Enterprise Integration Patterns:
Past, Present and Future

N~

/><\
O Translator O
o— 100 O—»0 O—0O
O O
Test Message Splitter 0—[] Aggregator
Enricher

Gregor Hohpe
WwWw.ealipatterns.com

Isolated Systems

J

Unified Access -

——

70s: Batch Data Exchange 55, %

<.
% A . ?"5/;%
Export information into a common file R
format, read into the target system
Example: COBOL Flat files
T - | ”M’ 7
System >E< \q‘r:] System -@
bl P > : { P ol . :
A ||r - {| B
B Customer. . Database
Data
Pros: Cons:
e Good physical decoupling e Data transfer not immediate
e Language and system e Systems may be out of sync
iIndependent e Large amounts of data

(.
80s: Central Database %;%,;
| (I
All applications access a common database "

5

System System System |

BT % I

Customer

Data

Pros: cons:

e Consistent Data e Integration of data,

e Reporting not business functions

e Transactional guarantees « Difficult to find common
representation

2
90s: Remote Procedure Calls “é;‘
A

5
@)
2%

One appllcatlon calls another dlrectly to é‘@&

oerform a function. =«

Data necessary for the caII IS passed along
Results are returned htgﬂcallmg application.

System Get Credit Score- System -
1740 '
A B

Pros: Cons:
e Data exchanged only as e Works well only with small
needed number of systems

e Integration of business e Fragile (tight coupling)
function, not just data e Performance

Asynchronous Messaging Style

Iver

(Queue)

Channel
= Systems send messages across Channels

Ga(— [Rece

Message

Sender ﬂﬁg —

e

=

o
L

t

g

-

o

L
£
|
.
o

-

L
o
it

™
]

-
-

-
-

-
-
-

£

i i
L

-
=
=

-
.

S

]
L

)

b

g

.

-

-

o

. ——

-
-

-
-

-
]

-
-

.
.

-
-
-
-

S

i

o

e
e

.

.

-

i

-
=

o

-

-
=
i

-

|
*
-

%
:

’ X

L
-
e

=

i

o
=

=

s

]
]

.

i

o

.

-
e

-
v
|
i

-

o -
-
G g
Do
F
i H
s

-

dep.)

= Channels have logical (locat

Ion-in

addresses

-

| |
i,

i
iy

:

i

o
g
!
.
g

R e

jy e e
et

A
=

55

-
L

|)
5
N
e

o
Wi

-
=
3\
-
%
it

o
=
.

.
.
:*.
5

-
-
-
-

-
p
i

-

.

:;.

-
i

-

-

-
=
e

.

-

IS

Into the Channel

INg a message

= Plac

.

-
-
-

:
| —

.

‘!
B

e

-
-
-

-
T
Pt

%

S

.
-

-
-
.
-

o
-
-
-
-
o
.

-

-
-

L

4
"

| |
| §
|\

3
i

.-
L
X

)
it

-
-
o

-
e
-

=
| |
i

-
-

.
)

)
L

| —
G O
ey

—-—

o

-

5

-

o

-

-

-

-
=

quick (“fire-and-forget”)
= The Channel queues messages until the

i

i
-

-
-

-

g
P i
B
-
=k
B
i
.

™~

N

T
S

e

]

1
i

.
-

-
-

o
o
-

L

lication Is ready

receiving app

Ing medium.

f the underly

Imitations o

An "honest" architectural style that does not try to deny
the |

Why Asynchronous Messaging? % foo,

N
%, @
Asynchrony &
(o)
= Sender does not have to walit for receiver to process message 2
= Temporal decoupling
Throttling

= Receiver can consume messages at its own pace
» Processing units can be tuned independently

Can be Reliable Over Unreliable Networks
= Messages can transparently be re-sent until delivered
= Think cell phones — intermittent and unreliable

Insertion of intermediaries (Pipes-and-Filters)
= Composability
= Transformation, routing etc.

Throughput over latency
= “Wider bridges not faster cars”

A New “Tower of Babel”

A

ability to execute

completeness of vision

Meon_ Systams
Microsoft Seetleyond
Sungard Peregring |1BM webMethods
GE ./
Candle Dra{:le\\ \\ \ r”” _TEEG
Heamcaremm_‘-\\“x_ «—\itria
Sterling Commerce~—__iWay=-—=a_ A ‘Lﬂﬂﬁfﬁ_'{l____—— SybaseMNEON
Vianetts i —— CrossWorlds
oveld SoftwareAl
Propelis — = 5 ercator
' eWWe
Optio~" 7/ wRq " Vigwlocity
Fujitsu Siemens Datamirror Kabira
Sopra iPlanet
MNetik

Gartner “Magic Quadrant” for
Integration and Middleware 2001

Messaging Pattern Language

1. Transport messages Application Application
2. Design messages

g g) .
3. Route the message to ?D

the proper destination

>

g

4. Transform the message
to the required format ?@

5. Produce and consume —
Application

MesSSsSages

6. Manage and Test the
System

Messaging Pattern Language

1. Transport messages Channel Patterns S—

2. Desigh messages Message Patterns CBD

3. Route the message to Routing Patterns —~ =
the proper destination

4. Transform the message Transformation Patterns ([3< |
to the required format

5. Produce and consume Endpoint Patterns Application
messages

6. Manage and Test the Management Patterns e

System

ceron Pattern Language of Programs 2002
9th Conference on ern Language of Programs 200

Monticello, lllinois

Welcome to PLoP 2002

PLoP 2002
Proceedings

Call for papers
Focus Topics
Paper Submissions
Schedule
Reaistration
Location

Call for Wolunteers
All PLoPs

PLoP 2002 Proceedings (Draft)

Mote to authors: Flease check the link to the paper and make sure that it
contains your final revision. Any corrections should be sent to Weerasak
Witthawaskul at plop2002chair@yahoo.com.

Copyright 2002 by paper authors. Permission is granted only to copy for the PLoP

2002 confsrencs,

Update: 9 Sep 2002 Mock Workshop Paper - Distributed Cache Pattern

Section 1 Accepted Papers

H ShEphErd

Plenary
Session

Program

Committee

Linking Patterns and Non-

I. Araujo, M. Functional Reguirements (was Erian -
18 Weiss 'Using the NFR Framework for Marick Eric Evans
Representing Patterns')
Group 2 Leader: Martin Fowler and Ali Arsanjani
Patterns for Implementing Masan John
1 |[A. Arsanijani Grammar-Criented Object Tomona Vlicsides

Design

3 ||A. Arsaniani

Towards 8 Pattern Language for
Wehb Services Architecture (was

Gustavo John

'Patterns for Web Services Rossi Vlissides
Architectures')
: . Philip John
14 |G. Hohpe Enterprise Integration Patterns Eslalin i
A, Corsarg, D. " .
R Virtusl Component A Design ’
4 EI. fc}:ﬁhg‘u%, R | pattern for Memory-Constrained _E_lchhael —':lgc';' idt
D'.;Lja?'l P Embedded Applications nlrener S

Section 2 Large Pattern Language Group Papers

http://hillside.net/
plop/plop2002/
proceedings.html

“Enterprise Integration Patterns
G. Hohpe

“Patterns of System Integration

Patterns of System Inteqration with Enterprize - = = = 7y
! |Messoung e with Enterprise Messaging
Strateqic Design (excerpt from Domain Driven
2 Design) - Entire manuscript can be downloaded ||Eric Evans B W |f K B
from here. . OO y . rown
Some Algorithm Structure and Support EBerna Massingill, Timothy
3 Fatterns for Parallel Application Programs G. Mattson, Beverly A.
(abstract) Sanders

OOPSLA 2003

185,000 Words
700 pages
50,000 copies

Translations

English
Russian
Chinese Traditional
Korean

Sketches, summaries
under Creative Commons

Visio, Omnigraffle stencils

ENTERPRISE
INTEGRATION
PATTERNS

Grecor HoHpE
Bospy WoOLF

EviE Hrows
Compan E D'Cauz
MarTme FOWLER
Spap MEVILLI
MicHarr . ReTTIG

[ATHARM SinbmN

= /%
< M\ m‘}‘""\'_.‘i"’
& / .

ey [] ._TH-I_"I.]

Message

Message
Construction

Routing

Message Router
Content-Based Router

Message

Command Message
Document Message
Event Message
Request-Reply
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Message Filter

Dynamic Filter

Recipient List

Splitter

Aggregator

Resequencer

Composed Msg. Processor.
Scatter-Gather

Routing Slip

Process Manager

.

s,

Endpoint \‘\

Application

e
e
o

Message

Message Broker

Message
Transformation

Message Translator
Envelope Wrapper
Content Enricher
Content Filter

Claim Check
Normalizer

Canonical Data Model

N

Channel

“R‘Q‘U ter

o

Transfator

Endpoint

Application
B

Messaging
Endpoints

Message Endpoint
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Messaging Adapter
Idempotent Receiver
Service Activator

Messaging
Channels

Message Channel
Point-to-Point Channel
Publish-Subcr. Channel
Datatype Channel

Invalid Message Channel
Dead Letter Channel
Guaranteed Messaging
Channel Adapter
Messaging Bridge
Message Bus

M onitoring

Systems
Management

Control Bus
Detour

Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger

Visual Language

. —| Content-Based Router

Y Message Filter

—<—| Recipient List

o8 | Splitter

a-o | Aggregator

0%, oon| Resequencer

oo [Routing Slip (Itinerary)

=& | Process Manager

Composing Patterns

= Recelve an order

= Get best offer for each item from vendors
= Combine into validated order.

;

New
Order

;

Validated
Order

|
O—0
0

Splitter

O
O« O
O

Aggregator

Talals

Quote Request
for each item

Tyl

“Best” Quote
for each item

Scatter-Gather

Pub-Sub
Channel

I

O
O«
O

Aggregator

Vendor A

Vendor B

Vendor C

?DQuote

Someone
better build
a tool that

supports

these!

Home-made wisdom elixir

Tossers.

I'll just do
It myself!
Cheers!

James Strachan’'s Blog

Random ramblings on Open Source, integration and other malarkey

TUESDAY, 15 MAY 2007

£ Enterprise Integration Patterns in Java using a DSL
. he C l James Strachan
via Apache Came . ek Eroric:

England, United

For those of you who missed me
Kingdom

rambling about this at JavaOne |
thought I'd introduce Camel to
you.

Software Fellow at FuseSource

& View my complete profile
Apache Camel is a powerful rule
based routing and mediation
engine which provides a POJO
based implementation of the
Enterprise Integration Patterns
using an extremely powerful fluent
AP| (or declarative Java Domain
Specific Language) to configure

routing and mediation rules. ® Apache ActiveMQ
® Apache Camel
The Domain Specific Language S ChE Kamf e o e
means that Apache Camel can support type-safe smart completion of
routing and mediation rules in your IDE using regular Java code without .M T
huge amounts of XML configuration files; though Xml Configuration inside ¥ Fuse Fabric

of Spring 2 is also supported.

A good way to get started is to take a look at the Enterprise Integration

. #)Yy James Strachan ghioh
Patterns catalog and see what the Java code of an example looks like. 42 5006 commits, 42 kudos

For example, try the message filter, content based router or splitter.

Camel in Acti]

Ralf ww trnipl0's Profile

riLike | [Be thy

Kl Like ADD COMMENT =

Patterns Origin — Christopher Alexander

BED ALCOVE hed
Em alcove
Design problem ” T
e MO Iarger
Bedrooms make no sense. 1 COMMON Space
Forces

First, the bed in a bedroom creates awkward
spaces around it: dressing, working, watching
television, sitting, are all rather foreign to the side
spaces left over around a bed. (...)

Second, the bed itself seems more comfortable in a
space that is adjusted to it.

Solution
Don't put single beds in empty rooms called bedrooms,
but instead put individual bed alcoves off rooms with
other nonsleeping functions, so the bed itself becomes
a tiny private haven.

A Pattern Language

Towns Buildings - Construction

Christopher Alexander

Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

Patterns — 15 Years After GoF

= “Mind sized” chunks of information
(Ward Cunningham)

* Human-to-human interaction

= Expresses intent (“why” vs. “how”)

» Observed from actual experience

= New programming models bring new patterns
= NOT-:

= A firm rule —always a time when not to use
= Copy-paste code

» |solated. Part of a Pattern Language

Patterns as Executable Domain Language?

CUSTOMER orderChannel

ENRICHER orderChannel orderEnrichedChannel

SPLITTER orderEnrichedChannel i1temChannel "/Order/Item*
ROUTER 1temChannel coldBevChannel "Item = "FRAPPUCINO"*“

hotBevChannel

coldBevChannel
—p

LOGGER coldBevChannel
>./::

OO0

‘—>D=D » o

LOGGER hotBevChannel
order orderEnriched item

Channel Channel Channel hotBevChannel

Patterns Components

Patterns Components

Human communication System Communication

Fuzzy Precise
Design tool Executable
Platform independent Platform dependent

= Pipes and Filters style: simple composability

O—[] =P D—>§ —>_./:

>~—

= Easily formalizable: input ports, output ports

O
Input Port + m—-m + Output Port

= Leverage other domain languages, such as XSLT

Enterprise Integration or Messaging?

Enterprise
Integration

)

Messaging

Enterprise Integration or Messaging?

Enterprise
Integration

*

Messaging

1
Conversations

Processes

Events

Messaging

Flow of messages through processing nodes

>

~N
-

O Translator O

e—» 10 O—>»0 O—0
O O

Test Message Splitter 0—[] Aggregator

Enricher

Stateless -> scaleable, decoupled
Error handling?
Complex interactions (no guarantees)

Conversations

Conversation

Internal State:
Processing
Payment

- o o ek o -

Internal State:
Waiting for
Payment

RN

Internal State:
Making Drinks

= Each conversation corresponds to one process

Instance

= Each participant has a (potentially different) process

definition

Simple Example: Request Response

Client Server

O

Conversation = Series of Related Messages

Response Message Lost

Client Server

O

Response Message Delayed

Client Server

O

Conversation State

Client Server ?

Waiting for
Response

e 5

Challenges: Describing Conversations

Sequence Diagrams (UML 1.x) only show one
Instance, not rules of interaction

Sequence Diagrams (UML 2.0) more powerful, but
non-intuitive notation

WS-CDL describes conversation state, but very
little adoption

WS-BPEL a little verbose, looking from participant
perspective

Temporal Logic expressive, but not good for
sketch

Request-Reply

Requestor

T =

Request
Channel

(—
Reply
Channel

Simplest conversation
Single Conversation state: waiting for reply, complete
Gets more complicated once error conditions considered

Replier

Conversation
State Chart

Awaiting
Answer

o

Request-Reply with Retry

Conversation

State

Request > —
At{ [Awaiting
Request (Resend) lAnswer

< Response
Consumer Provider
[resp
Sender can repeat request N times C\Q
Provider has to be idempotent Success Failed

Receiver also has to be idempotent

Example: RosettaNet Implementation Framework
(RNIF)

How can a service find a
conversation partner in when it
has no knowledge about the
network and Its services?

Point-to-point communication requires knowledge of the
conversation partner (or channel).

The late binding between a service consumer and the service
endpoint lowers the location coupling between them.

Discovery may be on the critical path to establishing a conversation.

Even in the presence of a central lookup service, a new participant
has to first establish a connection to the lookup service.

Dynamic Discovery

Consider
Request Provider
@ Pub-Sub 1
S Provider
< 6 2
Respond
(@ Choose Provider
> 3
@ Interact

kWb PE

Broadcast request

Provider(s) consider whether to respond (load, suitability)
Interested providers send responses

Requestor chooses “best” provider from responses
Requestor initiates interaction with chosen provider
Examples: DHCP, TIBCO Repository discovery

How can a service find a conversation
partner across a large network
without flooding the network with
requests?

The late binding between a service consumer and the service
endpoint lowers the location coupling between them.

Discovery may be on the critical path to establishing a conversation.

Many networks do not route broadcast packets beyond the local
network.

Often centralized administration is involved in setting up a new
service.

Consult Directory

@ Consult . Service
Directory Registry

@T Publish Service Contract

Conversation _
Consumer Provider

®

= Directory may store additional metadata about the service
= "Match making based on"

= Unique ldentifiers

= [nterface Definition | Type

= Attributes

= Keyword match

Subscribe-Notify (Multi-responses)

Express Interest>
Notify
<
<
Subscriber Provider

= Subscriber expresses interest in receiving notifications

= Subscriber receives messages until a stop condition is
reached:
= Subscriber sends a stop request
= A deadline is reached without the subscriber renewing interest
= Subscriber does not respond to requests from provider
= Provider notifies subscriber of end of transmission

Renewing Interest

Automatic Expiration

Reqister ’

) Lease
At{ (Renew Interval)

_Renew Interest,

Subscriber Provider

Renewal Request

Reqister ’

4Renewal Reques

Lo

_Renewal Confirg

Subscriber Provider

“Lease” model
Heartbeat / keep-alive

Subscriber has to renew
actively

Example: Jini

“Magazine Model”
Subscriber can be simple

Provider has to manage
state for each subscriber

Conversation Pattern Language

Messages Simple Conversations
Initiating Message Reliable Delivery
Follow-on Message Sync Request-reply
Complete Message Async. Request-Reply
Side Conversation MESSages
(Sub-Conversation) Async. Request-Poll
Acknowledgment for result
Message Subscribe-Notify

Tacit Agreement
Reaching agreement

Conversation Pattern Language

Coordinated Conv. Renewing Interest
Vote / Poll Lease / Automatic
Reaching Agreement / Expiration
Two-phase vote Renewal Reminder

Unanimous agreement

Establishing Conv. Exception Handling
Discovery Two-phase Commit
Introduction Compensation Action
Three-Way Handshake Retry / Resend
Role negotiation (Idempotent Receivers)

Establishing trust Write-Offs

|

1
o ALy iy €o (ancel

. Ak before e /
= Vot w*/wcjrd Liow [|

RDSELL (Ack), dogpite |\
e yelmdle s

Workflow Patterns - Example

(B]

Wait for A and B,
then execute

g

Synchronizing Merge
= Merge many execution paths.
Synchronize if multiple paths

B

C once
are taken.
Multiple Merge LA) LB]
. N
= Merge many execution paths g Execute C
without synchronizing. twice
Discriminator (A) (8)

= Merge many execution paths
without synchronizing. Execute
the subsequent activity only
once.

Execute C
once as soon as
A or B completes

H

Event Pattern - Example

“Window of Opportunity”

Event 1

-

Event 3

Event 4 O>

Messaging Patterns (65)

= Messaging Systems

: ENTERPRISE =, %
= Messaging Channels INTEGRATION %
= Message Construction PATTERNS
= Message Routing
= Message Transformation
= Messaging Endpoints
= System Management

Conversation Patterns

. Discovery ENTERPRISE
o _ INTEGRATION

= Establishing a Conversation JReestise [[

= Multi-party Conversations

» Reaching agreement

= Resource Management

* Error Handling

www.eaipatterns.com

WwWWw.conversationpatterns.com

Photo Credits

= http://nevermoregraphix.deviantart.com
= http://www.travelpod.com/members/ralf ww tripl0
= http://www.flickr.com/photos/mukluk

