_FLOAT_INDEX_SCALE The value of {@code
arraylndexScale(float[].class)}

ARRAY_DOUBLE_INDEX_SCALE The value of {@code
arraylndexScale(double[].class)}

ARRAY_OBJECT INDEX SCALE The value of {@code
arraylndexScale(Object[].class)}

ADDRESS_SIZE The value of {@code addressSize()}

JSRs and JEPS

JEP1 states:

This process does not in any way supplant the Java Community Process. The JCP remains
the governing body for all standard Java SE APIs and related interfaces. If a proposal
accepted into this process intends to revise existing standard interfaces, or to define
new ones, then a parallel effort to design, review, and approve those changes
must be undertaken in the JCP, either as part of a Maintenance Review of an existing
JSR or in the context of a new JSR.

Because Unsafe is not part of a standard interface, it can be removed without a JSR. A JSR is
required for Java 9, but the only way to reject the changes to Unsafe is to vote down the
forthcoming Java 9 JSR.

The JEP Process is not at all representative. From JEP1:

The Open]DK Lead ultimately decides which JEPs to accept for inclusion into the
Roadmap.

The OpenJDK Lead can move a proposal forward from Submitted to Candidate.

Mark Reinhold is the Open]JDK Lead. So one person decides across SE what can move
forward.

The JCP can only supervise and vote on the bundle of JEPs that are put into a JSR. When
that is a large bundle, there is no real supervision or voting at all.

Proposal - Working Group

This issue will not be solved in a short meeting. We propose a JCP EC Working Group to further
consider what needs to be done here.



Working Group Members

JCP EC Members

Geir Magnusson

London JUG - Martijn Verburg & Ben Evans
Hazelcast Inc. - Greg Luck and Chris Engelbert

Third Party Experts
Peter Lawrey



