
 The Design and Implementation of Testable Integration Architecture for
Complex Distributed Systems

B. Makoond(a,b); S. Ross-Talbot(b); S. Khaddaj(a)
 (a) Faculty of Computing, Information Systems and Mathematics, Kingston University, Kingston

Upon Thames, KT1 2EE, UK
(b) Cognizant Technology Solutions, Haymarket House, 28-29 Haymarket, London SW1Y 4SP

Bippin.Makoond@cognizant.com; Steve.Ross-Talbot@cognizant.com;
S.Khaddaj@kingston.ac.uk

Abstract

Testable Integration Architecture (TiA) provides a

framework and discipline that blends the techniques
of deductive modelling with inductive modelling. The
rationale for the TiA is to address the limitations of
deductive modelling, i.e. the classical software
engineering tools such as UML, ERD and DFD to
describe the dynamic aspects of communication
models. Since those artefacts are static by nature,
they fail to model the dynamic behaviour of
participants communicating across complex
distributed systems. TiA exploits the capabilities of
formal methods such as pi-calculus (inductive
modelling) to formally describe the act of
communication that can be mathematically
expressed, hence exercised on a simulation engine to
reveal the dynamic dimension of the design. In so
doing, software engineers can automatically walk
through a series of models to identify defects and
ambiguity at the early stage of the life cycle. The
motivation of implementing TiA is to reduce the cost
of quality in software development life cycle by
ensuring early defect detections and reduced defect
injection.

Keyword: Testable Architecture, Distributed

Systems, Quality Attributes.

1. Introduction
It is very often argued that Software Engineering
within distributed system is an engineering of
complex system. According to Gödel incompleteness
theorem, a complex system can be defined as one that
can only be modelled by an infinite number of
modelling tools (Chai71). The development of
distributed systems in domains like
telecommunications, industrial control, supply-chain

and business process management represents one of
the most complex construction tasks undertaken by
software engineers (Jenn01) and the complexity is
not accidental but it is an innate property of large
systems (Sim96).

In distributed systems we observe emergent
behaviour since logical operations may require
communicating and multi channel interactions with
numerous nodes and sending hundreds of messages
in parallel. Distributed behaviour is also more varied,
because the placement and order of events can differ
from one operation to the next. Modelling the
interactions of distributed system is not straight
forward and inherently demands a multi-disciplinary
approach and a change in traditional mindset to be
resolved.

This paper starts with a brief discussion of software
modelling concepts and techniques. Then, the main
idea behind the proposed testable integration
architecture is presented. This is followed by a case
study for large communication model of business
critical systems together with some experimentations
and observations. Finally, a summary of the finding is
presented.

2. Modelling Concepts and Techniques
Unlike many engineering fields, software engineering
is a particular discipline where the work is mostly
done on models and rarely on real tangible objects
(Oud02). According to Shaw, (Shaw90), Software
engineering is not yet a true engineering discipline
but it has the potential to become one. However, the
fact that software engineers’ work mainly with
models and a certain limited perception of reality,
Shaw believes that the success in software
engineering lies in the solid interaction between
science and engineering. In 1976, Barry Boehm
(Boeh76) proposed the definition of the term

Software Engineering as the practical application of
scientific knowledge in the design and construction
of computer programs and the associated
documentation required to develop, operate, and
maintain them. This definition is consistent with
traditional definitions of engineering, although
Boehm noted the shortage of scientific knowledge to
apply.

On one hand, science brings the discipline and
practice of experiments, i.e. the ability to observe a
phenomenon in the real world, build a model of the
phenomenon, exercise (simulate or prototype) the
model and induce facts about the phenomenon by
checking if the model behaves in a similar way to the
phenomenon. In this situation, the specifications of
the phenomenon might not be known upfront but
induced after the knowledge about the phenomenon
is gathered from the model. These specifications or
requirement are known a posteriori.

On the other hand, engineering is steered towards
observing a phenomenon in reality, deducing facts
about the phenomenon, build concrete blocks;
structures (moulds) or clones based on the deduced
facts and reuse these moulds to build a system that
mimics the phenomenon in reality. In this situation,
the specifications of the phenomenon are known
upfront, i.e. deduced before even constructing any
models, whilst observing the phenomenon. The
process of specifying facts about the phenomenon is
rarely a learning process, and requirements are
known a priori.

The scientific approach is based on inductive
modelling and the engineering approach is based on
deductive modelling. Usually in software engineering
we are very familiar with the deductive modelling
approach, exploiting modelling paradigm such as
UML, ERD, and DFD that are well established in the
field. However, the uses of inductive modelling
techniques are less familiar in business critical
software engineering, but applied extensively in
safety critical software engineering and academia.
Typically, inductive modelling techniques are
experiments carried out on prototypes, or simulation
of dynamic models which are based on mathematical
(formal methods), statistical and probabilistic models.
The quality of the final product lies in the modelling
power and the techniques used to express the
problem. As mentioned earlier, we believe that the
power of the modelling lies in the blending of the
inductive and deductive modelling techniques.

The rationale of integrating inductive modelling
techniques within the domain of our study is due to

the elements of non-determinism, emergent
behaviours, communicational dynamics which are
those parts of the problem that cannot be known or
abstracted upfront i.e. a priori. These elements differs
from those parts of the problem that can be abstracted
from a priori based on experience and domain
knowledge, which are normally deduced and
translated into structures or models (moulds) i.e.
using deductive modelling techniques.

Inductive modelling techniques require a different
approach of addressing the problem attributes. In
these circumstances, we tend to believe that the
requirements are false upfront, and the objective is to
validate these requirements against predefined quality
attributes. To do so, we build formal models (formal
methods) to mimic the functionalities of the
suggested requirements and run the models
(dynamically) to check if the models conform to the
expected output and agreed quality. The modelling
tools are dynamic in nature, and very often they offer
themselves very easily to simulation engines and
formal tests that allow system designers to run and
exercise the designs, to perform model validation and
verification. Through several simulation runs, the
models are modified, adjusted and reinforce until
they match, to certain level of confidence, the quality
attributes.

Moreover, modelling distributed software
architectures require a multidisciplinary approach to
modelling i.e. that there are several ways of
modelling the problems attributes and we were
required to combine several of these approaches and
models as shown in Figure 1.

Figure 1 Multi-disciplinarism in Modelling

Arguably, there are two types of modelling
approaches, inductive and deductive, within the field
of software engineering.

o Deductive Modelling includes the
aspect of structural, functional and
collaborative designs and is commonly
used in classical software engineering,
such as Class Diagrams, Sequence
Diagrams, Object Diagrams, Entity
Relationship Diagrams (ERD), Data
Flow Diagrams (DFD), Flow Charts,
Use Cases, etc…

o Inductive Modelling, are critical
dynamic modelling techniques that
primarily characterise the aspect of non-
determinism within a system mainly
arising from the occurrence of emergent
behaviour and interactions. Commonly
used techniques are formal methods
(e.g. Testable Integration Architecture),
simulations and probabilistic models of
the software artefact.

3. Testable Integration Architecture
(TiA): Blended Modelling Approach

For many years, computer scientists have tried to
unify both types modelling techniques in order to
capture the several facets of the distributed
communication systems and demonstrate the power
of modelling to develop software artefacts of high
quality.

The development of distributed systems and
applications is a complex activity with a large
number of quality factors involved in defining
success. Despite the fact that inductive modelling is
scientifically thorough for analysing and building
quality engineered systems, it brings additional cost
into the development life cycle. Hence, a
development process should be able to blend
inductive and deductive modelling techniques, to
adjust the equilibrium between cost (time and
resources) and quality. As a result, the field of
software process simulation has received substantial
attention over the last twenty years. The aims have
been to better understand the software development
process and requirements and to mitigate the
problems that continue to occur in the software
industry which require a process modelling
framework.

3.1 Requirement Engineering
Our proposition of implementing a blended
modelling approach in software engineering starts
with the process of the requirements analysis.
Requirements are usually categorised into two
general types; there are the functional requirement

and the non-functional requirements. The IEEE
defines functional requirement as a requirement that
specifies a function that a system/software system or
system/software component must be capable of
performing. These are software requirements that
define behaviour of the system, that is, the
fundamental process or transformation that software
and hardware components of the system perform on
inputs to produce outputs. Non-functional
requirement, on the other hand, in software
engineering is a requirement that describes not what
the software will do, but how well the software will
perform its task, e.g. the SLAs of the system,
software performance; software external interface
requirements, software design constraints, and
software quality attributes.

In this study, we extended on these two general styles
to propose a new requirement framework that is
composed of four different requirement styles. We
have broken down the functional requirement styles
into 1) the data and structural style, 2) functional and
behavioural style and 3) the communication style.
The non-functional requirements are referred to as the
quality attribute style in this study.

Since, the class of problems has many dimensions
and we need to identify each of these dimensions so
that the right modelling tools and techniques are
applied for the right problem attribute. We created a
classification technique that categorises the problem
attributes in different requirements styles; hence the
selection of modelling techniques to represent the
requirements can be based on the characteristics or
styles of the requirements. Depending on the styles,
we define the modelling specifications and employ
the appropriate tools. The four different styles are
explained as follows:

Data and Structural Style
This style holds the part of the system that describes
the data, i.e. the properties of the data, the types of
data, the data structure and its organisation or order
within the system. The task of the data styles is to
primarily separate the data from the process of
treating of data. The classical modelling tools
available to handle requirements within this style are
entity relationships diagram, class diagram, object
diagram and component based diagram.

Functional and Behavioural Style
This style defines the functions of the system without
any regards to the class these function belong to. The
main objective of the functional styles is to describe
the input, the process and describe the expected
output of a process. The behavioural part requires

tools such as state charts and Petri Nets that illustrate
the change in state of a program when a particular
transition of that program has occurred. Classical
tools of the functional and behavioural styles are
pseudo code, B machines, Z notations, collaboration
diagrams, flowcharts etc.

Communication Style
The communication style handles the complex
features of system interactions than entail both the
inter-communication amongst external systems and
the intra-communication of internal components. The
style provides the specifications of modelling the
aspect of communication to capture how the different
parts of the systems communicate using different
styles of communication and the type of
communication medium in use. These modelling
tools are usually dynamic that naturally offers
themselves to simulation. The dynamism is essential
to describe emergent behaviours within the
communication model. The tools to model the
attributes of the communication style are simulation
tools such as CDL (pi-calculus), Estelle, SPIN, and
prototyping.

Quality Attributes Style
Quality Attributes Style incorporates methods of
modelling the non-functional requirements, i.e. the
SLAs. According to Somerville, (Somm01), different
kinds of non-functional requirements exist; ranging
from product requirements, organisational
requirements to external requirements. The product
requirements specify the behaviour of the product,
e.g. execution speed, robustness and reliability.
Organisational requirements are originated from the
organisation's policies and procedures, e.g. process
standard used and implementation requirements. All
requirements that come from external factors to the
system and its development process belong to the
external requirements. One type of external
requirement is security. However as explained in the
discussions on software requirement engineering,
(Somm01, Lau02, Krem98), the problem with non-
functional requirements is the difficult to verify and
very often they interact and conflict with functional
requirements and with each other.

3.2 Blended Modelling and Testable
Integration Architecture

The method of Testable Integration Architecture
(TiA) addresses the problem of quality modelling
enabling software analysts to translate functional
requirements and SLAs into dynamic modelling

artefacts that can be used to measure ambiguity and
conformance to requirements, hence validated the
design.

Each requirement styles correspond to a particular
view of the system and address a particular aspect of
the Class of Problems. However, we observed during
the study, the different views are not independent but
interdependent. The multiplicity or variety of styles
helps to enhance understanding the class of problem
so as to reduce ambiguity.

Figure 2 Testable Integration Architecture
supporting the Blended Modelling Approach

The diagram depicted in Figure 2, is a high level
model of the application of TiA to 1) classify
requirements, 2) design and simulate the dynamic
model of the requirements, and 3) validating the
requirements and design. Firstly, TiA acts as an
analytical tool to decouple the requirement into their
own style for analysis; secondly as a systemic
modelling tool, providing a global view of the
communication model and dynamic behaviour,
founded on a robust simulation engine and thirdly, it
provides type checks and statistical results that can be
consumed by statistical methods to test the design for
quality i.e. checking the design against the non
functional requirements.

In
, we provide an end to end process life cycle of the
blended modelling approach focussing on the
capability of Testable Integration Architecture. The
diagram shows the exploration of a multitude of tools
which are required to comprehend the requirements
of a complex system.

At the elicit phase, requirements are gathered and
invented and at this particular point in time, those
requirements are untreated. At the decompose stage,
we employed techniques of the House of Quality to

break down the requirement into their corresponding
styles which leads us to the classify stage.

Figure 3 The Blended Modelling Approach

In a Blended Modelling approach, there are various
styles to represent a system which is characterised by
different requirement styles; 1) the data style are
those requirements that answer to the question of
what; 2) the functional and behavioural style which
represents the logical function or the business process
are those requirements that answer to the questions of
how and when; 3) the communication styles are those
requirements that answer to the question of where
and 4) the quality styles which is a cross functional
styles and answer to the question of how well each of
the 3 aforementioned styles is expected to perform.
As

 depicts, theses styles are not independent but
interdependent. Each style is transformed into models
using modelling tools that were design to specifically
describe the characteristics of individual requirement
styles. We adopt both the deductive and inductive
tools in our blended approach since we want to test
and validate the models or requirements as early as
possible so as to reduce the number of defects leaking
to the implementation phase of the life cycle. The
inductive modelling tools add scientific rigour and
transform the static structural models into a formal
model using formal methods and hence test can be
compiled on those design; e.g. transforming a flow
chart (describing a logical function) into Coloured
Petri Nets or sequence Diagram into CDL, so that
these models are tested and simulated for verification
and validation. The table in

Figure 4 shows the translation from deductive
modelling tools (structural and static) to inductive
modelling tools (formal and dynamic).

Figure 4 Transforming deductive to inductive

Finally, the last cycle of the blended modelling
approach, TiA generates the design directives of the
validated artefacts which are submitted to the
developers for implementation.

In this paper we focus on the communication styles
of a given system. When it comes to modelling the
interaction and communication of Distributed
System, Choreography Description Language (CDL)
(Yang06) is one of the most efficient and robust tool.
CDL forms part of Testable Integration Architecture,
hereafter TiA, and is based on pi calculus (Miln99),
which is a formal language to define the act of
communicating.

3.3 The Language of Pi Calculus
Although formal methods exist such as Petri Nets
(Pet62), B Methods, Z Notations and lambda calculus
that are used to unambiguously describe software
requirements. However when it comes to describing
distributed concurrent interactions of several
participants, they encounter major difficulties since
they were not design to do so. Lambda calculus was
designed for parametric description of passing
arguments across functions; Z Notation was designed
to classify and group attributes of the problem
domain into logical sets; and B Methods was

designed to describe requirement into logical sets and
consistent machines.

Pi-calculus is one element in a set called Process
Calculi. The distinguishing feature between pi-
calculus and earlier process calculi, in particular
Calculus of Communicating Systems
(CCS)(Miln80a) and the work done on
Communicating Sequential Processes (CSP)
(Hoare85), is the ability to pass channels as data
along other channels.

Pi calculus is a formal language that uses to concept
of channels and naming to describe interactions and
fits comfortably in the problem domain of distributed
systems. The pi-calculus is a model of concurrent
computation based upon the notion of naming
(Miln93). The syntax of pi-calculus enables one to
model processes, parallel composition of processes,
and communication between processes through the
concept of channels. A channel is an abstraction of a
communication link between two participants, the
same way a process is the abstraction of a given
thread of control. In the pi-calculus language there
are a given set of constructs where all possible
concurrent behaviour can be written. The following
paragraph explains these constructs.

Let P and Q denote processes, then P |Q denotes a
process composed of P and Q running in parallel. The
construct a(x).P models a process that waits to read a
value x from the channel a, and then, having received
it, behaves like P. The construct Ā<x>.P denotes a
process that first waits to send the value x along the
channel a, and then, after x has been accepted by
some input process, behaves like P. The construct
(νa)P ensures that a is a fresh channel in P. The
construct !P denotes an infinite number of copies of
P, all running in parallel. The construct, P + Q
denotes a process that behaves like either P or Q. 0
denotes the inert process that does nothing.

TiA abstracts the given set of constructs in pi-
calculus and provides a language through a series of
methods and logical sequences that are presented in a
unified toolset. The latter facilitates the modelling
and simulation of communication in concurrent
systems. In order to achieve rigour in the power of
modelling, TiA exploits the capability of CDL as a
framework to model global message flows and the
subsequent impact of communication on local
behaviours, which is defined by pi-calculus. The
work done by Carbone et al (Carb06), show formal
description in the global calculus, has a precise
representation in the local calculus. As a result,
unlike other modelling frameworks, TiA is not

limited to deductive and static modelling techniques,
as it uses pi calculus based on non-deterministic
models, that are well known within the academic
world, but not yet of a common use within industry.
In fact TiA acts as a natural “glue” to blend the
various modelling approaches providing a framework
with the primary objective of removing the
characteristic of ad-hocness and ambiguity within the
modelling Process.

Using TiA, the formal description of the requirements
can be translated into different types of modelling
tools starting with dynamic modelling tools
(inductive modelling) such as Coloured Petri Nets
(CPN) and prototyping, then moving to event based
modelling tools such as State Chart Diagrams and
Sequence diagrams and finishing with structural
modelling tools (deductive modelling) such as class
diagrams. Throughout the translation process, the
specifications and requirements can be tested,
validated and reinforce.

4. Case Study: Testable Integration
Architecture used in Large
Communication Model of Business
Critical Systems

In the case study, we focus on the fundamental
problem of underwriting within a global insurance
group, which includes the characteristics of
Underwriting Workflow System, Policy Manager,
Document Management System and the Integration
Layer. The aim is to demonstrate how TiA is used to
reinforce the power of modelling by avoiding
classical modelling pitfalls, defining traceability
across the lifecycle, providing a reference model
through iterations, and addressing defects at early
stage, hence increasing the maturity of the process
model.

As we mentioned earlier, the design approach
employs both the deductive and inductive modelling
techniques, and TiA employs a formal method, Pi-
calculus that provides the ability to test a given
architecture, which is an unambiguous formal
description of a set of components and their ordered
interactions coupled with constraints on their
implementation and behaviour. Such a description
may be reasoned over to ensure consistency and
correctness against requirements.

4.1 The Requirement of the Communication
Model

Prior to designing the communication artefacts in
TiA, we observed the requirements that have been
gathered or invented during the requirement analysis
phase of the Software Development Cycle (SDLC).
Due to the size of the requirement catalogue, in the
context of this paper, we focus on those parts of the
requirements that demonstrate the character of
communicative behaviour or the act of
communicating.

The architecture provides communication
management and enablement of external systems
deployed over an ESB layer, conforming to the
principle and discipline of SOA. The architecture
diagram, depicted in Figure 6, is a representation of
the requirements of the communication between an
Underwriting Workflow System and a Policy
Manager (denoted as GWS in the illustrations). The
communication is handled by the integration layer,
employing BizTalk as technology and the
Underwriting Workflow System is implemented
using Pega PRPC.

There are two primary motivations behind the use of
TiA in the context of this work:

1. Firstly, we employ TiA to develop several
dynamic representations of the
communication model in between the 1)
Underwriting Workflow System; 2) Policy
Manager and 3) BizTalk supporting the
Integration Layer, in order that when these
models are simulated, the results produced
can be tested and verified against the
requirements.

2. Secondly we employed TiA in the given
problem domain, is to achieve a model of
communication that can evolve,
consequently allowing BizTalk to move
from being purely an EAI to the capability
of an ESB wherein heterogeneous types of
communication which includes external
participants will be possible. Such
conversation will be with Document
Management Systems, Claims Repository

Service, external Rating Services and
others.

In our problem domain, BizTalk maps the message of
Pega PRPC, hereafter Pega, to the legacy Policy
Manager. This is carried by transforming the data
structure of the Pega messages into the data structure
of native Policy Manager. There are 3 generic types
of communication that describes the conversation
between Pega and BizTalk.

Figure 6 Communication Model

The

communication model illustrates 3 communication
types 1) notification, error and data, expressed as
<CS_Not>, <CS_Err> and <CS_Dat> respectively
which are transported from Pega to BizTalk. BizTalk
accesses the data mapping schema and transform the
incoming schema into response schema which is
agreed by the Policy Manager. The Data Mapper is
logically represented by the ERD

From BizTalk to the Policy Manager, there are two
types of communication which are 1) notification,
<CS_Not> and 2) Data, <CS_Dat>. The
communication model represented follows an
asynchronous mode, which is handled by the
Request/Reply map repository. The latter holds the
state that assigns the corresponding response from the
Policy Manager to a Request from Pega. There is a
polling mechanism to notify Pega that a response has
been received for a corresponding request.

There are 3 return communication types from the
Policy Manager to BizTalk which are <CS_Not>,
<CS_Err> and <CS_Dat>. The latter holds the data
which is required by Pega to update any underwriting
transactions. As we modelled the communication
using TiA, it has been observed that the existing
legacy Policy Manager interface does not
differentiate between success and failure response,
hence there is no separation of identity between the
error and success, which complicates the design of
the integration layer. The design flaw has been
identified whilst validating and type checking the
communication model with TiA. This has lead to
some mistake proof mechanism within BizTalk to
manage error and trace the error back to the
presentation layer, i.e. General Underwriting System.
BizTalk has to transform the Policy Manager schema
into a structure agreeable by Pega. The
communication medium employed across Pega,
BizTalk and Policy Manager is SOAP.

4.2 Implementing Testable Integration
Architecture (TiA)
The process starts at the requirement gathering phase,
where TiA is used to identify the core aspects of the
communication which are in our context, the Pega
component, The BizTalk component and Policy
Manager (PM), as shown in Figure 7.

Figure 7 Requirement communication model

At the very early stage of design, while validating the
communication with TiA through formal checking, it
has been observed that the BizTalk component
includes two primary modules, which is required to
be modelled separately, and these are the Mapper
component and the Mediator component respectively.
This is a typical problem of separation of concerns.
The separation showed that the mediator service is

solely concerned with the orchestration of the
communication model whereas the mapper service is
related to the data modelling which ought to be
abstracted to the problematic of Canonical Data
Model within an ESB.

The separation of concern to abstract distinct services
(mediator and mapper services) has been possible
because the TiA tool suite requires one to model
requirements as conversations between concrete
behaviours. It forces a separation into those
behaviours by making it inconvenient to model
otherwise, i.e. one participant communicating to
itself. TiA has the innate property to separate
behaviours out.

Consider a process P which has a conversation with
P. Then P is split into P' and P'' and the conversation
is modelled as P' and P''. As P communicates with P,
the behaviour of P as a participant, changes. As a
result P has two personae, characterised as P' and P''
respectively. Hence TiA engages the designers into a
style of modelling that removes message likes within
behaviours and adds an additional behaviour (which
may or may not be the same participant). This reflects
good design by forcing the requirements, and then the
model, into clearly delineated behaviours, which is a
fundamental practice within the problematic of
Service Identification for Service Oriented
Architecture.

Using classical modelling techniques, purely static
design such as sequence diagram, this dichotomy is
not enforced and would have been missed in the
requirement phase and only be found at the late stage
of design or coding. It is also possible that the
separation would have been missed completely,
adding overheads and reworks to preserve the
characteristic of extensibility to the architecture.

Figure 8 Conversation Model

Whilst requirements are gathered, a model of the
conversation within problem emerges as shown in

Figure 8. This is static diagram that simply lays out
the roles, the swim lanes (see Figure 7), and who can
talk to who. This enables us to manage the
conversation in the system and to also extend the
model to add new components and test if the
communication model still holds when new
participants are added.

The next step is to bind the model in Figure 7 to a
choreography, which will enable us to type check the
model against the requirement in order to validate the
model and remove ambiguity in the requirements for
the communication model. The choreography is
shown in Figure 9.

Figure 9 Architecting the Design (Partial view of the
Dynamic Choreography model)

The binding process involves the process of
referencing the model in the requirement and binding
the interactions. The binding process also has the
effect of filling in some of the missing information on
identity and business transactions.

With a bound model, the choreography in Figure 9
can be exercised in order to prove the model against
the architectural parameters which are derived from
the given set of requirement as shown in Figure 10.
The model shows the participants which are Pega,
conversing with the BizTalk’s mediator service, the
mapper service (for data transformation) wherein data
is finally be passed to the Policy Manager participant.

4.3 Simulation & Observation
During the test of the architecture, the proof goes
green (see Figure 10) if the configuration and
parameters or more precisely the types of the
interactions are correct and should it be red, the proof
reveals that the model deviates from the
requirements, highlighting the defects. The binding
and rendering of the bound requirements provide
very precise documentation for implementers.

Figure 10 Proving the Communication Model

Hence for each interaction, we can clearly observe
the meaning of identity, the meaning of the type for
each identity (the token or tokens) and the Xpath
expressions which is executed during the simulation
over the example message, in our case the request
xml of Pega and the Policy Manager Process UW
xml, return the appropriate values. This is shown in
Figure 12.

Figure 12 Identity of Interactions

The values returned during the course of a
simulation, compiled within the xml output files as
shown in Figure 12, accentuate the meaning of
identity and types which provides a set of defined
results that can be revised against the requirements
gathered. This enables the decision makers to verify
and validate the yield of the communication model
against conformance to the requirement of the
customers. Typically this exercise is run as a proof of
concept. As a result the Business Analyst is
empowered to walk through the simulation results
with the clients, asking the vital question of: “is this
what you meant?” The walk through process is
inherently more robust than traditional design

inspection exercise and formal reviews (). The reason
is because TiA adds scientific rigour and is supported
by the simulation engine and type checking protocol
that can be run and re-run during the SDLC prior to
any coding.

After the proof of the model is demonstrated, we
believe that the model conforms to the pre defined
requirements and many of the ambiguities in the
requirements have been detected and consequently
resolved at the requirement and design phase of the
Software Development Life Cycle (SDLC). Then, in
exploiting the capabilities of model generation, TiA
provides us with a rich a proven set of artefacts such
as UML designs and state-charts diagram of the
model. In Figure 13, we show the state-charts
generated from the proven dynamic models. This is
typically the translation of the inductive models (the
CDL model) to the more common deductive models
(UML and BPMN). Then the course of the SDLC
resumes with the normal route of the classical
software engineering processes.

Figure 13 Generated UML Artefacts State Chart of
the Underwriting System

During the Design exercise we exploited the feature
of Business Process Execution Language (BPEL)
generation from the TiA framework to generate
artefacts that can be imported into a BPEL compliant
orchestration tools. TiA guarantees that the BPEL
preserve the state behaviour that is shown in the state
charts (see Figure 13) for the given service.

In Figure 14, we present the generated BPMN
artefacts from the TiA toolset. In this paper we focus

on the BizTalk Mediator Service of the Systems as
most of the complex interactions are being
coordinated in this layer. The BPMN model is
derived from the refined and proven CDL Model.

Figure 14 Generated BPMN Model - Focussing on
the Processes of the BizTalk Mediator Service

The generated models along with auto-generated
documentations are compiled into the design
directives and coding principles that can be handed
over to the software designer and the developers. The
communication to these parties is founded on formal
and mathematical checks which makes the design and
the development of the system far less error prone.

5. Conclusion
In employing TiA, we were able to identify business
and core service easily and test them against
requirements for the mediator business service and
mapper core service. We worked very closely with
key decision makers to ensure a full understanding
and gain agreement on requirements through
inductive modelling of requirements and the
collaboration model that is embodied in TiA. This
allowed rapid turn-around with Business Analyst
and reduced the overall design time.

Secondly we were able to detect errors both as
conflicting requirements (reported back and then
remediated with the stakeholders) and technical
design errors prior to coding, the latter being the
legacy Policy Manager’s error handling problem.
We were also able to simplify the design
segmenting it and ensuring that it truly represented
the requirements through TiA.

Finally, TiA enabled the generation of
implementation artefacts, such as UML designs and
state charts that were guaranteed to meet

requirements and were of an order of magnitude
more precise which reduced the communication
need to ensure a high quality delivery. This is
typically the capability of TiA to blend the inductive
with the deductive modelling techniques.

The benefits of blending inductive modelling
techniques with the deductive techniques yield to
earlier defect detection resulted to reducing the
transition time to architect the solution by
generating precise technical contracts for
implementation which is type checked, hence
proven to be correct. In our case, we are able to
achieve a 40 % efficiency to move from
requirement to technical specifications. Moreover,
the simulation exercise empowered us to check if
the model is implementable against the given
technology stack (BizTalk and Pega).

6. Reference

(Boeh76)
Boehm B W, “Software Engineering”,
IEEE Trans. Computers, pp. 1,226 -
1,241, December 1976

(Carb06)

Carbone M, Honda K, Yoshida N, Milner
R, Brown G, Ross-Talbot S , "A
Theoretical Basis of Communication-
Centred concurrent Programming",
PhD thesis, Imperial College, London
UK, 2006

(Chai71)

Chaitin G J, “Computational Complexity
and Godel's Incompleteness Theorem”,
ACM SIGACT News, No. 9, IBM World
Trade, Buenos Aires, pp. 11- 12, April
1971

(Hoar85)
C.A.R. Hoare, “Communicating
Sequential Processes”, Prentice-Hall,
1985

(Jenn01)

Jennings N R, “An Agent-based approach
for building complex software systems”,
Communications of the ACM, Vol 44,
No. 4, April 2001

(Miln80a)

Milner R, “A Calculus of Communicating
Systems”, Lecture Notes in Computer
Science, volume 92, Springer-Verlag,
1980

(Miln80b) Milner R, “A Calculus of Communicating
Systems”, Lecture Notes in Computer

Science, volume 92, Springer-Verlag,
1980

(Miln93)

Milner R, “The Polyadic pi-Calculus: A
Tutorial”, L. Hamer, W. Brauer and H.
Schwichtenberg, editors, Logic and
Algebra of Specification, Springer-
Verlag, 1993

(Miln99) Milner R, “Communicating and Mobile
Systems”, Cambridge Press, June 1999

(Oud02)
Oudrhiri R, “Une approche de l’évolution
des systèmes,- application aux systèmes
d’information”, ed.Vuibert, 2002

(Pet62)
Petri C A, "Kommunikation mit
Automaten", PhD thesis, Institut f¨ur
instrumentelle Mathematik, Bonn, 1962

(Shaw90)
Shaw M, “Prospects for an Engineering
Discipline of Software”, IEEE Journal,
Carnegie Mellon University, 1990

(Sim96) Simon H A, “The Sciences of the
Artificial”, MIT Press, 1996

(Yang06)

Yang H et al, “Type Checking
Choreography Description Language”,
Lecture Notes in Computer Science
Springer-Berlin / Heidelberg, Peking
University, 2006

