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This presentation, in a nutshell.

 CXF was, is, and continues to be a great framework for REST and 
SOAP web services.

 Make the right implementation choice for your services
• Straight up business logic / DB access / API : ‘Code it up in Java / Scala’!

• Go with the flow: EIP-based implementation and orchestration with 
Camel!

 CXF’s integration with Camel makes EIP-based implementations 
easy.

• And, it’s very, very popular. 
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Meet … me.

 15 years IT consulting experience
• IONA Technologies, Progress Software Corp, 

FuseSource

• Committer, Apache Karaf

• SOA, ESB, Open Source, BPM, Web Services, CORBA, …

 Solution focused: architecting, mentoring, 
speaking, engineering, doing…

 PhD Artificial Intelligence
• Dip. Business Development

• BA Mod Computer Science

http://trenaman.blogspot.com
http://slideshare.net/trenaman
twitter: adrian_trenaman
LinkedIn: adrian.trenaman

http://trenaman.blogspot.com/�
http://slideshare.net/trenaman�
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My love affair with CXF – Dude, get a room!

 Love at first sight…
• Celtx (2004), CXF (2005 –

wrote first CXF training 
course, consulted ever since)

 What’s not to love? 
• Standards-based, extensible, 

open-source, Apache-
licensed, fast, light, modular, 
supported.

 We’ve grown closer over time.
• Tight integration with 

ServiceMix and Camel.

• REST, WS-*, JMS, …

• CXF Webinar Series at 
FuseSource .com



Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 5 A Progress Software Company

REST & SOAP on the enterprise adoption hype curve

REST

SOAP

Time

Adoption

Source: gut feeling on the road.

SOAP is here to stay, 
and growing in a 
measured, pragmatic 
way.

REST is everyone’s 
darling; still, there is 
a worry of being out 
in the ‘wild wild REST’
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Observations on adoption of Service Oriented Architecture

 WSDL/SOAP has moved from 
hype to pragmatic, no-fuss 
adoption.

 WSDL was (and still is) way too 
hard.
• There are very view people 

who can design a good 
contract.

• But it’s worth it - benefits of 
technology agnostic interface 
are tangible.

 Pragmatic adoption despite 
big SOA scare tactics.
• “You need a $$$ registry / 

repository!”  

 The world and its auntie loves 
REST
• However, few are engaging in 

‘high REST’ (HMATEOS)

• Some are yearning for a 
return to contract-driven SOA

 Simplicity? +1. It’s no longer 
acceptable to be complicated 
and misunderstood.
• From “your software is so 

difficult to understand –
you’re awesome!”

• To:  “I couldn’t be bothered 
trying to figure out your sucky 
stack.”   
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Pragmatic ‘Service Oriented Integration’

 ‘Everything is a web service’ philosophy is dangerous.
• Time consuming. Slow. Unrealistic. Tightly coupled. Synchronous. Silly… 

yet promoted by the classic SOA architecture where “BPEL is the glue”
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Pragmatic ‘Service Oriented Integration’

 Embrace heterogeneity in your middleware / integration stack.
• Use web service as a façade

• Behind the façade? Do whatever you like. That’s an implementation 
detail.

 Let’s take a real customer example. 
• A customer very new to SOA.

• Initial design: ‘module == web service’ && ‘orchestration = BPEL’.
– Why? SWAG: Simple wild ass guess.

– Innocence. No in-house experience with WSDL, XSD, or BPEL.

• Final design: 
– Façade == web service

– Module == JAVA service (OSGi) 

– Orchestration == Camel.
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Overuse of WS-* 

 Correct identification of modules; incorrect assignment of 
modularity to technology.
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Use-case 1: Orchestration via EIP

Only one service turned out to 
be a web service! Used Camel-
CXF to handle routing of calls to 
distinct services.
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 Snippet of Camel for previous route shown below..

Aside: these processors were 
deployed as OSGi services, & 
injected in via Spring DM 
configuration .
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Use-case 2: asynch processing from SOAP/HTTP to JMS

 A very common usage of Camel and CXF is to provide a web 
service that offloads work for asynchronous processing later.
• Message is placed onto a JMS queue, and then an acknowledgement is 

returned.

• Work is carried out later.
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Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)

You must set the dataFormat 
to PAYLOAD in the URI.

No need for generated code! 
Just specify the WSDL 
location.
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Use-case 2: asynch processing from SOAP/HTTP to JMS (cont’)

 Place incoming payload onto a reliable JMS queue for offline 
processing, and return an acknowledgment response.
• Note usage of inOut and jmsMessageType when sending to the queue!
• Note creation of response from inline XML – neat!
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Using Xpath and templates for request-response traffic

 Nice idea: inject values into a pre-packaged XML template.
• Use XPath to extract useful data from the request and store as a header.

• Inject response values into XML! 

Nice use of the velocity 
component to generate 
response!

Processor does the work of 
getting the customer status, 
maybe from a DB or backend 
system.
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Using headers to transmit request information…

 A custom Processor can retrieve the customerId, and store 
response information as headers on the message.
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Creating a response using Velocity

 Headers from the Camel Exchange are injected easily into a 
Velocity template using ${headers.<headerName>} place-holders.
• Example velocity template 

(src/main/resources/getCustomerStatusResponse.vm): 
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Use-case throttling access to third-party services

 Problem: invoke on a web service, ensuring that invocations and
retries do not exceed  messages per time period…
• Motivation: breaking the third-party web service’s SLA involves $$$ 

penalties.

 Can use the throttle() EIP from Camel!
• Note that to ensure throttle is applied to retries, we must ‘spin’ out the 

throttled code to separate route.

• This is because retry logic is applied at the point of a failed processor, not 
at the entire route.
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Throttling access to third-party services (cont’)

 Phase 1: Set up error handling for retry processing, then 
delegate invocation on web service as a second route.
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Throttling access to third-party services (cont’)

 Phase 2: throttle the logic that invokes on the web service.

CXF client proxy.
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CXF Deployment Models
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Deploying web services using JEE web archives (WARs)

 ServiceMix supports WARs using 
the Jetty servlet engine.

 You must install the ServiceMix 
‘war’ feature…
• … and copy the ‘war’ file to the 

<servicemix-base>/deploy 
directory.

 Benefits:
• Simple WAR deployment

• Works for Tomcat and J££ servers.

 Drawbacks
• ‘Fat’ deployment, approx 8Mb per 

service.

<<servicemix>>
:FuseESB

<<war>>

:CXFServlet

:SvcImpl

8181

<<feature>>
:war
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Deploying web services using OSGi bundles

 Package as an OSGi bundle with 
Spring-DM or ‘Blueprint’ meta-
data.
• Service can use it’s own HTTP Jetty 

engine or share the OSGi HTTP 
service (see next slide)

 Benefits:
• Adopt modular OSGi architecture 

with shared services and shared 
code.

• Versioned artifacts

• Lightweight deployables – approx 
16k (500 times smaller than 
equivalent WAR!)

• Allows ‘per-service’ control over 
HTTP port configuration 

<<servicemix>>
:FuseESB

<<bundle>>

:SvcImpl
8008

<<feature>>
:cxf



Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. 24 A Progress Software Company

Simplify configuration of CXF – leave it to the container!

 Fuse ESB enables HTTP access 
using the OSGi HTTP Service, 
implemented using ‘pax-web’
• Install the ‘http’ feature – fully 

configurable HTTP stack powered 
by Jetty

 Uses port 8080 by default.
• All HTTP options (including 

security) configured by 
etc/org.ops4j.pax.web.cfg

• Example on next slide.

 CXF can ‘piggy-back’ onto that 
port.
• Install the ‘cxf-osgi’ feature.

<<servicemix>>

http

cxf-osgi

8080

:Bundle

:Service
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org.ops4j.pax.web.cfg

 Sample configuration below disables HTTP and enables HTTPS
• See http://wiki.ops4j.org/display/paxweb/Basic+Configuration for more.

org.osgi.service.http.enabled=false
org.osgi.service.http.port=8080

org.osgi.service.http.port.secure=8443
org.osgi.service.http.secure.enabled=true

org.ops4j.pax.web.ssl.keystore=./etc/samwise.jks
org.ops4j.pax.web.ssl.password=samwise
org.ops4j.pax.web.ssl.keypassword=samwise

org.ops4j.pax.web.listening.addresses=samwise.local

http://wiki.ops4j.org/display/paxweb/Basic+Configuration�
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Deploying web services using JBI service assemblies

 Can configure the transport using 
the CXF ‘binding component’ and 
the implementation using the CXF 
‘service engine’.

 Benefits:
• Can integrate with other JBI 

components.

 Drawbacks:
• JBI packaging often overly 

complicated for most cases.

 Recommendation: prefer the OSGi, 
WAR or Camel (next slide!) 
approaches.

<<servicemix>>
:FuseESB

<<jbi-su>>

:JBIEndpoint
8008

<<feature>>
:jbi

<<jbi-su>>

:SvcImplNMR
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Using CXF with Camel in ServiceMix

 Can use the camel-cxf
component to create integration 
flows that provide and consume 
SOAP or REST interfaces.

 Benefits
• Easily route marshaled (JAX-B) or 

unmarshaled (DomSource / 
SoapMessage) content.

• Build elegant integration flows 
based on Enterprise Integration 
Patterns (EIPs)

• Can integrate with ServiceMix 4’s 
NMR for scalability, flexibility and 
clustering.

o

<<servicemix>>
:FuseESB

<<bundle>>

:CXFEndpont
8008

<<feature>>
:camel-cxf

:Route
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All these choices…

 Apache ServiceMix thrives on innovation and experimentation.
• … it’s not surprising that ServiceMix provides many ways to implement 

web services.

 My recommendations:
• If you want to using/implement web services using Java programming, 

then use CXF’s JAX-WS support and package as OSGi bundles.
• If you want to route SOAP traffic with little marshalling overhead, then 

use Camel’s camel-cxf component.
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Parting words
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Adopting CXF? Your team needs the following…

 Maven / Ant skills (code generation + build + packaging)

 JAX-WS / JAX-B

 XSD

 WSDL

 Either: 
• Good Java,

• Spring Framework, or

• Blueprint

 Either: 
• OSGi packaging

• WAR packaging
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Summary

 Camel gives new EIP-based techniques for implementing web 
services.
• Camel-CXF gives you the smart endpoint technology.

– Also: camel-restlet, camel-http, camel-jetty, and camel-jaxrs are all relevant!

• Camel DSL gives you elegant EIPs: content-based router, transformer, 
protocol switch, throttle, …

 Camel lets your choose the right integration technology for the 
job at hand.
• Use WS/REST for your external entry points.

• Use EIPs and other camel components for orchestrating and 
implementing your integration flows!
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Learn More at http://fusesource.com
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