
Enterprise Integration Patterns:Enterprise Integration Patterns:
Past, Present and Future

Translator

Test Message Splitter

Enricher

Aggregator

Gregor Hohpe
www.eaipatterns.com

© 2011 Gregor Hohpe

Isolated Systems

Unified Access

70s: Batch Data Exchange

 Export information into a common file
format, read into the target system

 Example: COBOL Flat files

System

A

System

B

E
x
p
o
r
t

I
m
p
o
r
tC tt tCustomer

Data
Database

Pros: Cons:
• Good physical decoupling
• Language and system

independent

• Data transfer not immediate
• Systems may be out of sync
• Large amounts of data

Pros: Cons:

independent • Large amounts of data

80s: Central Database

 All applications access a common database

System
A

System
B

System
C

Customer
Data

Pros: Cons:
• Consistent Data
• Reporting
• Transactional guarantees

• Integration of data,
not business functions

• Difficult to find common

Pros: Cons:

• Transactional guarantees Difficult to find common
representation

90s: Remote Procedure Calls

 One application calls another directly to
perform a function.

 Data necessary for the call is passed along.
Results are returned to calling application.

Get Credit ScoreSystem System

740
A B

740

Pros: Cons:
• Data exchanged only as

needed
• Integration of business

• Works well only with small
number of systems

• Fragile (tight coupling)

Pros: Cons:

Integration of business
function, not just data

Fragile (tight coupling)
• Performance

Asynchronous Messaging Style

ReceiverSender
Message

Channel
(Q)

 Systems send messages across Channels
 Channels have logical (location indep)

Message (Queue)

Simplified
Interaction Channels have logical (location-indep.)

addresses
 Placing a message into the Channel is

Interaction

Location
Decouplingg g

quick (“fire-and-forget”)
 The Channel queues messages until the

receiving application is ready

Temporal
Decoupling

receiving application is ready

An "honest" architectural style that does not try to deny
the limitations of the underlying medium.

Why Asynchronous Messaging?

 Asynchrony
 Sender does not have to wait for receiver to process message
 Temporal decouplingTemporal decoupling

 Throttling
 Receiver can consume messages at its own pace
 Processing units can be tuned independently

 Can be Reliable Over Unreliable Networks
 Messages can transparently be re-sent until delivered Messages can transparently be re sent until delivered
 Think cell phones – intermittent and unreliable

 Insertion of intermediaries (Pipes-and-Filters)
 Composability
 Transformation, routing etc.

 Throughput over latency Throughput over latency
 “Wider bridges not faster cars”

A New “Tower of Babel”
ex

ec
ut

e
bi

lit
y

to
 e

ab

completeness of vision

Gartner “Magic Quadrant” for
Integration and Middleware 2001

Messaging Pattern Language

1. Transport messages ApplicationApplication ApplicationApplication

2. Design messages

3. Route the message to
the proper destination

4. Transform the message

Application

to the required format

5. Produce and consume
Application

messages

6. Manage and Test the
S tSystem

Messaging Pattern Language

1. Transport messages Channel Patterns

3. Route the message to Routing Patterns

2. Design messages Message Patterns

the proper destination

4. Transform the message Transformation Patterns
to the required format

5. Produce and consume Endpoint Patterns Application

messages

6. Manage and Test the
S t

Management Patterns
System

http://hillside.net/
plop/plop2002/

proceedings.html

“Enterprise Integration Patterns”
G. HohpeG. Hohpe

“Patterns of System Integration

© 2006 Gregor Hohpe

with Enterprise Messaging”
B. Woolf, K. Brown

 OOPSLA 2003OOPSLA 2003
 185,000 Words

 700 pages

 50,000 copies

 Translations
English English

 Russian

 Chinese Traditional

 Korean

 www.eaipatterns.com
 Sketches, summaries

under Creative Commons

 Visio, Omnigraffle stencils

M essage
C onstruction

Message
R outing

M ess age

M essage Router
Content-B ased Router
M F ilt

Message
Transform ation

M ess age
Com m and M essage
Doc um ent M essage
E vent M es sage
Reques t-Reply
Return A ddress
Correlation Identifier

M essage F ilter
Dynam ic Filter
Rec ipient Lis t
S plit ter
A ggregator
Res equencer
Com posed M sg P rocess or

M ess age Trans lator
E nvelope Wrapper
Content E nricher
Content F ilter

Endpoint Endpoint

M ess age S equence
M ess age E xpirat ion
Form at Indicator

Com posed M sg. P rocess or.
S catter-Gather
Routing S lip
P roc es s M anager
M essage B roker

Content F ilter
Claim Chec k
Norm alizer
Canonical Data M odel

Application
A

Application
B

M essage Channel Router Translator
p p

Messag ing
C hannels

M onitoring

Messaging
E ndpoin ts

S ystem s
M anag em en tM es sage Channel

Point-to-P oint Channel C t l B

M ess age E ndpoint
M ess aging Gateway
M ess aging M apper gPoint-to-P oint Channel

Publis h-S ubc r. Channel
Datatype Channel
Invalid M essage Channel
Dead Letter Channel
Guaranteed M essaging
Channel A dapter

Control B us
Detour
W ire Tap
M essage His tory
M essage S tore
S m art P rox y
Tes t M essage

M ess aging M apper
Transac tional Client
P olling Consum er
E vent-Driv en Consum er
Com peting Cons um ers
M ess age Dis patc her
S elec tiv e Cons um er p

M es saging B ridge
M es sage B us

Tes t M essage
Channel P urgerDurable S ubs c riber

M ess aging A dapter
Idem potent Receiver
S erv ice A c tiv ator

Visual Language

Content-Based Router

Message FilterMessage Filter

Recipient List

Splitter

A tAggregator

Resequencer

Routing Slip (Itinerary)

Process Manager

Composing Patterns
Receive an order Receive an order

 Get best offer for each item from vendors
C bi i t lid t d d Combine into validated order.

Quote

Scatter-Gather

Vendor A

Vendor B

Pub-Sub
Channel

Quote

SplitterNew
Order

Quote Request
for each item Vendor C

“Best” Quote A tAggregatorValidated
Order

Best Quote
for each item

Aggregator

SomeoneSomeone
better build
a tool thata tool that
supports
these!these!

Home-made wisdom elixir

© 2011 Gregor Hohpe

Tossers.
I’ll just doI ll just do
it myself!
Cheers!Cheers!

© 2006 Gregor Hohpe 20

© 2006 Gregor Hohpe

© 2006 Gregor Hohpe

Patterns Origin – Christopher Alexander

BED ALCOVE

Design problem
Bedrooms make no sense.

Forces
Fi h b d i b d k dFirst, the bed in a bedroom creates awkward
spaces around it: dressing, working, watching

television, sitting, are all rather foreign to the side
spaces left over around a bed ()spaces left over around a bed. (...)

Second, the bed itself seems more comfortable in a
space that is adjusted to it.

Solution
Don't put single beds in empty rooms called bedrooms,
but instead put individual bed alcoves off rooms with p

other nonsleeping functions, so the bed itself becomes
a tiny private haven.

Patterns – 15 Years After GoF

 “Mind sized” chunks of information
(Ward Cunningham)

 Human-to-human interaction

 Expresses intent (“why” vs. “how”)

 Observed from actual experience

 New programming models bring new patterns New programming models bring new patterns

 NOT:
 A firm rule –always a time when not to use

 Copy-paste code

 Isolated. Part of a Pattern Language

Patterns as Executable Domain Language?

CUSTOMER orderChannel

ENRICHER orderChannel orderEnrichedChannel

SPLITTER orderEnrichedChannel itemChannel "/Order/Item“/ /

ROUTER itemChannel coldBevChannel "Item = 'FRAPPUCINO'“
hotBevChannel

LOGGER coldBevChannel

LOGGER hotBevChannel

Splitter RouterEnricher
Logger

Customer coldBevChannel

Logger
order

Ch l
orderEnriched

Ch l
item

Ch l hotBevChannelChannel Channel Channel hotBevChannel

Patterns Components

Patterns Components

 Human communication
 Fuzzy

 System Communication
 Precisey

 Design tool
 Platform independent

 Executable
 Platform dependentp p

 Pipes and Filters style: simple composability

 Easily formalizable: input ports output ports Easily formalizable: input ports, output ports

Input Port Output Port

 Leverage other domain languages, such as XSLT

Enterprise Integration or Messaging?

Enterprise
Integration

MessagingMessaging

Enterprise Integration or Messaging?

Enterprise
Integration

Messaging Conversations Processes EventsMessaging Conversations Processes Events

Messaging

Flow of messages through processing nodes

T t M S litt

Translator

A tTest Message Splitter

Enricher

Aggregator

 Stateless -> scaleable, decoupled
 Error handling? Error handling?
 Complex interactions (no guarantees)

Conversations
C ti

Order

Conversation
State

Internal State:
P i

lInternal State:
Waiting for

Invoice

Payment

Processing
Payment

Waiting for
Payment

Internal State:

Drinks
Making Drinks

 Each conversation corresponds to one process
instance

 Each participant has a (potentially different) process
definition

Simple Example: Request Response

Client Server

Conversation = Series of Related Messages

Response Message Lost

Client Server

Response Message Delayed

Client Server

Conversation State

Client Server

Waiting for
Response

Challenges: Describing Conversations

 Sequence Diagrams (UML 1.x) only show one
instance, not rules of interactioninstance, not rules of interaction

 Sequence Diagrams (UML 2.0) more powerful, but
non-intuitive notation

 WS-CDL describes conversation state, but very
little adoptionp

 WS-BPEL a little verbose, looking from participant
perspective

 Temporal Logic expressive, but not good for
sketch

Request-Reply

Conversation
State Chart

Request
Channel Awaiting

Answer

Reply
ChannelRequestor Replier

 Simplest conversation
 Single Conversation state: waiting for reply, complete

G li d di i id d Gets more complicated once error conditions considered

37

Request-Reply with Retry
C ti

Req est

Conversation
State

Request

Response

Request (Resend)∆t Awaiting
Answer
[timeout]

Consumer Provider

Response

[response] [yes]

max
retry?

 Sender can repeat request n times
 Provider has to be idempotent

[p] [yes]

FailedSuccess

 Receiver also has to be idempotent
 Example: RosettaNet Implementation Framework

(RNIF)(RNIF)

How can a service find a
conversation partner in when it
has no knowledge about the

network and its services?

 Point-to-point communication requires knowledge of the p q g
conversation partner (or channel).

 The late binding between a service consumer and the service
endpoint lowers the location coupling between them. p p g

 Discovery may be on the critical path to establishing a conversation.
 Even in the presence of a central lookup service, a new participant

has to first establish a connection to the lookup service.has to first establish a connection to the lookup service.

Dynamic Discovery

Provider
1Pub-Sub

Request
1

2
Consider

Choose

Provider
2

Provider
3 Respond4

1 Broadcast request

3
5 Interact

1. Broadcast request
2. Provider(s) consider whether to respond (load, suitability)
3. Interested providers send responses
4 R t h “b t” id f4. Requestor chooses “best” provider from responses
5. Requestor initiates interaction with chosen provider
 Examples: DHCP, TIBCO Repository discovery

How can a service find a conversation
partner across a large network p g

without flooding the network with
requests?

 The late binding between a service consumer and the service

q

g
endpoint lowers the location coupling between them.

 Discovery may be on the critical path to establishing a conversation.
 Many networks do not route broadcast packets beyond the localMany networks do not route broadcast packets beyond the local

network.
 Often centralized administration is involved in setting up a new

service.service.

Consult Directory

Service
Registry

2 Consult
Directory

Conversation

1 Publish Service Contract

 Directory may store additional metadata about the service

Consumer Provider
Conversation

3

 Directory may store additional metadata about the service
 "Match making based on"
 Unique Identifiers
 Interface Definition / Type
 Attributes
 Keyword matchy

Subscribe-Notify (Multi-responses)

Express Interest

N tifNotify

 Subscriber expresses interest in receiving notifications

Subscriber Provider

 Subscriber expresses interest in receiving notifications
 Subscriber receives messages until a stop condition is

reached:
 Subscriber sends a stop request
 A deadline is reached without the subscriber renewing interest
 Subscriber does not respond to requests from provider
 Provider notifies subscriber of end of transmission

Renewing Interest

Lease
 “Lease” model
 Heartbeat / keep alive

Register
Automatic Expiration

Lease
(Renew Interval)

 Heartbeat / keep-alive
 Subscriber has to renew

activelyRenew Interest
∆t

y
 Example: Jini

Renewal Request

Subscriber Provider

 “Magazine Model”
 Subscriber can be simple

P id h t
Renewal Request

Register

∆t

Renewal Confirm  Provider has to manage
state for each subscriberProviderSubscriber

Conversation Pattern Language

 Initiating Message  Reliable Delivery
Messages Simple Conversations
Initiating Message

 Follow-on Message
 Complete Message

Reliable Delivery
 Sync Request-reply
 Async Request-Reply Complete Message

 Side Conversation
(Sub-Conversation)

 Async. Request Reply
messages

 Async. Request-Poll(Sub Conversation)
 Acknowledgment

Message

Async. Request Poll
for result

 Subscribe-NotifyMessage Subscribe Notify
 Tacit Agreement
 Reaching agreementReaching agreement

Conversation Pattern Language

 Vote / Poll  Lease / Automatic

Coordinated Conv. Renewing Interest
/

 Reaching Agreement /
Two-phase vote

/
Expiration

 Renewal Reminder
 Unanimous agreement

E t bli hi C E ti H dli
 Discovery
 Introduction

 Two-phase Commit
 Compensation Action

Establishing Conv. Exception Handling

Introduction
 Three-Way Handshake
 Role negotiation

Compensation Action
 Retry / Resend

(Idempotent Receivers)g
 Establishing trust  Write-Offs

Workflow Patterns - Example

 Synchronizing Merge
 Merge many execution paths.

A B

Wait for A and BMerge many execution paths.
Synchronize if multiple paths
are taken.

C
Wait for A and B,

then execute
C once

A B Multiple Merge
 Merge many execution paths

without synchronizing C

A B

Execute C
twicewithout synchronizing.

 Discriminator

C twice

A B Discriminator
 Merge many execution paths

without synchronizing. Execute
C

A B

Execute C
once as soon as

48the subsequent activity only
once.

C once as soon as
A or B completes

Event Pattern - Example

“Window of Opportunity”

Event 1

Event 2

Event 3

Event 4

 Messaging Patterns (65)
 Messaging Systemsg g y
 Messaging Channels
 Message Construction

M R ti Message Routing
 Message Transformation
 Messaging EndpointsMessaging Endpoints
 System Management

 Conversation Patterns
www.eaipatterns.com

 Discovery
 Establishing a Conversation

M l i C i

50

 Multi-party Conversations
 Reaching agreement
 Resource Management 50Resource Management
 Error Handling

www.conversationpatterns.com

Photo Credits
 http://nevermoregraphix.deviantart.com
 http://www.travelpod.com/members/ralf_ww_trip10
 http://www.flickr.com/photos/mukluk

