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Abstract 
 
Testable Integration Architecture (TiA) provides a 

framework and discipline that blends the techniques 
of deductive modelling with inductive modelling. The 
rationale for the TiA is to address the limitations of 
deductive modelling, i.e. the classical software 
engineering tools such as UML, ERD and DFD to 
describe the dynamic aspects of communication 
models. Since those artefacts are static by nature, 
they fail to model the dynamic behaviour of 
participants communicating across complex 
distributed systems. TiA exploits the capabilities of 
formal methods such as pi-calculus (inductive 
modelling) to formally describe the act of 
communication that can be mathematically 
expressed, hence exercised on a simulation engine to 
reveal the dynamic dimension of the design. In so 
doing, software engineers can automatically walk 
through a series of models to identify defects and 
ambiguity at the early stage of the life cycle. The 
motivation of implementing TiA is to reduce the cost 
of quality in software development life cycle by 
ensuring early defect detections and reduced defect 
injection. 

 
Keyword: Testable Architecture, Distributed 

Systems, Quality Attributes. 

1. Introduction 
It is very often argued that Software Engineering 
within distributed system is an engineering of 
complex system. According to Gödel incompleteness 
theorem, a complex system can be defined as one that 
can only be modelled by an infinite number of 
modelling tools (Chai71). The development of 
distributed systems in domains like 
telecommunications, industrial control, supply-chain 

and business process management represents one of 
the most complex construction tasks undertaken by 
software engineers (Jenn01) and the complexity is 
not accidental but it is an innate property of large 
systems (Sim96).  

In distributed systems we observe emergent 
behaviour since logical operations may require 
communicating and multi channel interactions with 
numerous nodes and sending hundreds of messages 
in parallel. Distributed behaviour is also more varied, 
because the placement and order of events can differ 
from one operation to the next. Modelling the 
interactions of distributed system is not straight 
forward and inherently demands a multi-disciplinary 
approach and a change in traditional mindset to be 
resolved. 

This paper starts with a brief discussion of software 
modelling concepts and techniques. Then, the main 
idea behind the proposed testable integration 
architecture is presented. This is followed by a case 
study for large communication model of business 
critical systems together with some experimentations 
and observations. Finally, a summary of the finding is 
presented. 

2. Modelling Concepts and Techniques 
Unlike many engineering fields, software engineering 
is a particular discipline where the work is mostly 
done on models and rarely on real tangible objects 
(Oud02). According to Shaw, (Shaw90), Software 
engineering is not yet a true engineering discipline 
but it has the potential to become one. However, the 
fact that software engineers’ work mainly with 
models and a certain limited perception of reality, 
Shaw believes that the success in software 
engineering lies in the solid interaction between 
science and engineering. In 1976, Barry Boehm 
(Boeh76) proposed the definition of the term 



Software Engineering as the practical application of 
scientific knowledge in the design and construction 
of computer programs and the associated 
documentation required to develop, operate, and 
maintain them. This definition is consistent with 
traditional definitions of engineering, although 
Boehm noted the shortage of scientific knowledge to 
apply. 

On one hand, science brings the discipline and 
practice of experiments, i.e. the ability to observe a 
phenomenon in the real world, build a model of the 
phenomenon, exercise (simulate or prototype) the 
model and induce facts about the phenomenon by 
checking if the model behaves in a similar way to the 
phenomenon. In this situation, the specifications of 
the phenomenon might not be known upfront but 
induced after the knowledge about the phenomenon 
is gathered from the model. These specifications or 
requirement are known a posteriori.  

On the other hand, engineering is steered towards 
observing a phenomenon in reality, deducing facts 
about the phenomenon, build concrete blocks; 
structures (moulds) or clones based on the deduced 
facts and reuse these moulds to build a system that 
mimics the phenomenon in reality. In this situation, 
the specifications of the phenomenon are known 
upfront, i.e. deduced before even constructing any 
models, whilst observing the phenomenon. The 
process of specifying facts about the phenomenon is 
rarely a learning process, and requirements are 
known a priori. 

The scientific approach is based on inductive 
modelling and the engineering approach is based on 
deductive modelling. Usually in software engineering 
we are very familiar with the deductive modelling 
approach, exploiting modelling paradigm such as 
UML, ERD, and DFD that are well established in the 
field. However, the uses of inductive modelling 
techniques are less familiar in business critical 
software engineering, but applied extensively in 
safety critical software engineering and academia. 
Typically, inductive modelling techniques are 
experiments carried out on prototypes, or simulation 
of dynamic models which are based on mathematical 
(formal methods), statistical and probabilistic models. 
The quality of the final product lies in the modelling 
power and the techniques used to express the 
problem. As mentioned earlier, we believe that the 
power of the modelling lies in the blending of the 
inductive and deductive modelling techniques.  

The rationale of integrating inductive modelling 
techniques within the domain of our study is due to 

the elements of non-determinism, emergent 
behaviours, communicational dynamics which are 
those parts of the problem that cannot be known or 
abstracted upfront i.e. a priori. These elements differs 
from those parts of the problem that can be abstracted 
from a priori based on experience and domain 
knowledge, which are normally deduced and 
translated into structures or models (moulds) i.e. 
using deductive modelling techniques.  

Inductive modelling techniques require a different 
approach of addressing the problem attributes. In 
these circumstances, we tend to believe that the 
requirements are false upfront, and the objective is to 
validate these requirements against predefined quality 
attributes. To do so, we build formal models (formal 
methods) to mimic the functionalities of the 
suggested requirements and run the models 
(dynamically) to check if the models conform to the 
expected output and agreed quality. The modelling 
tools are dynamic in nature, and very often they offer 
themselves very easily to simulation engines and 
formal tests that allow system designers to run and 
exercise the designs, to perform model validation and 
verification. Through several simulation runs, the 
models are modified, adjusted and reinforce until 
they match, to certain level of confidence, the quality 
attributes. 

Moreover, modelling distributed software 
architectures require a multidisciplinary approach to 
modelling i.e. that there are several ways of 
modelling the problems attributes and we were 
required to combine several of these approaches and 
models as shown in Figure 1.  

 

Figure 1 Multi-disciplinarism in Modelling 

Arguably, there are two types of modelling 
approaches, inductive and deductive, within the field 
of software engineering. 



o Deductive Modelling includes the 
aspect of structural, functional and 
collaborative designs and is commonly 
used in classical software engineering, 
such as Class Diagrams, Sequence 
Diagrams, Object Diagrams, Entity 
Relationship Diagrams (ERD), Data 
Flow Diagrams (DFD), Flow Charts, 
Use Cases, etc…  

o Inductive Modelling, are critical 
dynamic modelling techniques that 
primarily characterise the aspect of non-
determinism within a system mainly 
arising from the occurrence of emergent 
behaviour and interactions. Commonly 
used techniques are formal methods 
(e.g. Testable Integration Architecture), 
simulations and probabilistic models of 
the software artefact.  

3. Testable Integration Architecture 
(TiA): Blended Modelling Approach 

For many years, computer scientists have tried to 
unify both types modelling techniques in order to 
capture the several facets of the distributed 
communication systems and demonstrate the power 
of modelling to develop software artefacts of high 
quality.  

The development of distributed systems and 
applications is a complex activity with a large 
number of quality factors involved in defining 
success. Despite the fact that inductive modelling is 
scientifically thorough for analysing and building 
quality engineered systems, it brings additional cost 
into the development life cycle. Hence, a 
development process should be able to blend 
inductive and deductive modelling techniques, to 
adjust the equilibrium between cost (time and 
resources) and quality. As a result, the field of 
software process simulation has received substantial 
attention over the last twenty years. The aims have 
been to better understand the software development 
process and requirements and to mitigate the 
problems that continue to occur in the software 
industry which require a process modelling 
framework. 

3.1 Requirement Engineering 
Our proposition of implementing a blended 
modelling approach in software engineering starts 
with the process of the requirements analysis.  
Requirements are usually categorised into two 
general types; there are the functional requirement 

and the non-functional requirements. The IEEE 
defines functional requirement as a requirement that 
specifies a function that a system/software system or 
system/software component must be capable of 
performing. These are software requirements that 
define behaviour of the system, that is, the 
fundamental process or transformation that software 
and hardware components of the system perform on 
inputs to produce outputs. Non-functional 
requirement, on the other hand, in software 
engineering is a requirement that describes not what 
the software will do, but how well the software will 
perform its task, e.g. the SLAs of the system, 
software performance; software external interface 
requirements, software design constraints, and 
software quality attributes. 
 
In this study, we extended on these two general styles 
to propose a new requirement framework that is 
composed of four different requirement styles. We 
have broken down the functional requirement styles 
into 1) the data and structural style, 2) functional and 
behavioural style and 3) the communication style. 
The non-functional requirements are referred to as the 
quality attribute style in this study. 
 
Since, the class of problems has many dimensions 
and we need to identify each of these dimensions so 
that the right modelling tools and techniques are 
applied for the right problem attribute. We created a 
classification technique that categorises the problem 
attributes in different requirements styles; hence the 
selection of modelling techniques to represent the 
requirements can be based on the characteristics or 
styles of the requirements. Depending on the styles, 
we define the modelling specifications and employ 
the appropriate tools. The four different styles are 
explained as follows: 
 
Data and Structural Style 
This style holds the part of the system that describes 
the data, i.e. the properties of the data, the types of 
data, the data structure and its organisation or order 
within the system. The task of the data styles is to 
primarily separate the data from the process of 
treating of data. The classical modelling tools 
available to handle requirements within this style are 
entity relationships diagram, class diagram, object 
diagram and component based diagram.  
 
Functional and Behavioural Style 
This style defines the functions of the system without 
any regards to the class these function belong to. The 
main objective of the functional styles is to describe 
the input, the process and describe the expected 
output of a process. The behavioural part requires 



tools such as state charts and Petri Nets that illustrate 
the change in state of a program when a particular 
transition of that program has occurred. Classical 
tools of the functional and behavioural styles are 
pseudo code, B machines, Z notations, collaboration 
diagrams, flowcharts etc. 
 
Communication Style 
The communication style handles the complex 
features of system interactions than entail both the 
inter-communication amongst external systems and 
the intra-communication of internal components. The 
style provides the specifications of modelling the 
aspect of communication to capture how the different 
parts of the systems communicate using different 
styles of communication and the type of 
communication medium in use. These modelling 
tools are usually dynamic that naturally offers 
themselves to simulation. The dynamism is essential 
to describe emergent behaviours within the 
communication model. The tools to model the 
attributes of the communication style are simulation 
tools such as CDL (pi-calculus), Estelle, SPIN, and 
prototyping. 
 
Quality Attributes Style  
Quality Attributes Style incorporates methods of 
modelling the non-functional requirements, i.e. the 
SLAs. According to Somerville, (Somm01), different 
kinds of non-functional requirements exist; ranging 
from product requirements, organisational 
requirements to external requirements. The product 
requirements specify the behaviour of the product, 
e.g. execution speed, robustness and reliability. 
Organisational requirements are originated from the 
organisation's policies and procedures, e.g. process 
standard used and implementation requirements. All 
requirements that come from external factors to the 
system and its development process belong to the 
external requirements. One type of external 
requirement is security. However as explained in the 
discussions on software requirement engineering, 
(Somm01, Lau02, Krem98), the problem with non-
functional requirements is the difficult to verify and 
very often they interact and conflict with functional 
requirements and with each other.  
 

3.2 Blended Modelling and Testable 
Integration Architecture 
 

The method of Testable Integration Architecture 
(TiA) addresses the problem of quality modelling 
enabling software analysts to translate functional 
requirements and SLAs into dynamic modelling 

artefacts that can be used to measure ambiguity and 
conformance to requirements, hence validated the 
design.  
 
Each requirement styles correspond to a particular 
view of the system and address a particular aspect of 
the Class of Problems. However, we observed during 
the study, the different views are not independent but 
interdependent. The multiplicity or variety of styles 
helps to enhance understanding the class of problem 
so as to reduce ambiguity.  

 
Figure 2 Testable Integration Architecture 
supporting the Blended Modelling Approach 

The diagram depicted in Figure 2, is a high level 
model of the application of TiA to 1) classify 
requirements, 2) design and simulate the dynamic 
model of the requirements, and 3) validating the 
requirements and design. Firstly, TiA acts as an 
analytical tool to decouple the requirement into their 
own style for analysis; secondly as a systemic 
modelling tool, providing a global view of the 
communication model and dynamic behaviour, 
founded on a robust simulation engine and thirdly, it 
provides type checks and statistical results that can be 
consumed by statistical methods to test the design for 
quality i.e. checking the design against the non 
functional requirements. 

 

In  
, we provide an end to end process life cycle of the 
blended modelling approach focussing on the 
capability of Testable Integration Architecture. The 
diagram shows the exploration of a multitude of tools 
which are required to comprehend the requirements 
of a complex system. 
 
At the elicit phase, requirements are gathered and 
invented and at this particular point in time, those 
requirements are untreated. At the decompose stage, 
we employed techniques of the House of Quality to  



break down the requirement into their corresponding 
styles which leads us to the classify stage. 

Figure 3 The Blended Modelling Approach 

In a Blended Modelling approach, there are various 
styles to represent a system which is characterised by 
different requirement styles; 1) the data style are 
those requirements that answer to the question of 
what; 2) the functional and behavioural style which 
represents the logical function or the business process 
are those requirements that answer to the questions of 
how and when; 3) the communication styles are those 
requirements that answer to the question of where 
and 4) the quality styles which is a cross functional 
styles and answer to the question of how well each of 
the 3 aforementioned styles is expected to perform. 
As  

 depicts, theses styles are not independent but 
interdependent. Each style is transformed into models 
using modelling tools that were design to specifically 
describe the characteristics of individual requirement 
styles. We adopt both the deductive and inductive 
tools in our blended approach since we want to test 
and validate the models or requirements as early as 
possible so as to reduce the number of defects leaking 
to the implementation phase of the life cycle. The 
inductive modelling tools add scientific rigour and 
transform the static structural models into a formal 
model using formal methods and hence test can be 
compiled on those design; e.g. transforming a flow 
chart (describing a logical function) into Coloured 
Petri Nets or sequence Diagram into CDL, so that 
these models are tested and simulated for verification 
and validation. The table in  

Figure 4 shows the translation from deductive 
modelling tools (structural and static) to inductive 
modelling tools (formal and dynamic). 

Figure 4 Transforming deductive to inductive 

Finally, the last cycle of the blended modelling 
approach, TiA generates the design directives of the 
validated artefacts which are submitted to the 
developers for implementation. 

In this paper we focus on the communication styles 
of a given system. When it comes to modelling the 
interaction and communication of Distributed 
System, Choreography Description Language (CDL) 
(Yang06) is one of the most efficient and robust tool. 
CDL forms part of Testable Integration Architecture, 
hereafter TiA, and is based on pi calculus (Miln99), 
which is a formal language to define the act of 
communicating. 

3.3 The Language of Pi Calculus 
Although formal methods exist such as Petri Nets 
(Pet62), B Methods, Z Notations and lambda calculus 
that are used to unambiguously describe software 
requirements. However when it comes to describing 
distributed concurrent interactions of several 
participants, they encounter major difficulties since 
they were not design to do so. Lambda calculus was 
designed for parametric description of passing 
arguments across functions; Z Notation was designed 
to classify and group attributes of the problem 
domain into logical sets; and B Methods was 



designed to describe requirement into logical sets and 
consistent machines.  

Pi-calculus is one element in a set called Process 
Calculi. The distinguishing feature between pi-
calculus and earlier process calculi, in particular 
Calculus of Communicating Systems 
(CCS)(Miln80a) and the work done on 
Communicating Sequential Processes (CSP) 
(Hoare85), is the ability to pass channels as data 
along other channels. 

Pi calculus is a formal language that uses to concept 
of channels and naming to describe interactions and 
fits comfortably in the problem domain of distributed 
systems. The pi-calculus is a model of concurrent 
computation based upon the notion of naming 
(Miln93). The syntax of pi-calculus enables one to 
model processes, parallel composition of processes, 
and communication between processes through the 
concept of channels. A channel is an abstraction of a 
communication link between two participants, the 
same way a process is the abstraction of a given 
thread of control. In the pi-calculus language there 
are a given set of constructs where all possible 
concurrent behaviour can be written. The following 
paragraph explains these constructs. 

Let P and Q denote processes, then P |Q denotes a 
process composed of P and Q running in parallel. The 
construct a(x).P models a process that waits to read a 
value x from the channel a, and then, having received 
it, behaves like P. The construct Ā<x>.P denotes a 
process that first waits to send the value x along the 
channel a, and then, after x has been accepted by 
some input process, behaves like P. The construct 
(νa)P ensures that a is a fresh channel in P. The 
construct !P denotes an infinite number of copies of 
P, all running in parallel. The construct, P + Q 
denotes a process that behaves like either P or Q. 0 
denotes the inert process that does nothing.  
 
TiA abstracts the given set of constructs in pi-
calculus and provides a language through a series of 
methods and logical sequences that are presented in a 
unified toolset. The latter facilitates the modelling 
and simulation of communication in concurrent 
systems. In order to achieve rigour in the power of 
modelling, TiA exploits the capability of CDL as a 
framework to model global message flows and the 
subsequent impact of communication on local 
behaviours, which is defined by pi-calculus. The 
work done by Carbone et al (Carb06), show formal 
description in the global calculus, has a precise 
representation in the local calculus. As a result, 
unlike other modelling frameworks, TiA is not 

limited to deductive and static modelling techniques, 
as it uses pi calculus based on non-deterministic 
models, that are well known within the academic 
world, but not yet of a common use within industry. 
In fact TiA acts as a natural “glue” to blend the 
various modelling approaches providing a framework 
with the primary objective of removing the 
characteristic of ad-hocness and ambiguity within the 
modelling Process.  
 
Using TiA, the formal description of the requirements 
can be translated into different types of modelling 
tools starting with dynamic modelling tools 
(inductive modelling) such as Coloured Petri Nets 
(CPN) and prototyping, then moving to event based 
modelling tools such as State Chart Diagrams and 
Sequence diagrams and finishing with structural 
modelling tools (deductive modelling) such as class 
diagrams. Throughout the translation process, the 
specifications and requirements can be tested, 
validated and reinforce. 

4. Case Study: Testable Integration 
Architecture used in Large 
Communication Model of Business 
Critical Systems 

In the case study, we focus on the fundamental 
problem of underwriting within a global insurance 
group, which includes the characteristics of 
Underwriting Workflow System, Policy Manager, 
Document Management System and the Integration 
Layer. The aim is to demonstrate how TiA is used to 
reinforce the power of modelling by avoiding 
classical modelling pitfalls, defining traceability 
across the lifecycle, providing a reference model 
through iterations, and addressing defects at early 
stage, hence increasing the maturity of the process 
model. 

As we mentioned earlier, the design approach 
employs both the deductive and inductive modelling 
techniques, and TiA employs a formal method, Pi-
calculus that provides the ability to test a given 
architecture, which is an unambiguous formal 
description of a set of components and their ordered 
interactions coupled with constraints on their 
implementation and behaviour. Such a description 
may be reasoned over to ensure consistency and 
correctness against requirements. 



4.1 The Requirement of the Communication 
Model  

Prior to designing the communication artefacts in 
TiA, we observed the requirements that have been 
gathered or invented during the requirement analysis 
phase of the Software Development Cycle (SDLC). 
Due to the size of the requirement catalogue, in the 
context of this paper, we focus on those parts of the 
requirements that demonstrate the character of 
communicative behaviour or the act of 
communicating.  
 

The architecture provides communication 
management and enablement of external systems 
deployed over an ESB layer, conforming to the 
principle and discipline of SOA. The architecture 
diagram, depicted in Figure 6, is a representation of 
the requirements of the communication between an 
Underwriting Workflow System and a Policy 
Manager (denoted as GWS in the illustrations). The 
communication is handled by the integration layer, 
employing BizTalk as technology and the 
Underwriting Workflow System is implemented 
using Pega PRPC. 

There are two primary motivations behind the use of 
TiA in the context of this work: 

1. Firstly, we employ TiA to develop several 
dynamic representations of the 
communication model in between the 1) 
Underwriting Workflow System; 2) Policy 
Manager and 3) BizTalk supporting the 
Integration Layer, in order that when these 
models are simulated, the results produced 
can be tested and verified against the 
requirements.  

2. Secondly we employed TiA in the given 
problem domain, is to achieve a model of 
communication that can evolve, 
consequently allowing BizTalk to move 
from being purely an EAI to the capability 
of an ESB wherein heterogeneous types of 
communication which includes external 
participants will be possible. Such 
conversation will be with Document 
Management Systems, Claims Repository 

Service, external Rating Services and 
others.  

In our problem domain, BizTalk maps the message of 
Pega PRPC, hereafter Pega, to the legacy Policy 
Manager. This is carried by transforming the data 
structure of the Pega messages into the data structure 
of native Policy Manager. There are 3 generic types 
of communication that describes the conversation 
between Pega and BizTalk.  

Figure 6 Communication Model 

The 

communication model illustrates 3 communication 
types 1) notification, error and data, expressed as 
<CS_Not>, <CS_Err> and <CS_Dat> respectively 
which are transported from Pega to BizTalk.  BizTalk 
accesses the data mapping schema and transform the 
incoming schema into response schema which is 
agreed by the Policy Manager. The Data Mapper is 
logically represented by the ERD  



From BizTalk to the Policy Manager, there are two 
types of communication which are 1) notification, 
<CS_Not> and 2) Data, <CS_Dat>. The 
communication model represented follows an 
asynchronous mode, which is handled by the 
Request/Reply map repository. The latter holds the 
state that assigns the corresponding response from the 
Policy Manager to a Request from Pega. There is a 
polling mechanism to notify Pega that a response has 
been received for a corresponding request.  

There are 3 return communication types from the 
Policy Manager to BizTalk which are <CS_Not>, 
<CS_Err> and <CS_Dat>. The latter holds the data 
which is required by Pega to update any underwriting 
transactions. As we modelled the communication 
using TiA, it has been observed that the existing 
legacy Policy Manager interface does not 
differentiate between success and failure response, 
hence there is no separation of identity between the 
error and success, which complicates the design of 
the integration layer. The design flaw has been 
identified whilst validating and type checking the 
communication model with TiA. This has lead to 
some mistake proof mechanism within BizTalk to 
manage error and trace the error back to the 
presentation layer, i.e. General Underwriting System.  
BizTalk has to transform the Policy Manager schema 
into a structure agreeable by Pega. The 
communication medium employed across Pega, 
BizTalk and Policy Manager is SOAP. 

4.2 Implementing Testable Integration 
Architecture (TiA) 
The process starts at the requirement gathering phase, 
where TiA is used to identify the core aspects of the 
communication which are in our context, the Pega 
component, The BizTalk component and Policy 
Manager (PM), as shown in Figure 7. 

Figure 7 Requirement communication model 

At the very early stage of design, while validating the 
communication with TiA through formal checking, it 
has been observed that the BizTalk component 
includes two primary modules, which is required to 
be modelled separately, and these are the Mapper 
component and the Mediator component respectively. 
This is a typical problem of separation of concerns. 
The separation showed that the mediator service is 

solely concerned with the orchestration of the 
communication model whereas the mapper service is 
related to the data modelling which ought to be 
abstracted to the problematic of Canonical Data 
Model within an ESB.  

The separation of concern to abstract distinct services 
(mediator and mapper services) has been possible 
because the TiA tool suite requires one to model 
requirements as conversations between concrete 
behaviours. It forces a separation into those 
behaviours by making it inconvenient to model 
otherwise, i.e. one participant communicating to 
itself. TiA has the innate property to separate 
behaviours out. 

Consider a process P which has a conversation with 
P. Then P is split into P' and P'' and the conversation 
is modelled as P' and P''. As P communicates with P, 
the behaviour of P as a participant, changes. As a 
result P has two personae, characterised as P' and P'' 
respectively. Hence TiA engages the designers into a 
style of modelling that removes message likes within 
behaviours and adds an additional behaviour (which 
may or may not be the same participant). This reflects 
good design by forcing the requirements, and then the 
model, into clearly delineated behaviours, which is a 
fundamental practice within the problematic of 
Service Identification for Service Oriented 
Architecture. 

Using classical modelling techniques, purely static 
design such as sequence diagram, this dichotomy is 
not enforced and would have been missed in the 
requirement phase and only be found at the late stage 
of design or coding. It is also possible that the 
separation would have been missed completely, 
adding overheads and reworks to preserve the 
characteristic of extensibility to the architecture. 



Figure 8 Conversation Model 

Whilst requirements are gathered, a model of the 
conversation within problem emerges as shown in 

Figure 8. This is static diagram that simply lays out 
the roles, the swim lanes (see Figure 7), and who can 
talk to who. This enables us to manage the 
conversation in the system and to also extend the 
model to add new components and test if the 
communication model still holds when new 
participants are added.  

The next step is to bind the model in Figure 7 to a 
choreography, which will enable us to type check the 
model against the requirement in order to validate the 
model and remove ambiguity in the requirements for 
the communication model. The choreography is 
shown in Figure 9. 

 

Figure 9 Architecting the Design (Partial view of the 
Dynamic Choreography model) 

The binding process involves the process of 
referencing the model in the requirement and binding 
the interactions. The binding process also has the 
effect of filling in some of the missing information on 
identity and business transactions.  

With a bound model, the choreography in Figure 9 
can be exercised in order to prove the model against 
the architectural parameters which are derived from 
the given set of requirement as shown in Figure 10. 
The model shows the participants which are Pega, 
conversing with the BizTalk’s mediator service, the 
mapper service (for data transformation) wherein data 
is finally be passed to the Policy Manager participant. 

4.3 Simulation & Observation 
During the test of the architecture, the proof goes 
green (see Figure 10) if the configuration and 
parameters or more precisely the types of the 
interactions are correct and should it be red, the proof 
reveals that the model deviates from the 
requirements, highlighting the defects. The binding 
and rendering of the bound requirements provide 
very precise documentation for implementers. 

 



 

Figure 10 Proving the Communication Model 

Hence for each interaction, we can clearly observe 
the meaning of identity, the meaning of the type for 
each identity (the token or tokens) and the Xpath 
expressions which is executed during the simulation 
over the example message, in our case the request 
xml of Pega and the Policy Manager Process UW 
xml, return the appropriate values. This is shown in 
Figure 12. 

 

Figure 12 Identity of Interactions 

The values returned during the course of a 
simulation, compiled within the xml output files as 
shown in Figure 12, accentuate the meaning of 
identity and types which provides a set of defined 
results that can be revised against the requirements 
gathered. This enables the decision makers to verify 
and validate the yield of the communication model 
against conformance to the requirement of the 
customers. Typically this exercise is run as a proof of 
concept. As a result the Business Analyst is 
empowered to walk through the simulation results 
with the clients, asking the vital question of: “is this 
what you meant?” The walk through process is 
inherently more robust than traditional design 

inspection exercise and formal reviews (). The reason 
is because TiA adds scientific rigour and is supported 
by the simulation engine and type checking protocol 
that can be run and re-run during the SDLC prior to 
any coding.  

After the proof of the model is demonstrated, we 
believe that the model conforms to the pre defined 
requirements and many of the ambiguities in the 
requirements have been detected and consequently 
resolved at the requirement and design phase of the 
Software Development Life Cycle (SDLC). Then, in 
exploiting the capabilities of model generation, TiA 
provides us with a rich a proven set of artefacts such 
as UML designs and state-charts diagram of the 
model. In Figure 13, we show the state-charts 
generated from the proven dynamic models. This is 
typically the translation of the inductive models (the 
CDL model) to the more common deductive models 
(UML and BPMN). Then the course of the SDLC 
resumes with the normal route of the classical 
software engineering processes. 

 

Figure 13 Generated UML Artefacts State Chart of 
the Underwriting System 

During the Design exercise we exploited the feature 
of Business Process Execution Language (BPEL) 
generation from the TiA framework to generate 
artefacts that can be imported into a BPEL compliant 
orchestration tools. TiA guarantees that the BPEL 
preserve the state behaviour that is shown in the state 
charts (see Figure 13) for the given service. 

In Figure 14, we present the generated BPMN 
artefacts from the TiA toolset. In this paper we focus 



on the BizTalk Mediator Service of the Systems as 
most of the complex interactions are being 
coordinated in this layer. The BPMN model is 
derived from the refined and proven CDL Model. 

 

Figure 14 Generated BPMN Model - Focussing on 
the Processes of the BizTalk Mediator Service 

The generated models along with auto-generated 
documentations are compiled into the design 
directives and coding principles that can be handed 
over to the software designer and the developers. The 
communication to these parties is founded on formal 
and mathematical checks which makes the design and 
the development of the system far less error prone.  

5. Conclusion 
In employing TiA, we were able to identify business 
and core service easily and test them against 
requirements for the mediator business service and 
mapper core service. We worked very closely with 
key decision makers to ensure a full understanding 
and gain agreement on requirements through 
inductive modelling of requirements and the 
collaboration model that is embodied in TiA. This 
allowed rapid turn-around with Business Analyst 
and reduced the overall design time. 

Secondly we were able to detect errors both as 
conflicting requirements (reported back and then 
remediated with the stakeholders) and technical 
design errors prior to coding, the latter being the 
legacy Policy Manager’s error handling problem. 
We were also able to simplify the design 
segmenting it and ensuring that it truly represented 
the requirements through TiA.  

Finally, TiA enabled the generation of 
implementation artefacts, such as UML designs and 
state charts that were guaranteed to meet 

requirements and were of an order of magnitude 
more precise which reduced the communication 
need to ensure a high quality delivery. This is 
typically the capability of TiA to blend the inductive 
with the deductive modelling techniques. 

The benefits of blending inductive modelling 
techniques with the deductive techniques yield to 
earlier defect detection resulted to reducing the 
transition time to architect the solution by 
generating precise technical contracts for 
implementation which is type checked, hence 
proven to be correct. In our case, we are able to 
achieve a 40 % efficiency to move from 
requirement to technical specifications. Moreover, 
the simulation exercise empowered us to check if 
the model is implementable against the given 
technology stack (BizTalk and Pega). 
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