
Copyright © 2010 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 1 A Progress Software Company

A Progress Software Company

Pragmatic Service-orientated
Integration – Camel just got
CXFy

Adrian Trenaman,
CamelOne, Washington DC,
May 23rd, 2011

twitte r : adrian_trenaman | LinkedIn: adrian.trenaman
http://trenaman.blogspot.com

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 2 A Progress Software Company

This presentation, in a nutshell.

 CXF was, is, and continues to be a great framework for REST and
SOAP web services.

 Make the right implementation choice for your services
• Straight up business logic / DB access / API : ‘Code it up in Java / Scala’!

• Go with the flow: EIP-based implementation and orchestration with
Camel!

 CXF’s integration with Camel makes EIP-based implementations
easy.

• And, it’s very, very popular.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 3 A Progress Software Company

Meet … me.

 15 years IT consulting experience
• IONA Technologies, Progress Software Corp,

FuseSource

• Committer, Apache Karaf

• SOA, ESB, Open Source, BPM, Web Services, CORBA, …

 Solution focused: architecting, mentoring,
speaking, engineering, doing…

 PhD Artificial Intelligence
• Dip. Business Development

• BA Mod Computer Science

http://trenaman.blogspot.com
http://slideshare.net/trenaman
twitter: adrian_trenaman
LinkedIn: adrian.trenaman

http://trenaman.blogspot.com/�
http://slideshare.net/trenaman�

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 4 A Progress Software Company

My love affair with CXF – Dude, get a room!

 Love at first sight…
• Celtx (2004), CXF (2005 –

wrote first CXF training
course, consulted ever since)

 What’s not to love?
• Standards-based, extensible,

open-source, Apache-
licensed, fast, light, modular,
supported.

 We’ve grown closer over time.
• Tight integration with

ServiceMix and Camel.

• REST, WS-*, JMS, …

• CXF Webinar Series at
FuseSource .com

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 5 A Progress Software Company

REST & SOAP on the enterprise adoption hype curve

REST

SOAP

Time

Adoption

Source: gut feeling on the road.

SOAP is here to stay,
and growing in a
measured, pragmatic
way.

REST is everyone’s
darling; still, there is
a worry of being out
in the ‘wild wild REST’

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 6 A Progress Software Company

Observations on adoption of Service Oriented Architecture

 WSDL/SOAP has moved from
hype to pragmatic, no-fuss
adoption.

 WSDL was (and still is) way too
hard.
• There are very view people

who can design a good
contract.

• But it’s worth it - benefits of
technology agnostic interface
are tangible.

 Pragmatic adoption despite
big SOA scare tactics.
• “You need a $$$ registry /

repository!”

 The world and its auntie loves
REST
• However, few are engaging in

‘high REST’ (HMATEOS)

• Some are yearning for a
return to contract-driven SOA

 Simplicity? +1. It’s no longer
acceptable to be complicated
and misunderstood.
• From “your software is so

difficult to understand –
you’re awesome!”

• To: “I couldn’t be bothered
trying to figure out your sucky
stack.”

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 7 A Progress Software Company

Pragmatic ‘Service Oriented Integration’

 ‘Everything is a web service’ philosophy is dangerous.
• Time consuming. Slow. Unrealistic. Tightly coupled. Synchronous. Silly…

yet promoted by the classic SOA architecture where “BPEL is the glue”

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 8 A Progress Software Company

Pragmatic ‘Service Oriented Integration’

 Embrace heterogeneity in your middleware / integration stack.
• Use web service as a façade

• Behind the façade? Do whatever you like. That’s an implementation
detail.

 Let’s take a real customer example.
• A customer very new to SOA.

• Initial design: ‘module == web service’ && ‘orchestration = BPEL’.
– Why? SWAG: Simple wild ass guess.

– Innocence. No in-house experience with WSDL, XSD, or BPEL.

• Final design:
– Façade == web service

– Module == JAVA service (OSGi)

– Orchestration == Camel.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 9 A Progress Software Company

Overuse of WS-* 

 Correct identification of modules; incorrect assignment of
modularity to technology.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 10 A Progress Software Company

Use-case 1: Orchestration via EIP

Only one service turned out to
be a web service! Used Camel-
CXF to handle routing of calls to
distinct services.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 11 A Progress Software Company

 Snippet of Camel for previous route shown below..

Aside: these processors were
deployed as OSGi services, &
injected in via Spring DM
configuration .

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 12 A Progress Software Company

Use-case 2: asynch processing from SOAP/HTTP to JMS

 A very common usage of Camel and CXF is to provide a web
service that offloads work for asynchronous processing later.
• Message is placed onto a JMS queue, and then an acknowledgement is

returned.

• Work is carried out later.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 13 A Progress Software Company

Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)

You must set the dataFormat
to PAYLOAD in the URI.

No need for generated code!
Just specify the WSDL
location.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 14 A Progress Software Company

Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)

 Place incoming payload onto a reliable JMS queue for offline
processing, and return an acknowledgment response.
• Note usage of inOut and jmsMessageType when sending to the queue!
• Note creation of response from inline XML – neat!

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 15 A Progress Software Company

Using Xpath and templates for request-response traffic

 Nice idea: inject values into a pre-packaged XML template.
• Use XPath to extract useful data from the request and store as a header.

• Inject response values into XML!

Nice use of the velocity
component to generate
response!

Processor does the work of
getting the customer status,
maybe from a DB or backend
system.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 16 A Progress Software Company

Using headers to transmit request information…

 A custom Processor can retrieve the customerId, and store
response information as headers on the message.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 17 A Progress Software Company

Creating a response using Velocity

 Headers from the Camel Exchange are injected easily into a
Velocity template using ${headers.<headerName>} place-holders.
• Example velocity template

(src/main/resources/getCustomerStatusResponse.vm):

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 18 A Progress Software Company

Use-case throttling access to third-party services

 Problem: invoke on a web service, ensuring that invocations and
retries do not exceed messages per time period…
• Motivation: breaking the third-party web service’s SLA involves $$$

penalties.

 Can use the throttle() EIP from Camel!
• Note that to ensure throttle is applied to retries, we must ‘spin’ out the

throttled code to separate route.

• This is because retry logic is applied at the point of a failed processor, not
at the entire route.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 19 A Progress Software Company

Throttling access to third-party services (cont’)

 Phase 1: Set up error handling for retry processing, then
delegate invocation on web service as a second route.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 20 A Progress Software Company

Throttling access to third-party services (cont’)

 Phase 2: throttle the logic that invokes on the web service.

CXF client proxy.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 21 A Progress Software Company

CXF Deployment Models

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 22 A Progress Software Company

Deploying web services using JEE web archives (WARs)

 ServiceMix supports WARs using
the Jetty servlet engine.

 You must install the ServiceMix
‘war’ feature…
• … and copy the ‘war’ file to the

<servicemix-base>/deploy
directory.

 Benefits:
• Simple WAR deployment

• Works for Tomcat and J££ servers.

 Drawbacks
• ‘Fat’ deployment, approx 8Mb per

service.

<<servicemix>>
:FuseESB

<<war>>

:CXFServlet

:SvcImpl

8181

<<feature>>
:war

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 23 A Progress Software Company

Deploying web services using OSGi bundles

 Package as an OSGi bundle with
Spring-DM or ‘Blueprint’ meta-
data.
• Service can use it’s own HTTP Jetty

engine or share the OSGi HTTP
service (see next slide)

 Benefits:
• Adopt modular OSGi architecture

with shared services and shared
code.

• Versioned artifacts

• Lightweight deployables – approx
16k (500 times smaller than
equivalent WAR!)

• Allows ‘per-service’ control over
HTTP port configuration

<<servicemix>>
:FuseESB

<<bundle>>

:SvcImpl
8008

<<feature>>
:cxf

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 24 A Progress Software Company

Simplify configuration of CXF – leave it to the container!

 Fuse ESB enables HTTP access
using the OSGi HTTP Service,
implemented using ‘pax-web’
• Install the ‘http’ feature – fully

configurable HTTP stack powered
by Jetty

 Uses port 8080 by default.
• All HTTP options (including

security) configured by
etc/org.ops4j.pax.web.cfg

• Example on next slide.

 CXF can ‘piggy-back’ onto that
port.
• Install the ‘cxf-osgi’ feature.

<<servicemix>>

http

cxf-osgi

8080

:Bundle

:Service

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 25 A Progress Software Company

org.ops4j.pax.web.cfg

 Sample configuration below disables HTTP and enables HTTPS
• See http://wiki.ops4j.org/display/paxweb/Basic+Configuration for more.

org.osgi.service.http.enabled=false
org.osgi.service.http.port=8080

org.osgi.service.http.port.secure=8443
org.osgi.service.http.secure.enabled=true

org.ops4j.pax.web.ssl.keystore=./etc/samwise.jks
org.ops4j.pax.web.ssl.password=samwise
org.ops4j.pax.web.ssl.keypassword=samwise

org.ops4j.pax.web.listening.addresses=samwise.local

http://wiki.ops4j.org/display/paxweb/Basic+Configuration�

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 26 A Progress Software Company

Deploying web services using JBI service assemblies

 Can configure the transport using
the CXF ‘binding component’ and
the implementation using the CXF
‘service engine’.

 Benefits:
• Can integrate with other JBI

components.

 Drawbacks:
• JBI packaging often overly

complicated for most cases.

 Recommendation: prefer the OSGi,
WAR or Camel (next slide!)
approaches.

<<servicemix>>
:FuseESB

<<jbi-su>>

:JBIEndpoint
8008

<<feature>>
:jbi

<<jbi-su>>

:SvcImplNMR

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 27 A Progress Software Company

Using CXF with Camel in ServiceMix

 Can use the camel-cxf
component to create integration
flows that provide and consume
SOAP or REST interfaces.

 Benefits
• Easily route marshaled (JAX-B) or

unmarshaled (DomSource /
SoapMessage) content.

• Build elegant integration flows
based on Enterprise Integration
Patterns (EIPs)

• Can integrate with ServiceMix 4’s
NMR for scalability, flexibility and
clustering.

o

<<servicemix>>
:FuseESB

<<bundle>>

:CXFEndpont
8008

<<feature>>
:camel-cxf

:Route

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 28 A Progress Software Company

All these choices…

 Apache ServiceMix thrives on innovation and experimentation.
• … it’s not surprising that ServiceMix provides many ways to implement

web services.

 My recommendations:
• If you want to using/implement web services using Java programming,

then use CXF’s JAX-WS support and package as OSGi bundles.
• If you want to route SOAP traffic with little marshalling overhead, then

use Camel’s camel-cxf component.

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 29 A Progress Software Company

Parting words

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 30 A Progress Software Company

Adopting CXF? Your team needs the following…

 Maven / Ant skills (code generation + build + packaging)

 JAX-WS / JAX-B

 XSD

 WSDL

 Either:
• Good Java,

• Spring Framework, or

• Blueprint

 Either:
• OSGi packaging

• WAR packaging

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 31 A Progress Software Company

Summary

 Camel gives new EIP-based techniques for implementing web
services.
• Camel-CXF gives you the smart endpoint technology.

– Also: camel-restlet, camel-http, camel-jetty, and camel-jaxrs are all relevant!

• Camel DSL gives you elegant EIPs: content-based router, transformer,
protocol switch, throttle, …

 Camel lets your choose the right integration technology for the
job at hand.
• Use WS/REST for your external entry points.

• Use EIPs and other camel components for orchestrating and
implementing your integration flows!

Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 32 A Progress Software Company

Learn More at http://fusesource.com

Copyright © 2010 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 33 A Progress Software Company

A Progress Software Company

Pragmatic Service-orientated
Integration – Camel just got
CXFy

Adrian Trenaman,
CamelOne, Washington DC,
May 23rd, 2011

twitte r : adrian_trenaman | LinkedIn: adrian.trenaman
http://trenaman.blogspot.com

	Pragmatic Service-orientated Integration – Camel just got CXFy
	This presentation, in a nutshell.
	Slide Number 3
	My love affair with CXF – Dude, get a room!
	REST & SOAP on the enterprise adoption hype curve
	Observations on adoption of Service Oriented Architecture
	Pragmatic ‘Service Oriented Integration’
	Pragmatic ‘Service Oriented Integration’
	Overuse of WS-* 
	Use-case 1: Orchestration via EIP
	Slide Number 11
	Use-case 2: asynch processing from SOAP/HTTP to JMS
	Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)
	Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)
	Using Xpath and templates for request-response traffic
	Using headers to transmit request information…
	Creating a response using Velocity
	Use-case throttling access to third-party services
	Throttling access to third-party services (cont’)
	Throttling access to third-party services (cont’)
	CXF Deployment Models
	Deploying web services using JEE web archives (WARs)
	Deploying web services using OSGi bundles
	Simplify configuration of CXF – leave it to the container!
	org.ops4j.pax.web.cfg
	Deploying web services using JBI service assemblies
	Using CXF with Camel in ServiceMix
	All these choices…
	Parting words
	Adopting CXF? Your team needs the following…
	Summary
	Learn More at http://fusesource.com
	Pragmatic Service-orientated Integration – Camel just got CXFy

