

European Organization for Particle Physics

The coolest place on earth

Large Scale Messaging with ActiveMQ for Particle Accelerators at CERN

Overview

About the Speaker

Member of CERN Beams Controls Group: Responsible for JMS Service Middleware Developer for Alarm and Monitoring System

Previous Activities: Large Storage Systems Grid Environment felix.ehm@cern.ch

What is CERN?

A European Organization for Nuclear Research

originally : Conseil Européen pour la Recherche Nucléaire

- Founded in 1954
- Based in Geneva, Switzerland
- 3'000 staff members
- 8'000 visiting scientists
- Financed by its member states

Large Machines for High Energy Physics

Particle colliders for tracing "fragments"

The CERN Campus

The Large Hadron Collider

But the LHC is not the only accelerator

A lot of systems to control

Controls Computers

85'000 Devices

Safety

Electricity

> 2 Million I/O Endpoints

Cooling

Cryogenics

Much more when including subsystems!

Ventilation

Magnets

Vacuum

Everything from one central point: The CERN Control Centre

USING ACTIVEMQ FOR ACCELERATOR CONTROLS

Controls Architecture

JMS Purpose:

Reliable and **scalable** transport of data between Java processes

History

- Early use of ActiveMQ already in 2005
 - We were looking for a free JMS solution
 - Apache? Can't be bad!

- Why OpenSource ?
 - Low Costs
 - We can read and check the code
 - We can add / fix code

History – First Setup

- Clients
 - Java middle-tier servers and GUIs
- Data access for Clients via Middleware API
- Two interconnected Brokers

Simple Setup, few projects, little data, easy to use. Did the job!

History - Evolution

- But: Service suffered by its own success
 - More users and more data was sent around
 - Higher QoS was requested
 - Redundancy
 - Queues, persistent messaging and global transactions (XA)
 - Support for non Java clients

Deployment Today

- 20 Production Brokers
 - 10 single Brokers
 - 5 HA Clusters
- No one large cluster but manageable entities
- Vital part of beam instrumentation and operation

No JMS – No Particle Physics!

Deployment Today - Setup

DIAMON TIM SIS

ACTIVEMO

GENERAL

CPSINCA

CESAR

PUBLIC

SEQUENCER

DIAMON-FILTER

CMWLOG

- HA Clusters
 - 2 equivalent broker members, no master-slave
 - Two (real) machines with separate network links
- Single Broker
 - For projects which do not require HA
 - Deployed on same (real) machine as middle-tier server
- Local secured network together with Producers and Consumers
- Fuse ActiveMQ Distribution since 2010
 - Issues solved faster in service packs

Deployment Today

Some numbers:

- 300 Applications
- 4'400 Connections
- 40'000 Subscriptions
- 85'000 Topics
- 68'000 Consumers
- 8 Million msg/h IN,
 3.5M msg/h OUT

Archived Uptime in 2011: 99.98%

Not all data which is produced is consumed

Example of Data Handling during LHC Startup 2010

Output Data Handling for 1 Broker of the General Broker Cluster

Usage Cases

Usage Case 1

- Payload 2MByte
- 1 msg/sec
- 1 Topic
- 20-30 Java Clients

Usage Case 2

- Payload 500Bytes-1KBytes
- 30-200 msg/sec
- 120 Queues
- 4 Million XAS/day
- 2 Clients

Usage Case 3

- Payload200Byte -10KByte
- 50-4500 msg/sec
- 10'000 Topics
- 2-5 Clients

Usage Case 4

- Payload<200 Bytes
- <10 msg/hour</p>
- 1 Queue
- < 10 STOMP Clients

ActiveMQ

Scalability

Reliability

Versatility

Flexibility

OPERATION

Management of Brokers

Monitoring

- via JMX
- Submission of test message
- Host machine monitoring

Deployment

- Rollout scripts for deploying/rollback
- Configuration changes tracked in SVN

Diagnostic Tools

Dump JMX information into SQLite database for fast, easy and intuitive access.

Diagnostic Tools

Traffic Monitoring Tool

- Collecting information by listening on Topic
 - -Message size & speed
- Allows history view on
 - Average Message throughput
 - Average Message size

Lessons learnt - Operation

- Separate usage cases from each other
 - Easier than implementing per destination policies
 - Broker restart does not affect others
- More clients, more memory
- Broker does not die when hitting memory limits
- Check if you need all features
 - Maintenance overhead vs. failure probability & effect

Lessons learnt - Configuration

- Disable DedicatedTaskRunner: takes many threads
- Reduce the PrefetchLimit on clients side
- Couldn't get Broker discarding messages
 - ConstantPrefetchLimit unset + brain-dead client
 - = Out of Memory

- Memory is important
 - But GC takes longer
 - New Java GC options help

- -XX:+UseConcMarkSweepGC
- -XX:+CMSIncrementalMode
- -XX:+CMSIncrementalPacing
- -XX:CMSIncrementalDutyCycleMin=0
- -XX:CMSIncrementalDutyCycle=10
- -XX:+HeapDumpOnOutOfMemoryError

EXAMPLES

LHC Status Displays

Remote Control for Video Viewer

"Bamboo" for Accelerators

Animate Synoptic Displays

Camel for Unifying Log Events

Finding/Debugging a problem becomes cumbersome!

Collecting and **unify**ing log messages in one **central** place

Easy **correlation** of events among **many** services

Finally

A great thanks to all developers!

European Organization for Particle Physics *Take part!*

