
The Maven-related tooling youʼll be using in your
infrastructure for years to come

Next Generation Development
Infrastructure: Maven, m2eclipse,

Nexus & Hudson

Jason van Zyl
http://twitter.com/jvanzyl

http://twitter.com/jvanzyl
http://twitter.com/jvanzyl

Agenda & Session Goals
What weʼre going to talk about and accomplish this session

Proviso 7

Agent

Agent

Agent

6

M2Eclipse 2 Hudson3

1

Nexus Maven

4

5

Git

Maven Central++Maven Central

Advanced forms
of Maven like

Tycho
and

Polyglot Maven

News & Updates

• Maven 3.0.3 has been released. Weʼre working on new feature development for
Maven 3.1

• Nexus 1.9.0.2 has been released

• Hudson 2.0.1 will be released this week

• m2eclipse 0.14 is in-progress and will be the basis of m2eclipse 1.0

• We are still working on bringing Tycho to the Eclipse Foundation

• We are still working on bringing Aether to the Eclipse Foundation

Updates on Maven, m2eclipse & Tycho
Whatʼs going on at Sonatype & in Maven land?

The ideal Maven-focused delivery infrastructure
What does that look like?

M2Eclipse 2 Hudson3

1

Nexus Maven

4

5

Git

Maven Central++

Proviso 7

Agent

Agent

Agent

6

1. Developer requests binary
dependencies from Nexus

2. Developer checks in source code 3. Hudson checks out the source code

4. Hudson instructs Maven to perform
the automated build

5. Maven deploys build
artifacts to Nexus6a. Proviso requests

updates to runtime
components
from Nexus 6b. Nexus sends component

updates to Proviso

7. Proviso provisions components
and configurations into the
target runtime

Overview

• Maven 3.x has been in the wild for 8 months, currently at 3.0.3

• Sonatype has been working on some advanced features

• Async HTTP Client Connector

• Concurrent-safe local repository implementation

• Layered local repository implementation

• Improved and dynamic extension mechanism

• JSR330-based plugins with a new Java5-based API

Maven
Maven has become the de facto build tool in the enterprise

• m2eclipse has been successfully transitioned to the Eclipse Foundation

• m2eclipse will graduate with Indigo and be shipped with the standard Eclipse
distributions in June

• Extension point API is final

• Huge performance improvements

• Extension discovery mechanism: very much like the Mylyn connector discovery
mechanism

m2eclipse
m2eclipse is the standard Maven integration for Eclipse

• Moving Hudson to the Eclipse Foundation

• Removal of all L/GPL dependencies

• Vast improvement of the test suite

• Automated release infrastructure

• Transition the core to using JSR330

• Use of JAXRS for webservices

• GWT UI option

• Maven 3.x integration from Sonatype

• Uses JSR330, JAXRS, and GWT

Hudson
Continuous integration has become a daily part of developer life

• Using binary artifacts is the standard way to integrate 3rd party functionality whether
that be from within your organization or from OSS communities. Groups generally
consume dependencies in binary form, not source form.

• Nexus provides an analog to your SCM except that Nexus controls binaries. You can
think of Nexus as binary configuration management system. It really is very similar
because youʼre moving streams of binaries around in very much the same way you
move streams of sources around.

• Any measure of reuse will come from analyzing the traffic of binary artifacts through
your system.

• Any legal compliance or procurement process will be based on gating the use of
binary artifacts.

• Analysis as it pertains to artifacts requires an application like Nexus. Parsing log files
from your Apache instance canʼt provide the information you need to understand the
use of artifacts in your organization.

Why Nexus?
Using an enterprise repository manager is becoming standard

Typical Nexus Setup

Nexus

Apache

Codehaus

JBoss

Terracotta

Dev

Test

QA
Production

Open Source Ghetto

Precious

Developers
Your Ghetto

- bad POMs
- repositories in POMs (bad dog!)
- mixed snapshot and release repositories
- incorrect optional dependencies

World

Unified indices
for m2e

One repository
configuration!

Just kidding, your dev environment is probably perfect

Group

Letʼs dig in!

• Shared component model

• Shared transport system

• Shared repository API

• Enriched component metadata

• Enhanced IDE connectivity to the infrastructure

The ideal Maven-focused delivery infrastructure
What does that look like?

JSR-330

Shared component model
For Sonatype this means JSR-330, Guice & Sisu

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

Agent

Sonatype Sisu
Extensions to Guice for JSR330+

@Named("hint")
@EagerSingleton
class SomeComponent
{
}

@Named
@Typed(SomeType.class)
class AnotherComponent
{
}

@Inject
List<Component> componentList;

@Inject
Map<String, Component> componentMap;

@Inject
@Named("${dbdriver}://${dbhost}:${dbport:-5432}/${dbname}")
URL databaseURL;

• Requirements

• Absolutely no code changes for any Maven, Nexus, M2Eclipse component

• Must support Plexusʼ classpath/resource scanning

• Must support Plexusʼ dynamic component assembly based on discovered metadata

• Must support Plexusʼ configuration & converter mechanism

• When we need changes made to the runtime container, we need those changes to
be timely

• Support for arbitrary lifecycles

• We need the container to be wed with OSGi -- for us the answer is Peaberry

• Component graph proxy support: for components and configuration

• Dynamic language support

Moving from Plexus to Guice & JSR-330
Making it all work with Guice

Implications of using JSR-330
We bring some sanity to tooling
• Writing plugins in various ways for tools like Maven, Nexus, Hudson, Sonar & Eclipse

has a great deal of mental overhead. This burden will be removed.

• The implications for development, testing and delivery are huge. They cannot be
understated

• Common development models: how to create JSR-330-based plugins, better
component reuse, a common understand of infrastructure tooling

• Common testing frameworks for JSR-330 e.g Sonatypeʼs REST/UI toolkit

• Common bridge to OSGi

• Common provisioning models

Sisu Maven Plugin Example
Using the same component model

@Goal("webxml")
@Phase(GENERATE_RESOURCES)
@RequiresProject
@Threadsafe
public class GenerateWebXml extends SisuMavenMojo {
 @Inject Logger logger;

 @Inject
 private Component component;

 @Inject @Named("${project}")
 private MavenProject project;

 @Inject @Named("${outputDirectory}") @Default("${project.build.directory}")
 private File outputDirectory;

 @Inject
 private List<WebXmlAugmenter> webXmlAugmenters;

 public void execute() throws Exception {
 component.generate(project, webXmlAugmenters, outputDirectory);
 }
}

Sisu Hudson Plugin Example
Using the same component model

@Named
@Singleton
public class RestPlugin
 extends Plugin
{
 @Inject
 private Logger logger;

 private transient List<ApiProvider> providers;

 private boolean enabled = true;

 @Inject
 public RestPlugin(final List<ApiProvider> providers) {
 assert providers != null;
 this.providers = providers;

 logger.debug("Providers:");
 for (ApiProvider provider : providers) {
 logger.debug(" {}", provider);
 }
 }
}

Sisu Nexus Plugin Example
Using the same component model

@Named
@Singleton
@Path(CapabilitiesResource.RESOURCE_URI)
@Produces({ "application/xml", "application/json" })
@Consumes({ "application/xml", "application/json" })
public class CapabilitiesResource
 implements Resource {
 public static final String RESOURCE_URI = "/capabilities";

 private final CapabilityConfiguration capabilitiesConfiguration;

 private final CapabilityDescriptorRegistry capabilityDescriptorRegistry;

 @Inject
 public CapabilitiesResource(CapabilityConfiguration capabilitiesConfiguration,
 CapabilityDescriptorRegistry capabilityDescriptorRegistry)
 {
 this.capabilitiesConfiguration = capabilitiesConfiguration;
 this.capabilityDescriptorRegistry = capabilityDescriptorRegistry;

 ...
 }
}

Shared transport system
For Sonatype this means the Async HTTP Client

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

Agent
Async HTTP Client

Shared repository API
For Sonatype this means our new Aether library

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

AgentAether

1

5

7

6

• The artifact resolution code has always been relatively decoupled, but Aether is a
completely stand-alone library and has no dependencies on Maven

• SSL support

• DAV support

• Transport

• Weʼre using the Async HTTP client being developed by Jean-francois Arcand at
Sonatype

• Large file support

• Resumable downloads

• Complete proxy support

• Complete NTLMv1 & v2 support

• Sonatype would like to move Aether to the Eclipse Foundation

Aether
Overhauled Repository Artifact Resolution API

Aether Resolution Example
Easy to embed and simply use as a library

 public void resolve(String remoteRepository, File localRepository)
 throws DependencyCollectionException, ArtifactResolutionException
 {
 Aether aether = new Aether(repoRepository, localRepository);

 AetherResult result = aether.resolve("com.mycompany.app", "super-app", "1.0");

 // Get the root of the resolved tree of artifacts
 //
 DependencyNode root = result.getRoot();

 // Get the list of files for the artifacts resolved
 //
 List<File> artifacts = result.getResolvedFiles();

 // Get the classpath of the artifacts resolved
 //
 String classpath = result.getResolvedClassPath();
 }

Aether Install & Deploy Example
Easy to embed and simply use as a library

 public void installAndDeploy(String remoteRepository, File localRepository
 String deployRepository)
 throws InstallationException, DeploymentException
 {
 Aether aether = new Aether(remoteRepository, localRepository);

 Artifact artifact =

 new DefaultArtifact("com.mycompany", "super-core", "jar", "1.0");
 artifact = artifact.setFile(new File("jar-from-whatever-process.jar"));
 Artifact pom = new SubArtifact(artifact, null, "pom");
 pom = pom.setFile(new File("pom-from-whatever-process.xml"));

 // Install into the local repository specified
 //
 aether.install(artifact, pom);

 // Deploy to the specified deploy reposistory
 //
 aether.deploy(artifact, pom, deployRepository);
 }

• First we need to clean up the way artifacts get into Maven Central

• License information

• Security vulnerability information

• Compatibility information

• Introduce new component types...

Enriched component metadata
What is that and how do we get it?

• Bullet

• Bullet

• Bullet

Maven Central Quality
Sonatype is working hard to clean up Maven Central

https://docs.sonatype.org/display/Repository/Home

https://docs.sonatype.org/display/Repository/Home
https://docs.sonatype.org/display/Repository/Home

POM

Nx

Nx
Nx

Nx
Nx

Rsync facility from OSS
Nexus Instances to Maven Central

via Nexus OSS

Maven Central

Nexus OSS

Nx

• Onboarding & updating

• Getting developers up and running quickly & helping developers update
environments and transition to new projects

• Connectivity to

• Maven

• SCM

• Hudson

• Nexus

• Proviso

Enhanced IDE connectivity to the infrastructure
The IDE is the cockpit for a developer and be easy to get into

Developer Onboarding & Updating

MSE Codebase

MSE Lineup

Eclipse Distribution

Eclipse Plugins/
Components

Source Tree
SCM Information

Project Information

Source Roots

Eclipse Preferences

Codebase Description/Icon

(one or more)

Publish Codebase

Publish Lineup

Request Codebase
Materialize/Update

Nexus: Access to Archetypes

Nexus: Access to Artifacts

Idiom: Access Wikis

Hudson: Access to Build Jobs

Hudson: Access to Build Job Details

Hudson: Direct Navigation to Test Failures

Questions?

